1
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
2
|
Chen S, Bao J, Hu Z, Liu X, Cheng S, Zhao W, Zhao C. Porous Microspheres as Pathogen Traps for Sepsis Therapy: Capturing Active Pathogens and Alleviating Inflammatory Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682663 DOI: 10.1021/acsami.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by pathogen infection, while the current antibiotics mainly utilized in clinical practice to combat infection result in the release of pathogen-associated molecular patterns (PAMPs) in the body. Herein, we provide an innovative strategy for controlling sepsis, namely, capturing active pathogens by means of extracorporeal blood purification. Carbon nanotubes (CNTs) were modified with dimethyldiallylammonium chloride (DDA) through γ-ray irradiation-induced graft polymerization to confer a positive charge. Then, CNT-DDAs are blended with polyurethane (PU) to prepare porous microspheres using the electro-spraying method. The obtained microspheres with a pore diameter of 2 μm served as pathogen traps and are termed as PU-CNT-DDA microspheres. Even at a high flow rate of 50 mL·min-1, the capture efficiencies of the PU-CNT-DDAs for Escherichia coli and Staphylococcus aureus remained 94.7% and 98.8%, respectively. This approach circumvents pathogen lysis and mortality, significantly curtails the release of PAMPs, and hampers the production of pro-inflammatory cytokines. Therefore, hemoperfusion using porous PU-CNT-DDAs as pathogen traps to capture active pathogens and alleviate inflammation opens a new route for sepsis therapy.
Collapse
Affiliation(s)
- Shifan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Hu
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, PR China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Yadav AS, Tran DT, Teo AJT, Dai Y, Galogahi FM, Ooi CH, Nguyen NT. Core-Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques. MICROMACHINES 2023; 14:497. [PMID: 36984904 PMCID: PMC10054063 DOI: 10.3390/mi14030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Core-shell particles are micro- or nanoparticles with solid, liquid, or gas cores encapsulated by protective solid shells. The unique composition of core and shell materials imparts smart properties on the particles. Core-shell particles are gaining increasing attention as tuneable and versatile carriers for pharmaceutical and biomedical applications including targeted drug delivery, controlled drug release, and biosensing. This review provides an overview of fabrication methods for core-shell particles followed by a brief discussion of their application and a detailed analysis of their manipulation including assembly, sorting, and triggered release. We compile current methodologies employed for manipulation of core-shell particles and demonstrate how existing methods of assembly and sorting micro/nanospheres can be adopted or modified for core-shell particles. Various triggered release approaches for diagnostics and drug delivery are also discussed in detail.
Collapse
Affiliation(s)
- Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Adrian J. T. Teo
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore 637460, Singapore
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Fariba Malekpour Galogahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Yu C, Lu G, Yan C, Xu J, Zhang F. Preparation and pH Detection Performance of Rosin-Based Fluorescent Polyurethane Microspheres. J Fluoresc 2023:10.1007/s10895-023-03160-z. [PMID: 36790631 DOI: 10.1007/s10895-023-03160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Rosin-based fluorescent polyurethane emulsion (FPU) was prepared using isophorone diisocyanate, ester of acrylic rosin and glycidyl methacrylate, 1,5-dihydroxy naphthalene (1,5-DN), and 1,4-butanediol as the raw materials. Then, rosin-based fluorescent polyurethane microspheres (FPUMs) were successfully prepared by suspension polymerization method using FPU as the main material, azodiisobutyronitrile as the initiator, and gelatin as the dispersant. FPUMs were characterized by Fourier transform infrared spectra, thermogravimetric analysis, optical microscopy, scanning electron microscopy and fluorescence spectra, and the response performance of FPUMs to pH was studied. The results showed that FPUMs were successfully prepared. With the increase of the level of 1,5-DN, the particle size of FPUMs increased gradually, and the fluorescence intensity increased first and then decreased. When the level of 1,5-DN was 3 wt.%, the average particle size was 49.3 μm, the particle distribution index (PDI) was 1.05, and the fluorescence intensity was the largest (3662 a.u.). The fluorescence intensity of FPUMs increased linearly with the decrease of pH, which can be used for pH detection in solution. Furthermore, the FPUMs exhibited good thermal stability, anti-interference and recoverability.
Collapse
Affiliation(s)
- Caili Yu
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Guangjie Lu
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Chengfei Yan
- College of Chemistry and Biology Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jianben Xu
- College of Materials Science and Engineering, Guilin University of Technology, No 12, Jiangan Road, Guilin, 541004, People's Republic of China.
| | - Faai Zhang
- College of Materials Science and Engineering, Guilin University of Technology, No 12, Jiangan Road, Guilin, 541004, People's Republic of China.
| |
Collapse
|
5
|
Novel polyvinyl-alcohol microsphere for everolimus delivery for subependymal giant cell astrocytoma. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Li Q, Chang B, Dong H, Liu X. Functional microspheres for tissue regeneration. Bioact Mater 2022; 25:485-499. [PMID: 37056261 PMCID: PMC10087113 DOI: 10.1016/j.bioactmat.2022.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of injectable biomaterials, functional microspheres have attracted increasing attention in tissue regeneration because they possess some advantageous properties compared to other biomaterials, including hydrogels. A variety of bio-inspired microspheres with unique structures and properties have been developed as cellular carriers and drug delivery vehicles in recent years. In this review, we provide a comprehensive summary of the progress of functional and biodegradable microspheres that have been used for tissue regeneration over the last two decades. First, we briefly introduce the biomaterials and general methods for microsphere fabrication. Next, we focus on the newly developed technologies for preparing functional microspheres, including macroporous microspheres, nanofibrous microspheres, hollow microspheres, core-shell structured microspheres, and surface-modified functional microspheres. After that, we discuss the application of functional microspheres for tissue regeneration, specifically for bone, cartilage, dental, neural, cardiac, and skin tissue regeneration. Last, we present our perspectives and future directions of functional microspheres as injectable carriers for the future advancement of tissue regeneration.
Collapse
|
7
|
Chen P, Lu S, Pan B, Xu Y. Development, Optimization, and Pharmacokinetics Study of Bufalin/Nintedanib Co-loaded Modified Albumin Sub-microparticles Fabricated by Coaxial Electrostatic Spray Technology. AAPS PharmSciTech 2021; 23:13. [PMID: 34888752 DOI: 10.1208/s12249-021-02163-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Coaxial electrostatic spray technology has received extensive attention in fabricating micro/nanoparticles for drug delivery. However, there are few reports on applying this technology in preparing albumin nanoparticles. In this study, the bufalin (BF) and nintedanib (NDNB) co-loaded ursodeoxycholic acid and p-biguanides benzoic acid decorated albumin sub-microparticles (BN-DUB subMPs) were fabricated by coaxial electrostatic spray technology and optimized by central composite design. Five percent of albumin (contained 0.7% polyethylene oxide) solution was selected as the shell solution which ejected through outer axis with the flow rate of 0.07 mm/min, while the core solution which contained by BF and NDNB ethanol solution was ejected through inner axis with the flow rate of 0.05 mm/min. In vitro cell studies revealed that the modified albumin possessed good biocompatibility. What's more, the BN-DUB subMPs enhanced the inhibitory effect on the growth of LLC cells efficiently. The pharmacokinetics study showed that the t1/2 and AUC0-t of BN-DUB subMPs increased significantly compared with that of the drug solution, which indicated the improved in vivo stability of modified albumin nanoparticles. Thus, this study provided a novel and simple technical platform for the development of albumin-based drug carriers.
Collapse
|
8
|
Zhou L, Hu Z, Li HY, Liu J, Zeng Y, Wang J, Huang Y, Miao L, Zhang G, Huang Y, Jiang J, Jiang S, Liu H. Template-Free Construction of Tin Oxide Porous Hollow Microspheres for Room-Temperature Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25111-25120. [PMID: 34003629 DOI: 10.1021/acsami.1c04651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous hollow microsphere (PHM) materials represent ideal building blocks for realizing diverse functional applications such as catalysis, energy storage, drug delivery, and chemical sensing. This has stimulated intense efforts to construct metal oxide PHMs for achieving highly sensitive and low-power-consumption semiconductor gas sensors. Conventional methods for constructing PHMs rely on delicate reprogramming of templates and may suffer from the structural collapse issue during the removal of templates. Here, we propose a template-free method for the construction of tin oxide (SnO2) PHMs via the competition between the solvent evaporation rate and the phase separation dynamics of colloidal SnO2 quantum wires. The SnO2 PHMs (typically 3 ± 0.5 μm diameter and approximately 200 nm shell thickness) exhibit desirable structural stability with desirable processing compatibility with various substrates. This enables the realization of NO2 gas sensors having a superior response and recovery process at room temperature. The superior NO2-sensing characteristic is attributed to the effective gas adsorption competition on solid surfaces benefiting from efficient diffusion channels, enhancing the interaction of metal oxide solids with gas molecules in terms of the receptor function, transducer function, and utility factor. In addition, the one-step deposition of SnO2 PHMs directly onto device substrates simplifies the fabrication conditions for semiconductor gas sensors. The desirable structural stability of PHMs combined with the functional diversity of metal oxides may open new opportunities for the design of functional materials and devices.
Collapse
Affiliation(s)
- Licheng Zhou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Zhixiang Hu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Hua-Yao Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingyao Liu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yi Zeng
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingsong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yifu Huang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Ling Miao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Guangzu Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yongan Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jianjun Jiang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shenglin Jiang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huan Liu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Zhang Z, Cheng M, Gabriel MS, Teixeira Neto ÂA, da Silva Bernardes J, Berry R, Tam KC. Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization. J Colloid Interface Sci 2019; 555:489-497. [PMID: 31401481 DOI: 10.1016/j.jcis.2019.07.107] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 02/03/2023]
Abstract
A practical and sustainable method to prepare polymeric hollow microcapsules (PHMs) using cellulose nanocrystal (CNC) stabilized Pickering emulsion polymerization was developed. Pristine CNCs hydrolyzed from wood pulp are hydrophilic and could be employed as emulsifiers to prepare oil-in-water (O/W) Pickering emulsions. The O/W Pickering emulsions were used as templates for the Pickering emulsion polymerization of hydrophobic monomers inside the emulsion droplets. The crosslinked hydrophobic polymers phase separated and partitioned to the interface of the Pickering emulsion, leading to the formation of hydrophobic PHMs. Correspondingly, cinnamate modified CNCs with less surface hydrophilicity were employed as emulsifiers to obtain water-in-oil (W/O) inverse Pickering emulsions, which were then used as templates for inverse Pickering emulsion polymerization of hydrophilic monomers to prepare hydrophilic PHMs. Therefore, both hydrophobic and hydrophilic PHMs could be obtained via this approach. Herein, polystyrene, poly(4-vinylpyridine), and poly(N-isopropyl acrylamide) hollow microcapsules were prepared as models, where the size, crosslinking density, shell structure and stimuli-responsive properties of PHMs could be tuned by varying the synthesis parameters.
Collapse
Affiliation(s)
- Zhen Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Shenzhen Guohua Optoelectronics Tech. Co. Ltd, Shenzhen 518110, PR China
| | - Maria Cheng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Mia San Gabriel
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Ângela Albuquerque Teixeira Neto
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Juliana da Silva Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Richard Berry
- CelluForce Inc., 625, Président-Kennedy Ave, Montreal, Quebec H3A 1K2, Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
10
|
Li W, Wang H, Li Z. Hierarchical structure microspheres of PCL block copolymers via electrospraying as coatings for fabric with mechanical durability and self‐cleaning ability. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wulong Li
- College of Textile and Clothing EngineeringSoochow University Suzhou 215021 China
| | - Haipeng Wang
- College of Textile and Clothing EngineeringSoochow University Suzhou 215021 China
| | - Zhanxiong Li
- College of Textile and Clothing EngineeringSoochow University Suzhou 215021 China
- National Engineering Laboratory for Modern SilkSoochow University Suzhou 215123 China
| |
Collapse
|