1
|
Zhang J, Sun T, Wang J, Xu AJ, Xue B. Cyano-determined mercury (II) ion selective fluorescence assay over polymeric carbon nitride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125129. [PMID: 39288603 DOI: 10.1016/j.saa.2024.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Selective response is the key index to evaluate the performance of polymeric carbon nitride (PCN)-based heavy metal ion fluorescence sensors. Herein, to explore the role of cyano groups on selectivity, four kinds of PCN, including PCN-Cl, PCN-Ac, PCN-B and PCN-K were prepared by the molten salt method of sodium chloride and sodium acetate, the reduction method of sodium borohydride and the etching method of potassium hydroxide, respectively. These PCNs exhibited different surface cyano characteristics, but all of them had significant blue emission under ultraviolet excitation. It is proved that the assistant of sodium chloride or potassium hydroxide is an effective method to prepare PCNs with abundant surface cyano group. A series of fluorescence quenching experiments of metal ions showed that the cyano-rich degree of PCN is closely related to its selective response to mercury (II) ions. PCN-Cl and PCN-K emerged good selective quenching of mercury (II) ions, which may be related to the soft acid-soft base strong interaction between mercury (II) ions and cyano groups. Both PCN-Cl and PCN-K fluorescent probes for mercury (II) ions had a linear range of 5 ∼ 50 μmol L-1, and PCN-Cl exhibited a lower detection limit of 0.38 μmol L-1. This work confirmed the selective fluorescence response of cyano-rich PCN to mercury (II) ions, proposed the mechanism of selective fluorescence quenching response of mercury (II) ions, and provided a new idea for the design of efficient and accurate PCN-based fluorescence probes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China
| | - Jiang Wang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ai-Ju Xu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Bin Xue
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Majdoub M, Sengottuvelu D, Nouranian S, Al-Ostaz A. Graphitic Carbon Nitride Quantum Dots (g-C 3N 4 QDs): From Chemistry to Applications. CHEMSUSCHEM 2024; 17:e202301462. [PMID: 38433108 DOI: 10.1002/cssc.202301462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Since their emergence in 2014, graphitic carbon nitride quantum dots (g-C3N4 QDs) have attracted much interest from the scientific community due to their distinctive physicochemical features, including structural, morphological, electrochemical, and optoelectronic properties. Owing to their desirable characteristics, such as non-zero band gap, ability to be chemically functionalized or doped, possessing tunable properties, outstanding dispersibility in different media, and biocompatibility, g-C3N4 QDs have shown promise for photocatalysis, energy devices, sensing, bioimaging, solar cells, optoelectronics, among other applications. As these fields are rapidly evolving, it is very strenuous to pinpoint the emerging challenges of the g-C3N4 QDs development and application during the last decade, mainly due to the lack of critical reviews of the innovations in the g-C3N4 QDs synthesis pathways and domains of application. Herein, an extensive survey is conducted on the g-C3N4 QDs synthesis, characterization, and applications. Scenarios for the future development of g-C3N4 QDs and their potential applications are highlighted and discussed in detail. The provided critical section suggests a myriad of opportunities for g-C3N4 QDs, especially for their synthesis and functionalization, where a combination of eco-friendly/single step synthesis and chemical modification may be used to prepare g-C3N4 QDs with, for example, enhanced photoluminescence and production yields.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Dineshkumar Sengottuvelu
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Sasan Nouranian
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Civil Engineering, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
3
|
Wu D, Zhao Q, Zhang B, Tang X, Li Y, Sun J, Yang X. Iron-Doped Polymer Dots with Enhanced Fluorescence and Dual Enzyme Activity for Versatile Bioassays. Anal Chem 2024. [PMID: 38324754 DOI: 10.1021/acs.analchem.3c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Nanozymes with multiple functionalities endow biochemical sensing with more sensitive and efficient analytical performance by widening the sensing modes. Meanwhile, the target-oriented design of multifunctional nanozymes for certain biosensing remains challenging. Herein, a constructive strategy of doping iron into polymer dots (PDs) to achieve nanozymes with excellent oxidase-mimicking and peroxidase-mimicking activity is proposed. Compared with the Fe-free PDs prepared under the same mild condition, the Fe-doped PDs (Fe-PDs) exhibit greatly boosted fluorescence at 500 nm. While applying 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate, the fluorescence of the Fe-PDs can be further quenched by oxTMB due to the inner filter effect (IFE). Inspired by this, a simple but efficient colorimetric and fluorometric dual-mode sensing platform is developed for monitoring the reducing substances ascorbic acid (AA), α-glucosidase (α-Glu), and its inhibitors (AGIs). We believe that such multifunctional enzyme-mimic materials will provoke the exploration of multimode sensing strategy with strong practicality to serve as a versatile tool in biochemical sensing.
Collapse
Affiliation(s)
- Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yushu Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Im MJ, Kim JI, Hyeong SK, Moon BJ, Bae S. From Pristine to Heteroatom-Doped Graphene Quantum Dots: An Essential Review and Prospects for Future Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304497. [PMID: 37496316 DOI: 10.1002/smll.202304497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based zero-dimensional materials that have received considerable scientific interest due to their exceptional optical, electrical, and optoelectrical properties. Their unique electronic band structures, influenced by quantum confinement and edge effects, differentiate the physical and optical characteristics of GQDs from other carbon nanostructures. Additionally, GQDs can be synthesized using various top-down and bottom-up approaches, distinguishing them from other carbon nanomaterials. This review discusses recent advancements in GQD research, focusing on their synthesis and functionalization for potential applications. Particularly, various methods for synthesizing functionalized GQDs using different doping routes are comprehensively reviewed. Based on previous reports, current challenges and future directions for GQDs research are discussed in detail herein.
Collapse
Affiliation(s)
- Min Ji Im
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jin Il Kim
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Byung Joon Moon
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| | - Sukang Bae
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju, Jeollabuk-do, 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic ofKorea
| |
Collapse
|
5
|
Liu X, Sun B. One-Pot Synthesis of Nitrogen-Doped Graphene Quantum Dots and Their Applications in Bioimaging and Detecting Copper Ions in Living Cells. ACS OMEGA 2023; 8:27333-27343. [PMID: 37546585 PMCID: PMC10399175 DOI: 10.1021/acsomega.3c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Two natural carbon sources, glutamic acid and tyrosine, were used to fabricate strong green emission nitrogen-doped graphene quantum dots (N-GQDs) with the one-pot pyrolysis method. The morphology of the prepared GQDs has been characterized by high-resolution transmission electron microscopy, showing a well-displayed crystalline structure with a lattice spacing of 0.262 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to analyze the surface functional groups and elemental composition, suggesting that the N-GQDs have active carboxylic and amino functional groups. Meanwhile, photoluminescence and ultraviolet-visible (UV-vis) spectroscopy were used to evaluate the optical properties of GQDs; the prepared N-GQDs show an excitation-dependent fluorescence behavior with a maximum excitation/emission wavelength at 460/522 nm, respectively. N-GQDs showed good photostability and the fluorescence intensity quenched about 10% after irradiating 2800 s in the experiment of time kinetic analysis. The MTT assay was utilized to assess the viability of N-GQDs; good biocompatibility with a relatively high quantum yield of 12% demonstrated the potential for serving as bioimaging agents. Besides, the selectivity study on metal ions indicates that the N-GQDs could be used in Cu2+ detection. The linear range is from 0.1 to 10 μM with a limit of detection of 0.06 μM. Overall, these proposed N-GQDs with one-pot synthesis showed their promising potential in cell imaging and Cu2+ monitoring applications involved in the biological environment.
Collapse
|
6
|
Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Graphene quantum dot (GQD) is one of the youngest superstars of the carbon family. Since its emergence in 2008, GQD has attracted a great deal of attention due to its unique optoelectrical properties. Non-zero bandgap, the ability to accommodate functional groups and dopants, excellent dispersibility, highly tunable properties, and biocompatibility are among the most important characteristics of GQDs. To date, GQDs have displayed significant momentum in numerous fields such as energy devices, catalysis, sensing, photodynamic and photothermal therapy, drug delivery, and bioimaging. As this field is rapidly evolving, there is a strong need to identify the emerging challenges of GQDs in recent advances, mainly because some novel applications and numerous innovations on the ease of synthesis of GQDs are not systematically reviewed in earlier studies. This feature article provides a comparative and balanced discussion of recent advances in synthesis, properties, and applications of GQDs. Besides, current challenges and future prospects of these emerging carbon-based nanomaterials are also highlighted. The outlook provided in this review points out that the future of GQD research is boundless, particularly if upcoming studies focus on the ease of purification and eco-friendly synthesis along with improving the photoluminescence quantum yield and production yield of GQDs.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ehsan Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ali Akbari Sehat
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sara Dordanihaghighi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Colin van der Kuur
- ZEN Graphene Solutions, 210-1205 Amber Dr., Thunder Bay, ON, P7B 6M4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
7
|
Bai R, Sun H, Jin P, Li J, Peng A, He J. Facile synthesis of carbon nitride quantum dots as a highly selective and sensitive fluorescent sensor for the tetracycline detection. RSC Adv 2021; 11:24892-24899. [PMID: 35481027 PMCID: PMC9036896 DOI: 10.1039/d1ra04272f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Enhanced blue fluorescent carbon nitride quantum dots (g-C3N4QDs) were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 and analyzed by various characterization methods. The as-obtained g-C3N4QDs were successfully applied in the determination of tetracycline (TC) with a good linear relationship in the range of 0.23–202.70 μM. The proposed fluorescent sensor shows excellent stability, good repeatability, high selectivity and outstanding sensitivity to TC with a low detection limit of 0.19 μM. The fluorescence quenching mechanism of g-C3N4QDs with TC was mainly governed by static quenching and the inner filter effect. The method was successfully applied to monitor TC in tap water and milk powder samples. The g-C3N4QDs were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 which have a “strong quenching” behaviour in the presence of TC. The proposed fluorescent sensor has been successfully applied to detect TC in actual samples.![]()
Collapse
Affiliation(s)
- Ruining Bai
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Heli Sun
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Peng Jin
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jingwei Li
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Anzhong Peng
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jieli He
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| |
Collapse
|
8
|
Lee BH, Hasan MT, Lichthardt D, Gonzalez-Rodriguez R, Naumov AV. Manganese-nitrogen and gadolinium-nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. NANOTECHNOLOGY 2021; 32:095103. [PMID: 33126228 DOI: 10.1088/1361-6528/abc642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Graphene quantum dots (GQDs) are unique derivatives of graphene that show promise in multiple biomedical applications as biosensors, bioimaging agents, and drug/gene delivery vehicles. Their ease in functionalization, biocompatibility, and intrinsic fluorescence enable those modalities. However, GQDs lack deep tissue magnetic resonance imaging (MRI) capabilities desirable for diagnostics. Considering that the drawbacks of MRI contrast agent toxicity are still poorly addressed, we develop novel Mn2+ or Gd3+ doped nitrogen-containing graphene quantum dots (NGQDs) to equip the GQDs with MRI capabilities and at the same time render contrast agents biocompatible. Water-soluble biocompatible Mn-NGQDs and Gd-NGQDs synthesized via single-step microwave-assisted scalable hydrothermal reaction enable dual MRI and fluorescence modalities. These quasi-spherical 3.9-6.6 nm average-sized structures possess highly crystalline graphitic lattice structure with 0.24 and 0.53 atomic % for Mn2+ and Gd3+ doping. This structure ensures high in vitro biocompatibility of up to 1.3 mg ml-1 and 1.5 mg ml-1 for Mn-NGQDs and Gd-NGQDs, respectively, and effective internalization in HEK-293 cells traced by intrinsic NGQD fluorescence. As MRI contrast agents with considerably low Gd and Mn content, Mn-NGQDs exhibit substantial transverse/longitudinal relaxivity (r 2/r 1) ratios of 11.190, showing potential as dual-mode longitudinal or transverse relaxation time (T 1 or T 2) contrast agents, while Gd-NGQDs possess r 2/r 1 of 1.148 with high r 1 of 9.546 mM-1 s-1 compared to commercial contrast agents, suggesting their potential as T1 contrast agents. Compared to other nanoplatforms, these novel Mn2+ and Gd3+ doped NGQDs not only provide scalable biocompatible alternatives as T1/T2 and T1 contrast agents but also enable in vitro intrinsic fluorescence imaging.
Collapse
Affiliation(s)
- Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| | - Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States of America
| | - Denise Lichthardt
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Friedrich-Alexander University Erlangen-Nürnberg, Schlossplatz 4, 91054 Erlangen, Germany
| | - Roberto Gonzalez-Rodriguez
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Department of Physics, University of North Texas, 210 Avenue A, Denton, TX 76201, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| |
Collapse
|
9
|
Lian P, Qin A, Liao L, Zhang K. Progress on the nanoscale spherical TiO
2
photocatalysts: Mechanisms, synthesis and degradation applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Peng Lian
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials Science and Engineering Guilin University of Technology Guilin P. R. China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials Science and Engineering Guilin University of Technology Guilin P. R. China
| | - Lei Liao
- College of Environmental Science and Engineering Guilin University of Technology Guilin P. R. China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials Science and Engineering Guilin University of Technology Guilin P. R. China
| |
Collapse
|
10
|
Tade RS, Nangare SN, Patil AG, Pandey A, Deshmukh PK, Patil DR, Agrawal TN, Mutalik S, Patil AM, More MP, Bari SB, Patil PO. Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. NANOTECHNOLOGY 2020; 31:292001. [PMID: 32176876 DOI: 10.1088/1361-6528/ab803e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene quantum dots (GQDs), impressive materials with enormous future potential, are reviewed from their inception, including different precursors. Considering the increasing burden of industrial and ecological bio-waste, there is an urgency to develop techniques which will convert biowaste into active moieties of interest. Amongst the various materials explored, we selectively highlight the use of potential carbon containing bioprecursors (e.g. plant-based, amino acids, carbohydrates), and industrial waste and its conversion into GQDs with negligible use of chemicals. This review focuses on the effects of different processing parameters that affect the properties of GQDs, including the surface functionalization, paradigmatic characterization, toxicity and biocompatibility issues of bioprecursor derived GQDs. This review also examines current challenges and s the ongoing exploration of potential bioprecursors for ecofriendly GQD synthesis for future applications. This review sheds further light on the electronic and optical properties of GQDs along with the effects of doping on the same. This review may aid in future design approaches and applications of GQDs in the biomedical and materials design fields.
Collapse
Affiliation(s)
- Rahul S Tade
- H R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lou Y, Ji J, Qin A, Liao L, Li Z, Chen S, Zhang K, Ou J. Cane Molasses Graphene Quantum Dots Passivated by PEG Functionalization for Detection of Metal Ions. ACS OMEGA 2020; 5:6763-6772. [PMID: 32258911 PMCID: PMC7114702 DOI: 10.1021/acsomega.0c00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Poly(ethylene glycol) passivated graphene quantum dots (PEG-GQDs) were synthesized based on a green and effective strategy of the hydrothermal treatment of cane molasses. The prepared PEG-GQDs, with an average size of 2.5 nm, exhibit a brighter blue fluorescence and a higher quantum yield (QY) (up to approximately 21.32%) than the QY of GQDs without surface passivation (QY = 10.44%). The PEG-GQDs can be used to detect and quantify paramagnetic transition-metal ions including Fe3+, Cu2+, Co2+, Ni2+, Pb2+, and Mn2+. In the case of ethylenediaminetetraacetic acid (EDTA) solution as a masking agent, Fe3+ ions can be well selectively determined in a transition-metal ion mixture, following the lowest limit of detection (LOD) of 5.77 μM. The quenching mechanism of Fe3+ on PEG-GQDs belongs to dynamic quenching. Furthermore, Fe3+ in human serum can be successfully detected by the PEG-GQDs, indicating that the green prepared PEG-GQDs can be applied as a promising candidate for the selective detection of Fe3+ in clinics.
Collapse
Affiliation(s)
- Ying Lou
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jianying Ji
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Aimiao Qin
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Lei Liao
- College
of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Ziyuan Li
- College
of Chemistry and Bioengineering, Guilin
University of Technology, Guilin 541004, P. R. China
| | - Shuoping Chen
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Kaiyou Zhang
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jun Ou
- Key
Lab New Processing Technology for Nonferrous Metals & Materials
Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
12
|
Anas NAA, Fen YW, Omar NAS, Daniyal WMEMM, Ramdzan NSM, Saleviter S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3850. [PMID: 31489912 PMCID: PMC6766831 DOI: 10.3390/s19183850] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
About 71% of the Earth's surface is covered with water. Human beings, animals, and plants need water in order to survive. Therefore, it is one of the most important substances that exist on Earth. However, most of the water resources nowadays are insufficiently clean, since they are contaminated with toxic metal ions due to the improper disposal of pollutants into water through industrial and agricultural activities. These toxic metal ions need to be detected as fast as possible so that the situation will not become more critical and cause more harm in the future. Since then, numerous sensing methods have been proposed, including chemical and optical sensors that aim to detect these toxic metal ions. All of the researchers compete with each other to build sensors with the lowest limit of detection and high sensitivity and selectivity. Graphene quantum dots (GQDs) have emerged as a highly potential sensing material to incorporate with the developed sensors due to the advantages of GQDs. Several recent studies showed that GQDs, functionalized GQDs, and their composites were able to enhance the optical detection of metal ions. The aim of this paper is to review the existing, latest, and updated studies on optical sensing applications of GQDs-based materials toward toxic metal ions and future developments of an excellent GQDs-based SPR sensor as an alternative toxic metal ion sensor.
Collapse
Affiliation(s)
- Nur Ain Asyiqin Anas
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Nur Syahira Md Ramdzan
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Silvan Saleviter
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Lu H, Li W, Dong H, Wei M. Graphene Quantum Dots for Optical Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902136. [PMID: 31304647 DOI: 10.1002/smll.201902136] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/20/2019] [Indexed: 05/08/2023]
Abstract
Graphene quantum dots (GQDs) have shown great potential in bioimaging applications due to their excellent biocompatibility, low cytotoxicity, feasibility for surface functionalization, physiological stability, and tunable fluorescence properties. This Review first introduces the intriguing optical properties of GQDs that are suitable for biological imaging, and is followed by the GQDs' synthetic strategies. The emergent and latest development methods for tuning GQDs' optical properties are further described in detail. The recent advanced applications of GQDs in vitro, particularly in cell imaging, targeted imaging, and theranostic nanoplatform fabrication, are included. The applications of GQDs for in vivo bioimaging are also covered. Finally, the Review is concluded with the challenges and prospectives that face this nascent yet exciting field.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenjun Li
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Menglian Wei
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, T6G, 2G2, Canada
| |
Collapse
|
14
|
Wang C, Ma G, Zhou J, Zhang M, Ma X, Duo F, Chu L, Huang J, Su X. Glycine‐functionalized reduced graphene oxide for methylene blue removal. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chubei Wang
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Guoyang Ma
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Jianwei Zhou
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Mingliang Zhang
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Xinfeng Ma
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Fangfang Duo
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Liangliang Chu
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Jianxin Huang
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| | - Xinmei Su
- Institute of Energy and FuelXinxiang University Xinxiang Henan 453003 China
| |
Collapse
|
15
|
Mandal D, Khatun S, Gupta AN, Chandra A. DNA supported graphene quantum dots for Ag ion sensing. NANOTECHNOLOGY 2019; 30:255501. [PMID: 30780138 DOI: 10.1088/1361-6528/ab084c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of graphene quantum dots can be extended for bio-sensing and metal ion detection. Synergistic combination of graphene quantum dots (GQDs) with DNA leads to high performance Ag-ion detection system. The thoroughly characterized GQDs were found to have spherical morphology, with dimensions in the range of 5-10 nm. The atomic force microscopy studies proved that the synthesized GQDs were mostly comprised of two to four graphene layers. To make the system biocompatible, GQDs/NGQDs were combined with DNA. Two properties of DNA were exploited, capacity to provide nitrogen to GQDs; and to synergistically contribute to Ag+ detection. In addition to Ag+, the strong green photoluminescence (PL) of GQDs showed significant quenching, owing to the appearance of associated Förster resonance energy transfer processes. This led to high sensing efficiencies.
Collapse
Affiliation(s)
- Debabrata Mandal
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | | | | |
Collapse
|
16
|
Zhang YP, Ma JM, Yang YS, Ru JX, Liu XY, Ma Y, Guo HC. Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe 3+ ion and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:60-67. [PMID: 30927572 DOI: 10.1016/j.saa.2019.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Graphene quantum dots (GQDs) are synthesized by the method of high-temperature pyrolysis from marigold granules and subsequently nitrogen-doped graphene quantum dots (N-GQDs) are synthesized from ethylenediamine by hydrothermal treatment, which shows a strong blue emission with 7.84% quantum yield (QY). This will be used in detection of Fe3+ in water environments and the field of bioimaging.
Collapse
Affiliation(s)
- Ying-Peng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Ji-Mei Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yun-Shang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jia-Xi Ru
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiao-Yu Liu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ying Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
17
|
Sharma S, Singh N, Nepovimova E, Korabecny J, Kuca K, Satnami ML, Ghosh KK. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2019; 38:1822-1837. [DOI: 10.1080/07391102.2019.1619625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
18
|
Yap PL, Kabiri S, Tran DNH, Losic D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6350-6362. [PMID: 30507147 DOI: 10.1021/acsami.8b17131] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineering of multifunctional binding chemistry on graphene composites using thiol-ene click reaction for selective and highly efficient adsorption of mercury(II) is demonstrated. Graphene oxide (GO) is used as an initial material for covalent attachment of cysteamine molecules by thiol-ene click reaction on C═C groups to achieve a partially reduced graphene surface with multiple binding chemistry such as O, S, and N. Batch adsorption studies showed remarkable adsorption rate with only 1 mg L-1 dosage of adsorbent used to remove 95% Hg (II) (∼1.5 mg L-1) within 90 min. The high adsorption capacity of 169 ± 19 mg g-1, high selectivity toward Hg in the presence of 30 times higher concentration of competing ions (Cd, Cu, Pb) and high regeneration ability (>97%) for five consecutive adsorption-desorption cycles were achieved. Comparative study with commercial activated carbon using spiked Hg (II) river water confirmed the high performance and potential of this adsorbent for real mercury remediation of environmental and drinking waters.
Collapse
Affiliation(s)
- Pei Lay Yap
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Shervin Kabiri
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Diana N H Tran
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Dusan Losic
- School of Chemical Engineering , The University of Adelaide , Adelaide , South Australia 5005 , Australia
- ARC Hub for Graphene Enabled Industry Transformation , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
19
|
Wang B, Shen J, Huang Y, Liu Z, Zhuang H. Graphene Quantum Dots and Enzyme-Coupled Biosensor for Highly Sensitive Determination of Hydrogen Peroxide and Glucose. Int J Mol Sci 2018; 19:E1696. [PMID: 29875333 PMCID: PMC6032169 DOI: 10.3390/ijms19061696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
In this paper, a simple and specific graphene quantum dots (GQDs)-based fluorescent biosensor adopted for the determination of glucose based on the combination of the enzyme-coupled method and fluorescence quenching mechanism is demonstrated. Glucose was oxidized by the enzyme glucose oxidase (GOx), forming hydrogen peroxide (H 2 O 2 ) via the catalysis by horseradish peroxidase (HRP). H 2 O 2 was then employed to oxidize phenol to quinone, which led to effective quenching effect in the GQDs⁻GOx⁻HRP⁻phenol system. By optimizing the reaction conditions of the GQDs-enzyme system, a linear relationship between the concentration of glucose and the fluorescence intensity over a range of 0.2⁻10 μ mol/L was obtained. The limit of detection for glucose is 0.08 μ mol/L. The present biosensor for the determination of glucose showed satisfactory reproducibility and accuracy in human serum samples. Since the enzymes have high specificity and unique affinity to the certain substance, the enzyme-coupled system promises a sensitive way for further detection of those chemicals which could be oxidized by enzymes and generated H 2 O 2 or glucose. GQDs and other fluorescent materials coupled with several enzymes can be applied to extensive sensing field.
Collapse
Affiliation(s)
- Bingdi Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| | - Jing Shen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| | - Yanjun Huang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|