1
|
Khan S, Lone AR, Khan MY, Rahaman S, Pandey K, Helal A, Sama F, Shahid M. Engineered Amine-Functionalized Metal-Organic Framework to Fabricate a Composite for Next-Generation Asymmetric Supercapacitors with Ultrahigh Performance: Modulating the Energy Storage Barrier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21106-21119. [PMID: 39321132 DOI: 10.1021/acs.langmuir.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The present work summarizes the fabrication of an amine-functionalized cadmium-based metal-organic framework (MOF), {[Cd(AT)(BP)]·4DMF}n or Cd_AT-BP, by adopting a simple solvothermal approach using 2-aminoterephthalic acid (AT) as the main linker, while 4,4'-bipyridyl (BP) as an auxiliary linker. The structure of Cd_AT-BP was validated by the single-crystal X-ray diffraction technique that revealed the formation of an overall three-dimensional network with BP acting as a bridge between the 2D sheets of the MOF. The robust framework of Cd_AT-BP decorated with a free amine functional group was utilized for energy storage application. The electrochemical measurements of Cd_AT-BP revealed a maximum areal capacitance of 9.8 mF/cm2 at a scan rate of 5 mV/s. Further, to enhance the practical utility of Cd_AT-BP in energy storage devices, two composites of Cd_AT-BP with reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs), viz., Cd_AT-BP/rGO and Cd_AT-BP/CNT, were prepared by adopting a facile ultrasonication approach. The synthesized Cd_AT-BP/rGO and Cd_AT-BP/CNT composites displayed an impressive areal capacitance of 117 and 37 mF/cm2 (58.5 and 17.5 F/g) at a scan rate of 5 mV/s, respectively, and a capacitance retention of up to 118 and 100% after 5000 cycles at a constant current density of 5 mA/cm2. The highest energy density of about 4.23 mW h/cm2 (2.12 W h/kg) at a current density of 1 mA/cm2 was shown by Cd_AT-BP/rGO among all the three materials attributable to the layered structure of rGO, providing a larger surface area accessible for ion adsorption. Enticed by the remarkable outcomes exhibited by Cd_AT-BP/rGO, we fabricated a two-electrode asymmetric supercapacitor (ASC) device. The developed ASC device revealed energy and power densities of 26.7 mW h/cm2 (13.4 W h/kg) and 3760 mW/cm2 (1880 W/kg), respectively, with a galvanostatic charge-discharge stability of up to 10,000 cycles. The findings identify Cd_AT-BP/rGO as a potential contender for future-generation supercapacitors.
Collapse
Affiliation(s)
- Shabnam Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Aadil Rashid Lone
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Mohammad Yasir Khan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sabiar Rahaman
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Kavita Pandey
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Farasha Sama
- Department of Industrial Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
2
|
Sakthivel M, Ho KC. X-CoOTe ( X = S, Se, and P) with Oxygen/Tellurium Dual Vacancies and Banana Stem Fiber-Derived Carbon Fiber as Battery-Type Cathode and Anode Materials for Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18754-18767. [PMID: 38563749 DOI: 10.1021/acsami.3c18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we demonstrated the synthesis of anions (X = selenium (Se), sulfur (S), and phosphorus (P)) doped cobalt oxytelluride (X-CoOTe) with oxygen and tellurium dual vacancies using hydrothermal methods, followed by selenization, sulfurization, and phosphorization reactions. Especially, the Se-CoOTe-modified nickel foam (Se-CoOTe/NF) electrode delivered a higher specific capacity (752.95 C/g) and an extremely lower charge transfer resistance (0.87 Ω) than S-CoOTe/NF and P-CoOTe/NF due to the higher metallic conductivity of Se. Both oxygen and tellurium vacancies facilitate higher charge transfer conductivity, specific capacity, and stability. On the other hand, banana stem core fiber-derived activated carbon fiber (AC) with exfoliated carbon sheet, cracked surface, and corresponding high surface area boosts the excellent cycle stability up to 4000 cycles with capacitance retention of 100.29%. Thus, the asymmetric device (Se-CoOTe/NF//AC/NF) exhibited an extendable cell voltage (1.55 V), higher energy density (155.6 W h kg-1) at a power density (1356.2 W kg-1), and generous long-term stability (100% retention up to 10 000 cycles) in a liquid alkaline electrolyte. In the practicability test, the proposed asymmetric device mutually showed an increased operating voltage from 1.55 to 4.65 V for a three-series connection. In a three-series connection, a single white LED and an LED string glowed efficiently. This new finding will be very useful to develop tellurium-based chalcogenides and biowaste-derived carbon for energy storage applications.
Collapse
Affiliation(s)
- Mani Sakthivel
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Bhol P, Jagdale PB, Jadhav AH, Saxena M, Samal AK. All-Solid-State Supercapacitors Based on Cobalt Magnesium Telluride Microtubes Decorated with Tellurium Nanotubes. CHEMSUSCHEM 2024; 17:e202301009. [PMID: 38084066 DOI: 10.1002/cssc.202301009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Indexed: 01/28/2024]
Abstract
Magnesium (Mg) has received very little exploration on its importance in the realm of battery-type energy storage technologies. They are abundantly present in seawater, and if successfully extracted and utilized in energy storage systems, it could lead to the long-term advancement of human civilization. Here, we fabricated an all-solid-state supercapacitor (ASSSC) using tellurium nanotubes decorated cobalt magnesium telluride microtubes (Te NTs@CoMgTe MTs) clad on nickel foam (NF). Owing to the unique mixed phase hierarchical structure, Te NTs@CoMgTe MTs showcases some advancement in energy storage performance. When tested in a three-electrode system, multiphasic hybrid of elemental Te and metal tellurides, Te NTs@CoMgTe MTs outperforms the monometallic telluride owing to the strong synergistic interaction effect triggered from conductive three components and delivers a long-life span performance up to 15,000 cycles. The fabricated Te NT@CoMgTe MT//AC solid-state device exhibits a maximum areal capacity of 59.2 μAh cm-2 (56.3 mAh g-1) at a current density of 6 mA cm-2 with a maximum energy density of 42.2 Wh kg-1 (46.5 μWh cm-2) at a power density of 6857.1 W kg-1 (7574.6 μW cm-2). The performance of the device is rigid even at different bending angles (0 to 180°) which validates the extensibility of the process for future applications.
Collapse
Affiliation(s)
- Prangya Bhol
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Pallavi B Jagdale
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Arvind H Jadhav
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| |
Collapse
|
4
|
Molaei M, Rostami GR, Zardkhoshoui AM, Davarani SSH. In situ tellurization strategy for crafting nickel ditelluride/cobalt ditelluride hierarchical nanostructures: A leap forward in hybrid supercapacitor electrode materials. J Colloid Interface Sci 2024; 653:1683-1693. [PMID: 37816298 DOI: 10.1016/j.jcis.2023.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Advancements in renewable energy conversion can be significantly propelled by optimizing the performance of transition-metal-based electrodes. In this study, we introduce an innovative, in situ tellurization strategy to synthesize novel, flower-like hierarchical structures of nickel ditelluride/cobalt ditelluride (NiTe2/CoTe2) on a nickel foam substrate (labeled as NF/FNCT), making them promising candidates for electrodes in hybrid supercapacitors. Initially, we utilized a hydrothermal method to create flower-like NiCo-layered double hydroxide (NiCo-LDH) nanoarrays on nickel foam (NF/FNCLDH). This process was followed by the tellurization of these nanoarrays, which yields the NiTe₂/CoTe₂ nanostructures. The strategic assembly of active materials on a conductive substrate effectively obviates the need for inert, slow-conductive binders, thereby facilitating redox chemistry. Capitalizing on the synergistic effects of the conductive tellurium and hierarchical flower-like nanomorphology, the NF/FNCT showcases expedited electron/ion transport, enhanced efficiency, and exceptional electrochemical performance. The NF/FNCT electrode discloses an impressive capacity of 1388.9 (±3) C/g, superior rate capability (83.45 % capacity retention at 30 A/g), and remarkable cycling durability of 96.67 %. Furthermore, when integrated with activated carbon (AC), the resultant hybrid supercapacitor delivers a desirable energy density of 58.85 Wh kg-1 at a power density of 806.85 W kg-1, demonstrating commendable rate capability and cycling durability. This investigation opens new avenues for the synthesis of materials for hybrid supercapacitors.
Collapse
Affiliation(s)
- Maryam Molaei
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Khan AJ, Sajjad M, Khan S, Khan M, Mateen A, Shah SS, Arshid N, He L, Ma Z, Gao L, Zhao G. Telluride-Based Materials: A Promising Route for High Performance Supercapacitors. CHEM REC 2024; 24:e202300302. [PMID: 38010947 DOI: 10.1002/tcr.202300302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.
Collapse
Affiliation(s)
- Abdul Jabbar Khan
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Muhammad Sajjad
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shaukat Khan
- College of Engineering, Dhofar University, Salalah, 211, Sultanate of, Oman
| | - Muhammad Khan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Abdul Mateen
- Department of Physics, Beijing Normal University, Beijing, 100084, P. R. China
| | - Syed Shaheen Shah
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8520, Japan
| | - Numan Arshid
- School of Engineering and Technology, Sunway University, Bandar Sunway, 47500, Malaysia
| | - Liang He
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zeyu Ma
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Gao
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Guowei Zhao
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
6
|
Dong H, Wang Y, Tong L, Zhang P, Zhu D, Li C, Zhu M. Adjusting Surface Oxidized Layer of CoTe on PCN via In Situ N-Doping Strategy to Promote Charge Separation of Z-Scheme Heterojunction for Propelling Photocatalytic CO 2 Reduction. Inorg Chem 2023; 62:16954-16964. [PMID: 37787454 DOI: 10.1021/acs.inorgchem.3c02689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
It has been a challenging issue to profoundly actuate the transfer and separation of photoinduced charge carriers by controlling the interface structure inside the heterojunction, owing to the molecular/subnanometric level interface region. Herein, a unique one-dimensional/two-dimensional (1D/2D) CoTe/PCN Z-scheme heterojunction is fabricated through the self-assembly of CoTe nanorods on the surface of polymeric carbon nitride (PCN) nanosheets. Significantly, in situ N-doping in the molecular/subnanometric surface oxidized layer of CoTe nanorods is achieved, effectively adjusting its chemical structure and element chemical states. Moreover, this N-doped surface oxidized layer can serve as a recombination region of photogenerated electrons from PCN and photogenerated holes from CoTe to increase the overall carrier separation efficiency in the Z-scheme heterojunction actuated by the built-in electric field. As a result, the photocatalytic CO2 reduction (CO2R) performance is enhanced dramatically, in which the yield of CO generated over the optimal 1D/2D CoTe/PCN heterojunction reaches up to triple than that over PCN. This unique contribution provides an emblematic paradigm for adjusting the interfacial structure of heterojunction and has a profound insight into the interfacial adjusting mechanism to improve the charge separation efficiency in the photocatalytic reaction.
Collapse
Affiliation(s)
- Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yujia Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Tong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Pingfan Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Daqiang Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P. R. China
| |
Collapse
|
7
|
Cui K, Du L, Du W, Cui L, Zhang Y, Chen W, Low CTJ, Zai J. Rational design of hierarchically nanostructured NiTe@CoxSy composites for hybrid supercapacitors with impressive rate capability and robust cycling durableness. J Colloid Interface Sci 2023; 643:292-304. [PMID: 37075538 DOI: 10.1016/j.jcis.2023.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The hierarchically nanostructured NiTe@CoxSy composites are constructed on a foamed nickel substrate by a two-step electrode preparation process. Structural characterization shows the dense growing of CoxSy nanosheets around NiTe nanorods forms a hierarchical nanostructure which possesses synergetic effects from both compositional and structural complementarity, more pathways for ion/electrolyte transport, richer redox active sites, and better conductivity. Thanks to the rational design of this hierarchical structure, NiTe@CoxSy delivers a high areal capacitance of 7.7F cm-2 at 3 mA cm-2 and achieves the improved capacitance retention of 97.9% after 10,000 cycles. Of particular importance is the successful fabrication of NiTe@CoxSy//activated carbon hybrid supercapacitors. This hybrid device has a wide operating voltage window, high areal energy density of 0.48 mWh cm-2 at 2.55 mW cm-2, impressive rate capability of 62.3% even after a 20-fold increase of the current density, and a 115.1% of initial capacitance retention after 15,000 cycles. Meanwhile, two tandem such hybrid devices can easily drive a pair of mini fans or light up a heart-like pattern assembled by 10 red LEDs. These experimental results not only demonstrate that the hierarchically nanostructured NiTe@CoxSy composites can serve as a prospective candidate electrode; but also develop a novel strategy about how to achieve high-performance stockpile equipment by rationale designing a desirable nanostructures.
Collapse
Affiliation(s)
- Keying Cui
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lange Du
- College of International Education, Henan Normal University, Xinxiang, Henan 453002, China
| | - Weimin Du
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China.
| | - Lili Cui
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Yufan Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Weiling Chen
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Chee Tong John Low
- Warwick Electrochemical Engineering Group, Energy Innovation Centre, WMG, University of Warwick, Coventry CV4 7AL, UK
| | - Jiantao Zai
- School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Farshadnia M, Ensafi AA, Mousaabadi KZ, Rezaei B, Demir M. Facile synthesis of NiTe 2-Co 2Te 2@rGO nanocomposite for high-performance hybrid supercapacitor. Sci Rep 2023; 13:1364. [PMID: 36693890 PMCID: PMC9873789 DOI: 10.1038/s41598-023-28581-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The design of bimetallic tellurides that exhibit excellent electrochemical properties remains a huge challenge for high-performance supercapacitors. In the present study, tellurium is consolidated on CoNi2@rGO for the first time, to synthesize NiTe2-Co2Te2@rGO nanocomposite by using a facile hydrothermal method. As-prepared NiTe2-Co2Te2@rGO nanocomposite was characterized by EDS, TEM, FESEM, Raman, BET, XRD, and XPS techniques to prove the structural transformation. Upon the electrochemical characterization, NiTe2-Co2Te2@rGO has notably presented numerous active sites and enhanced contact sites with the electrolyte solution during the faradic reaction. The as-prepared nanocomposite reveals a specific capacity of 223.6 mAh g-1 in 1.0 M KOH at 1.0 A g-1. Besides, it could retain 89.3% stability after 3000 consecutive galvanostatic charge-discharge cycles at 1.0 A g-1 current density. The hybrid supercapacitor, fabricated by activated carbon as an anode site, and NiTe2-Co2Te2@rGO as a cathode site, presents a potential window of 1.60 V with an energy density of 51 Wh kg-1 and a power density of 800 W kg-1; this electrode is capable of lighting up two red LED lamps and a yellow LED lamp for 20 min, which is connected in parallel. The present work opens new avenues to design and fabrication of nanocomposite electrode materials in the field of supercapacitors.
Collapse
Affiliation(s)
- Maziar Farshadnia
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran. .,Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| | | | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey.,Tubitak Marmara Research Center, Material Institute, Gebze, 41470, Turkey
| |
Collapse
|
9
|
Qin Z, Xu Y, Liu L, Liu M, Zhou H, Xiao L, Cao Y, Chen C. Ni-MOF composite polypyrrole applied to supercapacitor energy storage. RSC Adv 2022; 12:29177-29186. [PMID: 36320774 PMCID: PMC9554737 DOI: 10.1039/d2ra04939b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Electrodes for supercapacitors made from metal-organic frameworks (MOFs) are still hindered by electron transfer properties. Therefore, an electrode composite material Ni-MOF@PPy was synthesized from a Ni-based metal-organic framework (Ni-MOF) doped with poly-pyrrole (PPy) using a simple chemical oxidation method to improve its electron transfer property. After introducing the electrochemically active substance K4Fe(CN)6 into the electrolyte, the composite material had a specific capacitance of 1815.4 F g-1 at a current density of 1 A g-1. Ni-MOF@PPy and active carbon (AC) as the positive and negative electrodes have been used, respectively, to assemble asymmetric supercapacitors (ASCs) in the KOH and K4Fe(CN)6 mixed electrolyte. This novel Ni-MOF@PPy//AC ASC energy storage device can provide 38.5 W h kg-1 energy density, 7001 W kg-1 power density, and 90.2% capacitance retention after 3000 cycles. Therefore, Ni-MOF@PPy//AC ASC is an excellent energy storage device with practical and economic value. The synergistic effect strategy proposed in this work can be easily applied to develop other MOFs with unique crystal structures as well as other redox active additives, providing new avenues and research ideas for exploring novel energy storage devices.
Collapse
Affiliation(s)
- Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing UniversityChongqing 400044China
| | - Yanqin Xu
- School of Chemistry and Chemical Engineering, Chongqing UniversityChongqing 400044China
| | - Lin Liu
- Chongqing Academy of Metrology and Quality InspectionChongqing 401121China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Chongqing UniversityChongqing 400044China
| | - Hanjun Zhou
- Analysis and Testing Center, Chongqing UniversityChongqing 400044China
| | - Liyue Xiao
- School of Chemistry and Chemical Engineering, Chongqing UniversityChongqing 400044China
| | - Yuan Cao
- School of Chemistry and Chemical Engineering, Chongqing UniversityChongqing 400044China
| | - Changguo Chen
- School of Chemistry and Chemical Engineering, Chongqing UniversityChongqing 400044China
| |
Collapse
|
10
|
Samal R, Debbarma C, Rout CS. Transition metal tellurides/2D Ti3C2Tx MXene: Investigation towards active alkaline hydrogen evolution reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Yang N, Yu S, Zhang W, Cheng HM, Simon P, Jiang X. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202380. [PMID: 35413141 DOI: 10.1002/adma.202202380] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical capacitors (ECs), including electrical-double-layer capacitors and pseudocapacitors, feature high power densities but low energy densities. To improve the energy densities of ECs, redox electrolyte-enhanced ECs (R-ECs) or supercapbatteries are designed through employing confined soluble redox electrolytes and porous electrodes. In R-ECs the energy storage is based on diffusion-controlled faradaic processes of confined redox electrolytes at the surface of a porous electrode, which thus take the merits of high power densities of ECs and high energy densities of batteries. In the past few years, there has been great progress in the development of this energy storage technology, particularly in the design and synthesis of novel redox electrolytes and porous electrodes, as well as the configurations of new devices. Herein, a full-screen picture of the fundamentals and the state-of-art progress of R-ECs are given together with a discussion and outlines about the challenges and future perspectives of R-ECs. The strategies to improve the performance of R-ECs are highlighted from the aspects of their capacitances and capacitance retention, power densities, and energy densities. The insight into the philosophies behind these strategies will be favorable to promote the R-EC technology toward practical applications of supercapacitors in different fields.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| | - Siyu Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films, Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Patrice Simon
- CIRIMAT, UMR CNRS 5085, Université Toulouse III - Paul Sabatier, Toulouse, 31062, France
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Science), Qingdao, 266001, China
| |
Collapse
|
12
|
Pulikkottil M, Antony H, Muralidharan MN, Gopalan EV, Ansari S. Cashew Nut Shell Derived Porous Activated Carbon Electrodes for “Water‐in‐Salt” Electrolyte Based Symmetric Supercapacitor. ChemistrySelect 2022. [DOI: 10.1002/slct.202200984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Merin Pulikkottil
- Graphene Lab Centre for Materials for Electronics Technology (C-MET) Athani, Thrissur 680581 India
| | - Henock Antony
- Graphene Lab Centre for Materials for Electronics Technology (C-MET) Athani, Thrissur 680581 India
| | | | | | - Seema Ansari
- Graphene Lab Centre for Materials for Electronics Technology (C-MET) Athani, Thrissur 680581 India
| |
Collapse
|
13
|
Chen Y, Huang J, Ma Y, Xu H. Enhancing the electrochemical performance of biomass activated carbon through confining acid red 18 into the nanopores. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chen M, Lu Y, Li W, Qi P, Liu G, Wang S, Chen Z, Tang Y. In-situ Transformation Constructs CoTe/Co/CoO Nanosheet Arrays with Rich Grain Boundaries to Enhance Electrochemical Performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Han M, Zhou Z, Li Y, Chen Q, Chen M. Highly Conductive Tellurium and Telluride in Energy Storage. ChemElectroChem 2021. [DOI: 10.1002/celc.202100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Manshu Han
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Zhihao Zhou
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yu Li
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| |
Collapse
|
16
|
Jayababu N, Kim D. CuCo LDHs Coated CuCoTe Honeycomb-Like Nanosheets as a Novel Anode Material for Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102369. [PMID: 34323369 DOI: 10.1002/smll.202102369] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks derived metal chalcogenides as a new class of active materials can abolish the existing challenges in supercapacitors with their large electroactive sites and enhanced electrochemical conductivities. With its adequate conductivity and electrochemical properties, tellurium based metal chalcogenide electrodes can deliver better electrochemical performances than other chalcogenides. Herein, CuCoTe honeycomb-like nanosheets are grown on nickel foam (CuCoTe HNSs/NF) and then CuCo layered double hydroxides are successively coated on them (CTC HLSs/NF). The CTC HLSs/NF electrode exhibits tremendous performance with its high specific capacity of 399 mAh g-1 at 7 A g-1 of current density and good capacity retention (81.3%) after 3000 cycles. Finally, CTC HLSs/NF electrode is utilized for the hybrid supercapacitor (HSC) assembly along with activated carbon coated nickel foam in an aqueous electrolyte. The fabricated HSC shows high energy density (214.7 Wh kg-1 ) and power density (40 kW kg-1 ). Moreover, the device retains 96.3% of its capacitance at the end of the 5000th cycle, showing its high stability. Owing to their unique morphology and superior electrochemical properties, the present method of fabrication and selected materials can address the issues faced by electrochemical capacitors.
Collapse
Affiliation(s)
- Nagabandi Jayababu
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea
| |
Collapse
|
17
|
Kim E, Han J, Ryu S, Choi Y, Yoo J. Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4000. [PMID: 34300918 PMCID: PMC8308040 DOI: 10.3390/ma14144000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/04/2023]
Abstract
For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.
Collapse
Affiliation(s)
| | | | | | | | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea; (E.K.); (J.H.); (S.R.); (Y.C.)
| |
Collapse
|
18
|
Wu X, Lu L, Liu H, Feng L, Li W, Sun L. Metalloid Te‐Doped Fe‐Based Catalysts Applied for Electrochemical Water Oxidation. ChemistrySelect 2021. [DOI: 10.1002/slct.202101301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Liangjie Lu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Hongzhen Liu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Lu Feng
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Weijia Li
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Center on Molecular Devices Dalian University of Technology (DUT) 116024 Dalian P.R.China
- Center of Artificial Photosynthesis for Solar Fuels Westlake University 310024 Hangzhou P.R.China
- Department of Chemistry School of Chemical Science and Engineering KTH Royal Institute of Technology 10044 Stockholm Sweden
| |
Collapse
|
19
|
Jayababu N, Jo S, Kim Y, Kim D. Novel Conductive Ag-Decorated NiFe Mixed Metal Telluride Hierarchical Nanorods for High-Performance Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19938-19949. [PMID: 33881298 DOI: 10.1021/acsami.1c00506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixed metal chalcogenide nanoarchitectures have been attracting enormous attention as battery-type electrodes for hybrid supercapacitors (HSCs) owing to their enhanced electrochemical (EC) performance. Despite having high electrical conductivity and good EC properties, tellurium has not been fully utilized in metal chalcogenide electrodes as much as sulfur and selenium. Herein, a facile strategy for the fabrication of nickel and iron (NiFe) mixed metal telluride hierarchical nanorods (MMT HNRs) on nickel foam (NF) is proposed. Furthermore, conductive silver (Ag) is decorated on MMT HNRs (AMMT HNRs) to improve the conducting channels, thereby EC performance. Benefitting from the combined advantages of electroactive NiFe mixed metal, conductive tellurium and Ag, and hierarchical nanorod-like nanomorphology, the AMMT HNR electrode has delivered high areal capacity (1.1 mAh cm-2). Finally, the AMMT based HSC with activated carbon coated NF (AC/NF) as a negative electrode exhibited the highest areal capacitance (1176.5 mF cm-2) with high areal energy density (0.669 mWh cm-2) and power density (64 mW cm-2). Moreover, the HSC device has maintained good cycling stability (86% capacity retention) even after 5000 cycles. New findings of this study definitely shed light on the development of telluride-based mixed metal chalcogenide supercapacitors.
Collapse
Affiliation(s)
- Nagabandi Jayababu
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Seungju Jo
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Youngsu Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|
20
|
Benjamin M, Manoj D, Karnan M, Saravanakumar D, Thenmozhi K, Ariga K, Sathish M, Senthilkumar S. Switching the solubility of electroactive ionic liquids for designing high energy supercapacitor and low potential biosensor. J Colloid Interface Sci 2021; 588:221-231. [PMID: 33418440 DOI: 10.1016/j.jcis.2020.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Ionic liquids are regarded as one of the most prodigious materials for sustainable technological developments with superior performance and versatility. Hence, in this study, we have reported the design and synthesis of electroactive disubstituted ferrocenyl ionic liquids (Fc-ILs) with two different counter anions and demonstrated the significance of their anion tuneable physicochemical characteristics towards multifunctional electrochemical applications. The Fc-IL synthesized with chloride counter anion (Fc-Cl-IL) displays water-solubility and can be used as a redox additive in the fabrication of supercapacitor. Supercapacitor device with Fc-Cl-IL based redox electrolyte exhibits outstanding energy and power densities of 91 Wh kg-1 and 20.3 kW kg-1, respectively. Meanwhile, ferrocenyl IL synthesized with perchlorate anion (Fc-ClO4-IL) exhibits water-insolubility and can serve as a redox mediator towards construction of a glucose biosensor. The biosensor comprising Fc-ClO4-IL is able to detect glucose at an exceptionally lower potential of 0.2 V, with remarkable sensitivity and selectivity. This study implies that the introduction of electroactive ILs could afford supercapacitor devices with high energy and power densities and biosensors with less detection potential.
Collapse
Affiliation(s)
- Michael Benjamin
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Devaraj Manoj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Manickavasakam Karnan
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Duraisamy Saravanakumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan.
| | - Marappan Sathish
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India; WPI-MANA, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
21
|
Zhang S, Dai P, Liu H, Yan L, Song H, Liu D, Zhao X. Metal-organic framework derived porous flakes of cobalt chalcogenides (CoX, X = O, S, Se and Te) rooted in carbon fibers as flexible electrode materials for pseudocapacitive energy storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Shi C, Yang Q, Deng C, Chen S, Hao Y, Yan Y, Wei M. 3D hierarchical nanoarrays composed of NiCo–Te multilayer nanoneedles modified with Co 1.29Ni 1.71O 4 for high-performance hybrid supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj04260b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrolyte ions can easily complete intercalation and deintercalation due to the multilayer structure of nanoneedles.
Collapse
Affiliation(s)
- Chao Shi
- Key Laboratory of Functional Material Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qingjun Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Chengyu Deng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shengyu Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yue Hao
- Key Laboratory of Functional Material Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
| | - Yongsheng Yan
- Key Laboratory of Functional Material Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Maobin Wei
- Key Laboratory of Functional Material Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
| |
Collapse
|
23
|
Xiao M, Su Y, Zhao M, Du B. Synthesis of CoTe nanowires: a new electrode material for supercapacitor with high stability and high performance. NANOTECHNOLOGY 2020; 31:055706. [PMID: 31614344 DOI: 10.1088/1361-6528/ab4dbf] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly dispersed CoTe electrode material were successfully prepared by using a facile one-step solvothermal process without any surfactants. Compared with the conventional hydrothermally prepared irregularly-shaped CoTe, a regular nanowire-formed CoTe can be obtained by a solvothermal process using ethylene glycol as a solvent. The prepared CoTe nanowire electrode can exhibit a relatively high specific capacity of 643.6 F g-1 at a current density of 1 A g-1 and remarkable cyclic stability with 76.9% of its specific capacitance retention after 5000 cycles at a high current density of 5 A g-1. Besides, even at the high current density of 20 A g-1, the specific capacitance of CoTe nanowire electrode still has 90.2% retention relative to 1 A g-1, showing an excellent rate performance. In order to enlarge the potential window to increase the energy density, an asymmetric supercapacitor (ASC) is assembled by applying CoTe nanowires and activated carbon as the positive electrode and the negative electrode in 3 M KOH, which can enlarge the operating voltage to as high as 1.6 V, and shows a specific capacity of 92.5 F g-1 with an energy density of 32.9 Wh kg-1 and power density of 800.27 W kg-1 at 1 A g-1, and even after 5000 cycles of charge/discharge at 5 A g-1, the ASC still retains 90.5% of its initial specific capacitance, showing excellent cycle stability.
Collapse
Affiliation(s)
- Mi Xiao
- School of Electrical and Information Engineering & Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Zhang S, Yang D, Zhang M, Liu Y, Xu T, Yang J, Yu ZZ. Synthesis of novel bimetallic nickel cobalt telluride nanotubes on nickel foam for high-performance hybrid supercapacitors. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01395d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Novel bimetallic nickel cobalt telluride nanotubes are grown on nickel foam by solvothermal synthesis and ion-exchange reaction for constructing self-standing hybrid supercapacitor electrodes with high specific capacity and electrical conductivity.
Collapse
Affiliation(s)
- Shiyi Zhang
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dongzhi Yang
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ming Zhang
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaxin Liu
- Beijing Key Laboratory on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ting Xu
- Beijing Key Laboratory on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jing Yang
- School of Materials Science & Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
25
|
Manikandan M, Subramani K, Sathish M, Dhanuskodi S. Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor. RSC Adv 2020; 10:13632-13641. [PMID: 35493025 PMCID: PMC9051561 DOI: 10.1039/c9ra08692g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/14/2020] [Indexed: 01/08/2023] Open
Abstract
Cobalt telluride nanostructured materials have demonstrated various applications, particularly in energy generation and storage. A high temperature and reducing atmosphere are required for the preparation of cobalt telluride-based materials, which makes this a difficult and expensive process. The development of a facile route for producing the desirable nanostructure of cobalt telluride remains a great challenge. We demonstrated a simple hydrothermal method for preparing cobalt telluride nanorods (CoTe NRs) and telluride nanorods (Te NRs) for supercapacitor applications. The morphology of CoTe NRs and Te NRs was analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The prepared CoTe NR electrode material exhibited a high specific capacity of 170 C g−1 at a current density of 0.5 A g−1 with an exceptional cyclic stability. The asymmetric supercapacitor was assembled using CoTe NRs and orange peel-derived activated carbon (OPAA-700) as a positive and negative electrode, respectively. The fabricated device delivered a high energy density of 40.7 W h kg−1 with a power density of 800 W kg−1 at 1 A g−1 current density. When the current density was increased to 30 A g−1, the fabricated device delivered a high power density of 22.5 kW kg−1 with an energy density of 16.3 W h kg−1. The fabricated asymmetric supercapacitor displayed a good cyclic stability performance for 10 000 cycles at a high current density of 30 A g−1 and retained 85% of its initial capacity for after 10 000 cycles. The prepared materials indicate their applicability for high performance energy storage devices. A one-step hydrothermal derived cobalt telluride nanorods and activated carbon-based hybrid asymmetric supercapacitor delivered a high energy (40.7 W h kg−1) and power density (22.5 kW kg−1) with an electrochemical stability of 85% for 10000 cycles.![]()
Collapse
Affiliation(s)
- M. Manikandan
- School of Physics
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| | - K. Subramani
- Electrochemical Power Sources Division
- CSIR-CECRI
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - M. Sathish
- Electrochemical Power Sources Division
- CSIR-CECRI
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - S. Dhanuskodi
- School of Physics
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| |
Collapse
|
26
|
Sun Z, Yang X, Lin H, Zhang F, Wang Q, Qu F. Bifunctional iron disulfide nanoellipsoids for high energy density supercapacitor and electrocatalytic oxygen evolution applications. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01230j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeS2, prepared using a rapid microwave assisted method, exhibits excellent electrochemical performance for supercapacitor and OER applications.
Collapse
Affiliation(s)
- Zhiqin Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Xue Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Qian Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| |
Collapse
|