1
|
Xiang C, Cen YK, Yi YL, Zhang LL, Xue YP, Zheng YG. Avermectins and Their Derivatives: Recent Advances in Biosynthesis and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1757-1774. [PMID: 39772536 DOI: 10.1021/acs.jafc.4c07024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Avermectins (AVMs) and their derivatives are the most effective and widely used nematicides, insecticides, and acaricides against endo- and ectoparasites of plants, animals, and humans. Demand for avermectins and their highly effective derivatives has increased due to their high cost-effectiveness and wide range of applications as medicines and crop protection products. Due to the unique structures of these compounds and for industrial production purposes, numerous efforts and strategies have been dedicated to enhancing the production of avermectins and creating new analogues in recent years. Here, we have systemically reviewed the recent studies on the biosynthesis and application of avermectins and their derivatives, including avermectin metabolism and its related bioregulation in Streptomyces avermitilis, approaches for enhancing the bioproduction of avermectins, the structure and toxicology of avermectin derivatives, and future prospects, with a focus on the recent advances in biosynthesis and significance of the superior avermectin derivatives.
Collapse
Affiliation(s)
- Chao Xiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ya-Ling Yi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lu-Lu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
2
|
Späth G, Loiseleur O. Chemical case studies from natural products of recent interest in the crop protection industry. Nat Prod Rep 2024; 41:1915-1938. [PMID: 39297571 DOI: 10.1039/d4np00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Covering: up to 2024This review showcases selected natural products, which are of high relevance to the craft of crop protection, including in its most recent aspects such as their non-cidal use as biostimulants in plant health. Focussing on the chemistry and associated structure-activity relationships that were disclosed, the review presents case studies from the recent chemical development of important natural products and compounds inspired by them for their use in the crop protection industry.
Collapse
Affiliation(s)
- Georg Späth
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland.
| | - Olivier Loiseleur
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland.
| |
Collapse
|
3
|
Shen S, Ding B, Yang M, Zhang J, Bai S, Ma S, Zhang L, Dong J, Dong L. Modification of Azo-Aminopyrimidines as Potent Multitarget Inhibitors of Insect Chitinolytic Enzymes O fChi-h and O fHex1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39569972 DOI: 10.1021/acs.jafc.4c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Multitarget inhibitors exhibit significant advantages in reducing the risk of drug resistance, enhancing therapeutic efficacy, and minimizing dosage, outperforming multicomponent combination drugs. On the basis of glycoside hydrolase family 18 (GH18) chitinases and GH20 β-N-acetylhexosaminidase using the same substrate-assisted catalytic mechanism and similar substrate binding modes, a series of novel azo-aminopyrimidine compounds have been designed and synthesized as multitarget inhibitors targeting chitinolytic enzymes OfChi-h and OfHex1. Compounds AAP4 (OfChi-h, Ki = 29.3 nM; OfHex1, Ki = 4.9 μM) and AAP16 (OfChi-h, Ki = 32.4 nM; OfHex1, Ki = 7.2 μM) were identified to be potent multitarget inhibitors of these enzymes, which were predicted to occupy the -1 subsite and engage in H-binding interactions with catalytic residues. AAP4 also displayed significant insecticidal activity against lepidopteran pests Ostrinia furnacalis through leaf dipping and pot experiments. In addition, the safety of AAP4 to corn and the natural enemy Trichogramma ostriniae was comprehensively evaluated. This present work indicates that azo-aminopyrimidines, as multitarget inhibitors against chitinolytic enzymes, can be further developed as safe and efficient pest control and management agents.
Collapse
Affiliation(s)
- Shengqiang Shen
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Baokang Ding
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Meiling Yang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Jiahao Zhang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Shenmeng Bai
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Shujie Ma
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Lihui Zhang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Jingao Dong
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Lili Dong
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
4
|
Wang Y, Wang C, Tian Q, Li Y. Recent Research Progress in Oxime Insecticides and Perspectives for the Future. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15077-15091. [PMID: 38920088 DOI: 10.1021/acs.jafc.4c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In recent decades, the unique structural attributes and purported insecticidal properties of oximes have garnered increasing attention. A variety of insecticides, encompassing fluxametamide, fluhexafon, and lepimectin, have been synthesized, all of which incorporate oximes. This review endeavors to encapsulate the insecticidal efficacy, structure-activity correlations, and operative mechanisms of oxime-containing compounds. Furthermore, it delves into the conceptual frameworks underpinning the design of innovative oxime-based insecticides, thereby shedding light on prospective advancements in this field.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Chuxia Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qingqiang Tian
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Ang S, Cao N, Zheng W, Zhang Z, Li J, Yan Z, Su K, Wong WL, Zhang K, Hong WD, Wu P. Novel Sophoridine Derivatives as Potential Larvicidal Agents against Aedes albopictus: Synthesis, Biological Evaluation, Acetylcholinesterase Inhibition, and Morphological Study. INSECTS 2023; 14:399. [PMID: 37103214 PMCID: PMC10140878 DOI: 10.3390/insects14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Two series of novel sophoridine derivatives were designed, synthesized, and evaluated for their anti-mosquito activity. SOP-2g, SOP-2q, and SOP-2r exhibited potential larvicidal activity against Aedes albopictus larva with LC50 values of 330.98, 430.53, and 411.09 ppm, respectively. Analysis of structure-activity relationships indicated that the oxime ester group was beneficial for improving the larvicidal biological activity, whereas the long-chain aliphatic group and fused-ring group were introduced. Furthermore, the larvicidal mechanism was also investigated based on the inhibition assay of acetylcholinesterase (AChE) and the morphological observation of dead larva treated with derivatives. Results indicated that the AChE inhibitory activity of the preferred three derivatives were 63.16%, 46.67%, and 35.11%, respectively, at 250 ppm concentration. Additionally, morphological evidence demonstrated that SOP-2q and SOP-2r induced changes in the larva's intestinal cavity, caudal gill, and tail, thereby displaying larvicidal action against Ae. albopictus together with AChE inhibition. Therefore, this study implied that sophoridine and its novel derivatives could be used to control the population of mosquito larva, which may also be effective alkaloids to reduce the mosquito population density.
Collapse
Affiliation(s)
- Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China (W.Z.); (K.Z.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
6
|
Xu Q, Li J, Guo W, Xiang J, Zhou L, Zhang J. High Value Utilization of an Avermectin Fermentation Byproduct: Novel B2a Derivatives as Pesticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6377-6384. [PMID: 35584200 DOI: 10.1021/acs.jafc.2c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In an effort to develop novel molecules with suitable insecticidal activities, 23,24-alkene-avermectin B2a derivatives have been synthesized via a one-pot multistep reaction using avermectin B2a, a byproduct of avermectin fermentation, as a starting material. All products and intermediates were characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. Bioassay results showed that the LC50 values of compounds 4 and 9 against Meloidogyne incognita were 0.63 and 0.50 mg/L, respectively, similar to that of avermectin (0.46 mg/L). Importantly, the LC50 values of compound 9 against Tetranychus cinnabarinus and Mythimna separate were 0.0067 and 0.047 mg/L, respectively, superior to that of avermectin. Through field experiments, it could be found that spraying 0.25% water-dispersible granules of compound 9 345 g ha-1 could effectively control M. incognita outbreaks, with an efficacy of 84.9%. Combined with toxicity experiments, it could be further inferred that compound 9 may be useful as a low-toxicity pesticide. In summary, we efficiently synthesized a new B2a derivative as a potential pesticide and offered an important way for improving the utilization efficiency of avermectin fermentation products. In doing so, the environmental pollution associated with fermentation byproducts may be greatly reduced, potentially enabling a sustainable avermectin fermentation process.
Collapse
Affiliation(s)
- Qingbo Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100094, China
| | - Jinming Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100094, China
| | - Wenxiu Guo
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Juncheng Xiang
- Shanghai GreenTech Laboratory Co. Ltd., Shanghai 100093, China
| | - Liqi Zhou
- Shanghai GreenTech Laboratory Co. Ltd., Shanghai 100093, China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100094, China
| |
Collapse
|
7
|
Huang F, Ling H, Li J, Lu S, Liu W, Li Q, Xu F. Synthesis, bioactivities and 3D-QSAR of novel avermectin B2a aglycon derivatives. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Shen S, Dong L, Chen W, Wu R, Lu H, Yang Q, Zhang J. Synthesis, Optimization, and Evaluation of Glycosylated Naphthalimide Derivatives as Efficient and Selective Insect β- N-Acetylhexosaminidase OfHex1 Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6387-6396. [PMID: 31090403 DOI: 10.1021/acs.jafc.9b02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insect chitinolytic β- N-acetylhexosaminidase OfHex1, from the agricultural pest Ostrinia furnacalis (Guenée), is considered as a potential target for green pesticide design. In this study, rational molecular design and optimization led to the synthesis of compounds 15r ( Ki = 5.3 μM) and 15y ( Ki = 2.7 μM) that had superior activity against OfHex1 than previously reported lead compounds. Both compounds 15r and 15y had high selectivity toward OfHex1 over human β- N-acetylhexosaminidase B (HsHexB) and human O-GlcNAcase (hOGA). In addition, to investigate the basis for the potency of glycosylated naphthalimides against OfHex1, molecular docking and molecular dynamics simulations were performed to study possible binding modes. Furthermore, the in vivo biological activity of target compounds with efficient OfHex1 inhibitory potency was assayed against Myzus persicae, Plutella xylostella, and O. furnacalis. This present work indicates that glycosylated naphthalimides can be further developed as potential pest control and management agents targeting OfHex1.
Collapse
Affiliation(s)
- Shengqiang Shen
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Lili Dong
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Wei Chen
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Renjie Wu
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Qing Yang
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| |
Collapse
|