1
|
Ansari M, Eslami H, Karimi A, Dehestani A, Razmaein MR, Ghanbari F. The Influence of Cuprorivaite Nanoparticles on the Physicomechanical and Biological Performance of 3D-Printed Scaffold Based on Carboxymethyl Chitosan Combined With Zein for Bone Tissue Engineering. Biopolymers 2025; 116:e23652. [PMID: 39945191 DOI: 10.1002/bip.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 05/09/2025]
Abstract
This study demonstrates a new degradable 3D-printed carboxymethyl chitosan (CMC)/zein bone scaffold loaded with different content of cuprorivaite (Cup) nanoparticles which labeled as CMCS/Z/Cup. Only a few studies have utilized these components to fabricate a three-component porous osteogenic scaffold. The aim of this study was to comprehensively assess the mechanical and biocompatibility of the nanocomposite which synthesized by 3D printing method. For this purpose, the Cup powder was initially synthesized through sol-gel process and its confirmation was proved using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Then, three CMC/Z scaffolds were made with different Cup contents: group A (0 wt.% Cup), group B (2.5 wt.% Cup) and group C (5 wt.% Cup). The scaffolds were well-ordered microporous with a high porosity and pore connectivity, as observed by morphological analysis by SEM. Additionally, the pore size of group B was more homogeneous than that of groups A and C. There were no significance differences in physicochemical characterization among the three groups. Mechanical properties analysis showed that values of compression modulus are significantly increased with addition of 2.5% Cup nanoparticles into CMCS/zein matrix, from 1.2 to 9.6 MPa. The incorporation of Cup nanoparticles into CMCS along with zein can provide a suitable substrate for the growth of osteoblast cells after implantation, as indicated by the results of in vitro degradation. The scaffolds were cultured in vitro with MG-63 cells, showing that cell viability increased with the Cup content, 95%, 105%, and 110% for the pure polymeric scaffold, and scaffolds reinforced with 2.5% and 5% Cup, respectively. As a result, the scaffolds designed in this study possess the ability to be used in bone tissue engineering due to having characteristics similar to natural bone.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Hossein Eslami
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Abolfazl Karimi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Akram Dehestani
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Fatemeh Ghanbari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
2
|
Yu LJ, Koh KS, Tarawneh MA, Tan MC, Guo Y, Wang J, Ren Y. Microfluidic systems and ultrasonics for emulsion-based biopolymers: A comprehensive review of techniques, challenges, and future directions. ULTRASONICS SONOCHEMISTRY 2025; 114:107217. [PMID: 39952167 PMCID: PMC11874545 DOI: 10.1016/j.ultsonch.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Over the past decade, the advancement of microfluidic technology associated with ultrasonics had received a considerate impact across the field, especially in biomedical and polymer synthesis applications. Nevertheless, there are much hindrance remained unsolved, to achieve simple processing, high scalability and high yield biopolymer products that stabilize during the process. In this review, we discuss the underlying physics for both microfluidic and ultrasonic integration in the synthesis of emulsion-based biopolymer and application. The current progress was outlined, focus on its related applications. We also summarized the current strengths and weakness of the microfluidic-ultrasonic integrated technology, aiming to contribute into SDG 12 for responsible consumption and production.
Collapse
Affiliation(s)
- Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment, UCSI University 56100 Kuala Lumpur, Malaysia; UCSI-Cheras Low Carbon Innovation Hub Research Consortium 56100 Kuala Lumpur, Malaysia.
| | - Kai Seng Koh
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Putrajaya 62200 Malaysia.
| | - Mou'ad A Tarawneh
- Department of Physics, College of Science, Al-Hussein Bin Talal University, P.O. Box 20, Ma'an, Jordan
| | - Mei Ching Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 Sepang, Malaysia.
| | - Yanhong Guo
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, China.
| | - Yong Ren
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China; Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
3
|
Ma D, Yang B, Zhao J, Yuan D, Li Q. Advances in protein-based microcapsules and their applications: A review. Int J Biol Macromol 2024; 263:129742. [PMID: 38278389 DOI: 10.1016/j.ijbiomac.2024.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.
Collapse
Affiliation(s)
- Donghui Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China.
| |
Collapse
|
4
|
Wu Y, Lv B, Wang S, Liu Z, Chen XD, Cheng Y. Study of molecular interaction and texture characteristics of hydrocolloid-mixed alginate microspheres: As a shell to encapsulate multiphase oil cores. Carbohydr Polym 2024; 326:121603. [PMID: 38142092 DOI: 10.1016/j.carbpol.2023.121603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
This work investigates the molecular interaction of hydrocolloids (xanthan gum (XG), hydroxyethyl cellulose (HEC), carbomer (CBM) and hymagic™-4D (HA)) with sodium alginate (SA) in microspheres in detail. The molecular interaction of hydrocolloids with SA are demonstrated by the rheological property analysis of the mixed solutions as well as the morphology structure and texture characteristics studies of the microspheres. It is found that the hydrocolloids (XG, HEC and CBM) with branches or capable to coil are able to form complex networks with SA through molecular interactions which hinders the free diffusion of calcium ions and changes the texture characteristics of microspheres. In addition, the mixed solutions (SA-XG and SA-HEC) with complex networks and do not have a chelating effect on calcium ions are used to form the shell of the microcapsules through droplet microfluidic technology, and stable with soft microcapsules encapsulating multiphase oil cores have been successfully prepared. At the same time, the textural properties of microcapsules are quantized, which are related to human sensory properties. The developed stable and soft microcapsules which have the properties of sensory comfort are expected to be applied in the personal care industry and a variety of fields.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boya Lv
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215152, Jiangsu Province, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou 215152, Jiangsu Province, China
| | - Shiteng Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Liu
- Bloomage Biotechnology Co., Ltd., Jinan 250000, Shandong Province, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215152, Jiangsu Province, China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Huang K, Wang Q, Song H, Cao H, Guan X. In vitro gastrointestinal digestion of highland barley protein: identification and characterization of novel bioactive peptides involved in gut cholecystokinin secretion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7869-7876. [PMID: 37467368 DOI: 10.1002/jsfa.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The satiety hormone cholecystokinin (CCK) plays an important role in food intake inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that induce CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of highland barley protein digest (HBPD) to stimulate CCK secretion in vitro and in vivo and identify the responsible peptide sequences. RESULTS HBPD was prepared by in vitro gastrointestinal digestion model. Peptides of <1000 Da in HBPD accounted for 82%. HBPD was rich in essential amino acids Leu, Phe and Val, but lack in sulfur amino acids Met and Cys. HBPD treatment at a concentration of 5 mg mL-1 significantly stimulated CCK secretion from enteroendocrine STC-1 cells (P < 0.05). Moreover, oral gavage with HBPD in mice significantly increased plasma CCK level. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion and peptide sequence was determined by ultra-performance liquid chromatography-tandem mass spectrometry. Two novel CCK-releasing peptides, PDLP and YRIVPL, were pointed out for their outstanding CCK secretagogue activity. CONCLUSION This study demonstrated for the first time that HBPD had an ability to stimulate CCK secretion in vitro and in vivo and determined the bioactive peptides exerting CCK secretagogue activity in HBPD. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Qingyu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
6
|
Paliperidone Palmitate-Loaded Zein-Maltodextrin Nanocomplex: Fabrication, Characterization, and In Vitro Release. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Sun Y, Wei Z, Xue C. Development of zein-based nutraceutical delivery systems: A systematic overview based on recent researches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
9
|
Fabrication of zein-modified starch nanoparticle complexes via microfluidic chip and encapsulation of nisin. Curr Res Food Sci 2022; 5:1110-1117. [PMID: 35865806 PMCID: PMC9294254 DOI: 10.1016/j.crfs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
A microfluidic chip is a micro-reactor that precisely manipulates and controls fluids. Zein is a group of prolamines extracted from corn that can form self-assembled nanoparticles in water or a low concentration of ethanol in a microfluidic chip. However, the zein nanoparticles have stability issues, especially in a neutral pH environment due to the proximity of the isoelectric point. This study was designed 1) to evaluate the effect of octenyl succinic anhydride (OSA) modified starch on the stability of zein nanoparticles formed using a microfluidic chip and 2) to apply the zein-OSA starch for encapsulation of nisin and evaluate its anti-microbial activity in a model food matrix. A T-junction configuration of the microfluidic chip was used to fabricate the zein nanoparticles using 1% or 2% zein solution and 0–10% (w/w) of OSA starch solution. The stability of the nanoparticles in various ionic strength environments was assessed. Encapsulation efficiency and anti-microbial activity of nisin in the zein nanoparticles against Listeria monocytogenes in a fresh cheese were measured. As the concentration of OSA starch increased from 0 to 10%, effective diameter increased from 117.8 ± 14.5 to 198.7 ± 13.9 nm without affecting polydispersity indexes and zeta-potential changed toward that of the modified starch indicating the zein surface coverage by the OSA starch. The zein-OSA starch nanoparticle complexes were more stable at various sodium chloride concentrations than the zein nanoparticles without OSA starch. The encapsulation efficiency of nisin was positively correlated with the OSA starch concentration. The anti-microbial activity of nisin in the fresh cheese also increased until 3-days of storage as the concentration of the OSA starch increased, which presented both a potential and challenge toward applications. Microfluidic chip formed zein nanoparticles with OSA-modified starch. Zein nanoparticle size and stability were affected by zein and modified starch concentration. Nisin was encapsulated in the zein nanoparticles via microfluidic chip. Anti-microbial activity of nisin was improved by the encapsulation.
Collapse
|
10
|
Logesh D, Vallikkadan MS, Leena MM, Moses J, Anandharamakrishnan C. Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Khoeini D, Scott TF, Neild A. Microfluidic enhancement of self-assembly systems. LAB ON A CHIP 2021; 21:1661-1675. [PMID: 33949588 DOI: 10.1039/d1lc00038a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic, kinetically-controlled, self-assembly processes are commonly observed in nature and are capable of creating intricate, functional architectures from simple precursors. However, notably, much of the research into molecular self-assembly has been performed using conventional bulk techniques where the resultant species are dictated by thermodynamic stability to yield relatively simple assemblies. Whereas, the environmental control offered by microfluidic systems offers methods to achieve non-equilibrium reaction conditions capable of increasingly sophisticated self-assembled structures. Alterations to the immediate microenvironment during the assembly of the molecules is possible, providing the basis for kinetically-controlled assembly. This review examines the key mechanism offered by microfluidic systems and the architectures required to access them. The mechanisms include diffusion-led mixing, shear gradient alignment, spatial and temporal confinement, and structural templates in multiphase systems. The works are selected and categorised in terms of the microfluidic approaches taken rather than the chemical constructs which are formed.
Collapse
Affiliation(s)
- Davood Khoeini
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Timothy F Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia and Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
12
|
Zhao H, Guo M, Ding T, Ye X, Liu D. Exploring the mechanism of hollow microcapsule formation by self-assembly of soy 11s protein upon heating. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Aghaei Z, Ghorani B, Emadzadeh B, Kadkhodaee R, Tucker N. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107065] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
15
|
Wang W, Feng Y, Chen W, Wang Y, Wilder G, Liu D, Yin Y. Ultrasonic modification of pectin for enhanced 2-furfurylthiol encapsulation: process optimization and mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:110-118. [PMID: 31436316 DOI: 10.1002/jsfa.10000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pectin is an intriguing polymer, which is usually regarded as a byproduct from agricultural and biological processes. In previous studies, ultrasound treatment has been explored to improve the functionality of pectin but most of that work focused on aspects of molecular structure and the chemical properties of pectin. In this study, we utilized ultrasound treatment to modify the physiochemical properties of pectin. Using ultrasound treatment, we evaluated the emulsifying capability of pectin as a function of ultrasonic time and power density, using a response surface approach. A very potent yet unstable coffee-like aroma compound, 2-furfurylthiol, was also used for comparing the encapsulation feasibility of emulsion made with original pectin and ultrasound-treated pectin. RESULTS Our results showed that the particle size of pectin was highly correlated with power density and ultrasound time. Approximately 370 nm of pectin particle size could be reached at a power density of 1.06 W mL-1 for 40 min. Ultrasound treatment increased emulsion droplet size but significantly improved emulsifying capacities, such as centrifugal stability and surface loading, although it was highly dependent upon the ultrasound treatment condition. When used as the encapsulation wall material, the ultrasound-modified pectin had significantly enhanced performance compared with the original, in terms of flavor retention over time at 45 °C and 65 °C. CONCLUSION Ultrasound treatment was able to modify the physiochemical properties of pectin, which thus improved emulsification stability and encapsulation feasibility by forming a thicker layer at the oil / water interface to protect the core materials. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Yiming Feng
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yueying Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Geoffrey Wilder
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Yun Yin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
16
|
Feng Y, Ibarra-Sánchez LA, Luu L, Miller MJ, Lee Y. Co-assembly of nisin and zein in microfluidics for enhanced antilisterial activity in Queso Fresco. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
|
18
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Feng Y, Lee Y. Microfluidic fabrication of wrinkled protein microcapsules and their nanomechanical properties affected by protein secondary structure. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Li X, Feng Y, Ting S, Jiang J, Liu Y. Effect of processing conditions on the physiochemical properties and nutrients retention of spray-dried microcapsules using mixed protein system. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1518932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
- Abbott Nutritional Research and Development Center, Pacific Asia, Singapore
| | - Yiming Feng
- Abbott Nutritional Research and Development Center, Pacific Asia, Singapore
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sharon Ting
- Abbott Nutritional Research and Development Center, Pacific Asia, Singapore
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| |
Collapse
|
21
|
Li X, Feng Y, Ting S, Jiang J, Liu Y. Correlating emulsion properties to microencapsulation efficacy and nutrients retention in mixed proteins system. Food Res Int 2019; 115:44-53. [DOI: 10.1016/j.foodres.2018.07.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
|
22
|
Wang M, Kong C, Liang Q, Zhao J, Wen M, Xu Z, Ruan X. Numerical simulations of wall contact angle effects on droplet size during step emulsification. RSC Adv 2018; 8:33042-33047. [PMID: 35548132 PMCID: PMC9086337 DOI: 10.1039/c8ra06837b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022] Open
Abstract
Terrace-based microfluidic devices are currently used to prepare highly monodisperse micro-droplets. Droplets are generated due to the spontaneous pressure drop induced by the Laplace pressure, and so the flow rate of a dispersed phase has little effect on droplet size. As a result, control over the droplet is limited once a step emulsification device has been fabricated. In this work, a terrace model was established to study the effect of the wall contact angle on droplet size based on computational fluid dynamics simulations. The results for contact angles from 140° to 180° show that a lower contact angle induces wall-wetting, increasing the droplet size. The Laplace pressure equations for droplet generation were determined based on combining pressure change curves with theoretical analyses, to provide a theoretical basis for controlling and handling droplets generated through step emulsification. A study on the effects of wall contact angle makes it more flexible to predict and control the size of droplets generated in step emulsification.![]()
Collapse
Affiliation(s)
- Meng Wang
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Chuang Kong
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Qisen Liang
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jianxiang Zhao
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Maolin Wen
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Zhongbin Xu
- Institute of Process Equipment
- College of Energy Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xiaodong Ruan
- The State Key Laboratory of Fluid Power and Mechatronic Systems
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|