1
|
Yang L, Wang F, Li Y, Zhou R, Li A, Wu T, Qiu M, Zhang L, Yang M, Zhou X, Jiang ZX, Chen S. Mechanical Interlocking of 144 Symmetrical 19F and Tetraphenylethylene for Magnetic Resonance-Fluorescence Dual Imaging. J Am Chem Soc 2025; 147:7137-7147. [PMID: 39949031 DOI: 10.1021/jacs.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Single-molecule dual 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FLI) agents are valuable tools in biomedical research. However, integrating millimolar-sensitivity 19F MRI and micromolar-sensitivity FLI into a single molecule remains challenging. Here, we report the use of mechanically interlocked [5]rotaxanes to efficiently incorporate 144 symmetrical fluorines (19F) for sensitive 19F MRI and to control the motion of tetraphenylethylene (TPE) for responsive FLI at the molecular level, yielding a dual imaging agent with micromolar sensitivity. The sensitivity gap between 19F MRI and FLI is bridged by generating an intense singlet 19F peak from 144 symmetrical 19F and modulating their motion through mechanical interlocking. Spectroscopic and imaging studies, in conjunction with molecular dynamics simulations, highlight the critical role of [5]rotaxane formation, wheel "stationing-shuttling", and the introduction of fluorous bulky perfluoro-tert-butoxymethyl (PFBM) groups as effective strategies to improve 19F MRI sensitivity and enable responsive FLI. This work not only advances the development of high-performance dual imaging agents but also provides valuable insights into the structure, dynamics, and potential applications of [5]rotaxanes in materials science.
Collapse
Affiliation(s)
- Lan Yang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Anfeng Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tingjuan Wu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Becharguia N, Wasielewski E, Abidi R, Nierengarten I, Nierengarten JF. Stepwise Functionalization of a Pillar[5]arene-Containing [2]Rotaxane with Pentafluorophenyl Ester Stoppers. Chemistry 2024; 30:e202303501. [PMID: 37983752 DOI: 10.1002/chem.202303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Detailed investigations into the stepwise bis-functionalization of a pillar[5]arene-containing rotaxane building block have been carried out. Upon a first stopper exchange, the pillar[5]arene moiety of the mono-acylated product is preferentially located close to its reactive pentafluorophenyl ester stopper, thus limiting the accessibility to the reactive carbonyl group by the nucleophilic reagents. Selective mono-functionalization is thus very efficient. Introduction of a second stopper is then possible to generate dissymmetrical rotaxanes with different amide stoppers. Moreover, when dethreading is possible upon the second acylation, the pillar[5]arene plays the role of a protecting group allowing the synthesis of dissymmetrical axles that are particularly difficult to prepare under statistical conditions. Finally, detailed conformation analysis of the rotaxanes revealed that the position of the pillar[5]arene moiety on its axle subunit is mainly governed by polar interactions in nonpolar organic solvents, whereas solvophobic effects play a major role in polar solvents.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042 LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et, Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042 LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et, Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042 LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042 LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
3
|
Bunchuay T, Khianjinda T, Srisawat P, Tse YC, Gateley C, Beer PD. Enhanced anion recognition by ammonium [2]catenane functionalisation of a halogen bonding acyclic receptor. Chem Commun (Camb) 2023; 59:13615-13618. [PMID: 37901989 DOI: 10.1039/d3cc03269h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Ammonium-dibenzo[24]crown-8 [2]catenane functionalisation of a 3,5-bis-iodotriazole-pyridine motif produces a potent halogen bonding (XB) receptor capable of binding anions in aqueous-acetone solvent mixtures of up to 20% water. Exploiting the kinetically inert nature of the mechanically bonded cationic ammonium [2]catenane substituents, the XB receptor is demonstrated to exhibit superior anion recognition behaviour in comparison to labile sodium cation complexed bis-benzo[15]crown-5 XB and HB triazole-pyridine heteroditopic receptor analogues.
Collapse
Affiliation(s)
- Thanthapatra Bunchuay
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
- Department of Chemistry and Center for Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Theerapat Khianjinda
- Department of Chemistry and Center for Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pasit Srisawat
- Department of Chemistry and Center for Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yuen Cheong Tse
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Christian Gateley
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
4
|
Zhao T, Wu W, Yang C. Chiroptical regulation of macrocyclic arenes with flipping-induced inversion of planar chirality. Chem Commun (Camb) 2023; 59:11469-11483. [PMID: 37691554 DOI: 10.1039/d3cc03829g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies on various macrocyclic arenes have received increasing attention due to their straightforward syntheses, convenient derivatization, and unique complexation properties. Represented by pillar[n]arenes, several distinctive macrocyclic arenes have recently emerged with the following characteristics: they possess a pair of enantiomeric planar chiral conformations, and interconversion between these enantiomeric conformations can be achieved through the flipping of ring units. Complexation of a chiral guest with these macrocyclic arenes will lead to a shift of the equilibrium between the Rp and Sp conformers, leading to intriguing possibilities for chiral induction and sensing. By the introduction of bulky substituents on the rims, employing rotaxanation or pseudocatenation, planar chirality could be locked, enabling the enantiomeric separation of the chiral structures. The induced or separated chiral conformers/compounds exhibit significant chiroptical properties. These macrocyclic arenes, with flipping-induced inversion of planar chirality, demonstrated intriguing chiral induction dynamics and kinetics. In this featured review, we systematically summarize the progress in chiroptical induction/regulation of these macrocyclic arenes, particularly in the fields of chiral sensing, molecular machines, molecular recognition, and assembly.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| |
Collapse
|
5
|
Han H, Seale JSW, Feng L, Qiu Y, Stoddart JF. Sequence‐controlled synthesis of rotaxanes. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Han Han
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - James S. W. Seale
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - Liang Feng
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - Yunyan Qiu
- Department of Chemistry National University of Singapore Singapore Republic of Singapore
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois USA
- School of Chemistry University of New South Wales Sydney Australia
- Department of Chemistry, Stoddart Institute of Molecular Science Zhejiang University Hangzhou China
- ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| |
Collapse
|
6
|
Khang TM, Nhien PQ, Cuc TTK, Wu CH, Hue BTB, Wu JI, Li YK, Lin HC. Dual and sequential locked/unlocked photo-switching effects on FRET processes by tightened/loosened nano-loops of diarylethene-based [1]rotaxanes. Chem Commun (Camb) 2023; 59:466-469. [PMID: 36519452 DOI: 10.1039/d2cc06285b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The self-trapping nano-loop structures of [1]rotaxanes exhibited multiple Förster resonance energy transfer (FRET) patterns via dual and sequential locking/unlocking of pH-gated and UV exposure processes. As a tightened and constrained nano-loop in the acidic condition, dithienylethene (DTE) unit was locked in the highly bending open form to forbid ring closure upon UV irradiation.
Collapse
Affiliation(s)
- Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. .,Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Vietnam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Vietnam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. .,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Wu Z, Wang S, Zhang Z, Zhang Y, Yin Y, Shi H, Jiao S. Solvent effects on the motion of a crown ether/amino rotaxane. RSC Adv 2022; 12:30495-30500. [PMID: 36337980 PMCID: PMC9597606 DOI: 10.1039/d2ra05453a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Solvents have been recognized as a significant factor for modulating the shuttle of rotaxanes and regulating their functions regarding molecular machines by a lot of published studies. The mechanism of the effects of solvents on the motion of crown ether/amino rotaxanes, however, remains unclear. In this work, a rotaxane, formed by dibenzo-24-crown-8 (C[8]) and a dumbbell-shaped axle with two positively charged amino groups, was investigated at the atom level. Two-dimensional free-energy landscapes characterizing the conformational change of C[8] and the shuttling motions in chloroform and water were mapped. The results indicated that the barriers in water were evidently lower than those in chloroform. By analyzing the trajectories, there was no obvious steric effect during shuttling. Instead, the main driving force of shuttling was verified from electrostatic interactions, especially strong hydrogen bonding interactions between the axle and water, which resulted in the fast shuttling rate of the rotaxane. All in all, the polarity and hydrogen bond-forming ability of solvents are the main factors in affecting the shuttling rate of a crown ether/amino rotaxane. In addition, C[8] would adopt S-shaped conformations during shuttling except for situating in the amino sites with C-shaped ones adopted due to π-π stacking interactions. The results of this research improve the comprehension of the solvent modulation ability for shuttling in crown ether-based rotaxanes and illustrate the effects of structural modifications on motions. These new insights are expected to serve the efficient design and construction of molecular machines.
Collapse
Affiliation(s)
- Zhen Wu
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Shuangshuang Wang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Zilin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Haixin Shi
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| |
Collapse
|
8
|
|
9
|
Hoshino S, Ono K, Kawai H. Ring-Over-Ring Deslipping From Imine-Bridged Heterorotaxanes. Front Chem 2022; 10:885939. [PMID: 35592307 PMCID: PMC9110657 DOI: 10.3389/fchem.2022.885939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Ring-over-ring slippage and ring-through-ring penetration are important processes in the construction of ring-in-ring multiple interlocked architectures. We have successfully observed “ring-over-ring deslipping” on the rotaxane axle by exploiting the dynamic covalent nature of imine bonds in imine-bridged heterorotaxanes R1 and R2 with two macrocycles of different ring sizes on the axle. When the imine bridges of R1 were cleaved, a hydrolyzed hetero[4]rotaxane [4]R1′ was formed as an intermediate under dynamic equilibrium, and the larger 38-membered macrocycle M was deslipped over the 24-membered ring (24C8 or DB24C8) to dissociate into a [3]rotaxane [3]R3 and a macrocycle M. The time dependent NMR measurement and the determined thermodynamic parameters revealed that the rate-limiting step of the deslipping process was attributed to steric hindrance between two rings and reduced mobility of M due to proximity to the crown ether, which was bound to the anilinium on the axle molecule.
Collapse
Affiliation(s)
- Sayaka Hoshino
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Hidetoshi Kawai
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
- *Correspondence: Hidetoshi Kawai,
| |
Collapse
|
10
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
11
|
Ng AWH, Lai SK, Yee C, Au‐Yeung HY. Macrocycle Dynamics in a Branched [8]Catenane Controlled by Three Different Stimuli in Three Different Regions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antony Wing Hung Ng
- State Key Laboratory of Synthetic Chemistry CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Samuel Kin‐Man Lai
- State Key Laboratory of Synthetic Chemistry CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chi‐Chung Yee
- State Key Laboratory of Synthetic Chemistry CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au‐Yeung
- State Key Laboratory of Synthetic Chemistry CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
12
|
Gaedke M, Hupatz H, Witte F, Rupf SM, Douglas C, Schröder HV, Fischer L, Malischewski M, Paulus B, Schalley CA. Sequence-sorted redox-switchable hetero[3]rotaxanes. Org Chem Front 2022. [DOI: 10.1039/d1qo01553b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Programming the sequence of functional units in redox-switchable hetero[3]rotaxanes is achieved by integrative self-sorting for a library of five crown ethers.
Collapse
Affiliation(s)
- Marius Gaedke
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Felix Witte
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Susanne M. Rupf
- Institut für Chemie und Biochemie der Freien Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Clara Douglas
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Hendrik V. Schröder
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Lukas Fischer
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Moritz Malischewski
- Institut für Chemie und Biochemie der Freien Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie der Freien Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| |
Collapse
|
13
|
Masai H, Oka Y, Terao J. Precision synthesis of linear oligorotaxanes and polyrotaxanes achieving well-defined positions and numbers of cyclic components on the axle. Chem Commun (Camb) 2021; 58:1644-1660. [PMID: 34927653 DOI: 10.1039/d1cc03507j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interest in macromolecules has increased because of their functional properties, which can be tuned using precise organic synthetic methods. For example, desired functions have been imparted by controlling the nanoscale structures of such macromolecules. In particular, compounds with interlocked structures, including rotaxanes, have attracted attention because of their unique supramolecular structures. In such supramolecular structures, the mobility and freedom of the macrocycles are restricted by an axle and dependent on those of other macrocycles, which imparts unique functions to these threaded structures. Recently, methods for the ultrafine engineering and synthesis, as well as functions, of "defined" rotaxane structures that are not statistically dispersed on the axle (i.e., control over the number and position of cyclic molecules) have been reported. Various synthetic strategies allow access to such well-defined linear oligo- and polyrotaxanes, including [1]rotaxanes and [n]rotaxanes (mostly n > 3). These state-of-the-art synthetic methods have resulted in unique functions of these oligo-and polyrotaxane materials. Herein, we review the effective synthetic protocols and functions of precisely constructed one-dimensional oligomers and polymers bearing defined threaded structures, and discuss the latest reports and trends.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Japan.
| |
Collapse
|
14
|
Gauthier M, Coutrot F. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles. Chemistry 2021; 27:17576-17580. [PMID: 34738683 DOI: 10.1002/chem.202103805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 01/05/2023]
Abstract
This paper reports the synthesis and study of new pH-sensitive DB24C8-based [2]rotaxane molecular shuttles that contain within their axle four potential sites of interaction for the DB24C8: ammonium, amine, Weinreb amide, and ketone. In the protonated state, the DB24C8 lay around the best ammonium site. After either deprotonation or deprotonation-then-carbamoylation of the ammonium, different localizations of the DB24C8 were seen, depending on both the number and nature of the secondary stations and steric restriction. Unexpectedly, the results indicated that the Weinreb amide was not a proper secondary molecular station for the DB24C8. Nevertheless, through its methoxy side chain, it slowed down the shuttling of the macrocycle along the threaded axle, thereby partitioning the [2]rotaxane into two translational isomers on the NMR timescale. The ketone was successfully used as a secondary molecular station, and its weak affinity for the DB24C8 was similar to that of a secondary amine.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
15
|
Sun J, Li W, Hou Y, Zhang X, Gao Z, Wang B, Zhao J. a-PET and Weakened Triplet-Triplet Annihilation Self-Quenching Effects in Benzo-21-Crown-7-Functionalized Diiodo-BODIPY. ACS OMEGA 2021; 6:28356-28365. [PMID: 34723032 PMCID: PMC8552471 DOI: 10.1021/acsomega.1c04540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Weakening the triplet-triplet annihilation (TTA) self-quenching effect induced by sensitizers remains a tremendous challenge due to the very few investigations carried out on them. Herein, benzo-21-crown-7 (B21C7)-functionalized 2,6-diiodo-1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene (DIBDP) was synthesized to investigate the influences of huge bulks and electron-rich cavities of B21C7 moieties on the fluorescence emission and triplet-state lifetimes of DIBDP moieties. Density functional theory (DFT)/time-dependent DFT (TDDFT) computable results preliminarily predicted that B21C7 moieties had influences on the fluorescence emissions of DIBDP moieties but not on their localization of triplet states of B21C7-functionalized DIBDP (B21C7-DIBDP). The UV-vis absorption spectra, fluorescence emission spectra, and cyclic voltammograms verified that there was an electron-transfer process from the B21C7 moiety to the DIBDP moiety in B21C7-DIBDP. However, the calculated results of ΔG CS and E CS values and nanosecond time-resolved transient absorption spectra demonstrated that the electron-transfer process from the B21C7 moiety to the DIBDP moiety in B21C7-DIBDP had direct influences on the fluorescence emission of DIBDP moieties but not on the triplet states of DIBDP moieties. The experimental values of triplet-state lifetimes of B21C7-DIBDP were obviously longer than those of DIBDP at a high concentration (1.0 × 10-5 M); however, the fitted values of intrinsic triplet-state lifetimes of B21C7-DIBDP were slightly greater than those of DIBDP in the same solvent. These results demonstrated that the steric hindrance of B21C7 moieties could weaken the TTA self-quenching effect of DIBDP moieties at a high concentration and the a-PET effect induced a proportion of the produced singlet states of DIBDP moieties and could not emit fluorescence in the form of radiation transition but they could be transformed into triplet states through intersystem crossing (ISC) processes due to the iodine atoms in the DIBDP moiety. The stronger a-PET effects in polar solvents induced smaller fluorescence quantum yields so that more singlet states of DIBDP moieties were transformed into triplet states to weaken the TTA self-quenching effects.
Collapse
Affiliation(s)
- Jifu Sun
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Weixu Li
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Yuqi Hou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Zhongzheng Gao
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Bo Wang
- College
of Chemical and Biological Engineering, Shandong University of Science and Technology, J2-424, 579 Qianwangang Road, Qingdao 266590, P. R. China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Ng AWH, Lai SKM, Yee CC, Au-Yeung HY. Macrocycle Dynamics in a Branched [8]Catenane Controlled by Three Different Stimuli in Three Different Regions. Angew Chem Int Ed Engl 2021; 61:e202110200. [PMID: 34676960 DOI: 10.1002/anie.202110200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/14/2022]
Abstract
A branched [8]catenane from an efficient one-pot synthesis (72 % HPLC yield, 59 % isolated yield) featuring the simultaneous use of three kinds of templates and cucurbit[6]uril-mediated azide-alkyne cycloaddition (CBAAC) for ring-closing is reported. Design and assembly of the [8]catenane precursors are unexpectedly complex that can involve cooperating, competing and non-influencing interactions. Due to the branched structure, dynamics of the [8]catenane can be modulated in different extent by rigidifying/loosening the mechanical bonds at different regions by using solvent polarity, acid-base and metal ions as the stimuli. This work not only highlights the importance of understanding the delicate interplay of the weak and non-obvious supramolecular interactions in the synthesis of high-order [n]catenane, but also demonstrates a complex control of dynamics and flexibility for exploiting [n]catenanes applications.
Collapse
Affiliation(s)
- Antony Wing Hung Ng
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Samuel Kin-Man Lai
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chi-Chung Yee
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
17
|
Gu R, Lehn JM. Constitutional Dynamic Selection at Low Reynolds Number in a Triple Dynamic System: Covalent Dynamic Adaptation Driven by Double Supramolecular Self-Assembly. J Am Chem Soc 2021; 143:14136-14146. [PMID: 34432464 DOI: 10.1021/jacs.1c04446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A triple dynamic complex system has been designed, implementing a dynamic covalent process coupled to two supramolecular self-assembly steps. To this end, two dynamic covalent libraries (DCLs), DCL-1 and DCL-2, have been established on the basis of dynamic covalent C═C/C═N organo-metathesis between two Knoevenagel derivatives and two imines. Each DCL contains a barbituric acid-based Knoevenagel constituent that may undergo a sequential double self-organization process involving first the formation of hydrogen-bonded hexameric supramolecular macrocycles that subsequently undergo stacking to generate a supramolecular polymer SP yielding a viscous gel state. Both DCLs display selective self-organization-driven amplification of the constituent that leads to the SP. Dissociation of the SP on heating causes reversible randomization of the constituent distributions of the DCLs as a function of temperature. Furthermore, diverse distribution patterns of DCL-2 were induced by modulation of temperature and solvent composition. The present dynamic systems display remarkable self-organization-driven constitutional adaption and tunable composition by coupling between dynamic covalent component selection and two-stage supramolecular organization. In more general terms, they reveal dynamic adaptation by component selection in low Reynolds number conditions of living systems where frictional effects dominate inertial behavior.
Collapse
Affiliation(s)
- Ruirui Gu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
18
|
Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, Jajarmi V, Dinarvand R, Habibzadeh S, Saeb MR, Varma RS, Shokouhimehr M, Hamblin MR. Green chemistry and coronavirus. SUSTAINABLE CHEMISTRY AND PHARMACY 2021; 21:100415. [PMID: 33686371 PMCID: PMC7927595 DOI: 10.1016/j.scp.2021.100415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 05/05/2023]
Abstract
The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
19
|
|
20
|
Rémy M, Nierengarten I, Park B, Holler M, Hahn U, Nierengarten J. Pentafluorophenyl Esters as Exchangeable Stoppers for the Construction of Photoactive [2]Rotaxanes. Chemistry 2021; 27:8492-8499. [DOI: 10.1002/chem.202100943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires Université de Strasbourg et CNRS (UMR 7402 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires Université de Strasbourg et CNRS (UMR 7402 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Boram Park
- Laboratoire de Chimie des Matériaux Moléculaires Université de Strasbourg et CNRS (UMR 7402 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires Université de Strasbourg et CNRS (UMR 7402 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Uwe Hahn
- Laboratoire de Chimie des Matériaux Moléculaires Université de Strasbourg et CNRS (UMR 7402 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Jean‐François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires Université de Strasbourg et CNRS (UMR 7402 LIMA) Ecole Européenne de Chimie, Polymères et Matériaux 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|
21
|
Li H, Yang Y, Xu F, Duan Z, Li R, Wen H, Tian W. Sequence-controlled supramolecular copolymer constructed by self-sorting assembly of multiple noncovalent interactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01540g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A sequence-controlled supramolecular copolymer was constructed by self-sorting assembly of metal coordination and two types of host–guest interactions.
Collapse
Affiliation(s)
- Hui Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Ying Yang
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Fenfen Xu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhaozhao Duan
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Riqiang Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Herui Wen
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
22
|
Li WX, Yin YF, Duan HY, Liu LJ, Kong LC, Zhan TG, Zhang KD. An orthogonal photoresponsive tristable [3]rotaxane with non-destructive readout. Org Chem Front 2021. [DOI: 10.1039/d0qo01441a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An orthogonal photoresponsive [3]rotaxane is constructed by introducing two orthogonal photoswitchable azobenzene binding sites, and it features reversible photoregulated tristate absorption spectral changes with non-destructive readout capability.
Collapse
Affiliation(s)
- Wan-Xia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yong-Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
23
|
Ng AWH, Leung YH, Au-Yeung HY. Dynamics of mechanically bonded macrocycles in radial hetero[4]catenane isomers. Org Chem Front 2021. [DOI: 10.1039/d0qo01658f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pair of radial [4]catenane isomers interlocked with two CB[6]s and one β-CD is reported. Due to the different positions of the tightly bound CB[6]s, shuttling dynamics of the β-CD between the two biphenyl stations are different in the isomers.
Collapse
Affiliation(s)
| | - Yu Hin Leung
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment
| |
Collapse
|
24
|
Taghavi Shahraki B, Maghsoudi S, Fatahi Y, Rabiee N, Bahadorikhalili S, Dinarvand R, Bagherzadeh M, Verpoort F. The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Arumugaperumal R, Shellaiah M, Srinivasadesikan V, Awasthi K, Sun KW, Lin MC, Ohta N, Chung WS. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45222-45234. [PMID: 32985177 DOI: 10.1021/acsami.0c14107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-emissive tetraphenylethene (TPE) and pyrene-containing amphiphilic molecules are of great interest because they can be integrated to form stimuli responsive materials with various biological applications. Herein, we report the study of mechanically interlocked molecules (MIMs) with aggregation-induced static excimer emission (AISEE) property through a series of TPE and pyrene-based amphiphilic [2]rotaxanes, where t-butylcalix[4]arene with hydrophobic nature was used as the macrocycle. Evidently, by adorning TPE and pyrene units in [2]rotaxanes P1, P2, P1-b, and P2-b, they display remarkable emission bands in 70% of water fraction (fw) in tetrahydrofuran (THF)/water mixture, which could be attributed to the restricted intramolecular rotation of phenyl groups, whereas prominent blue-shifted excimer emission of pyrene started to appear as fw reached 80% for P1 and 90% for P1-b, P2, and P2-b, which was ascribed to the favorable π-π stacking and hydrophobic interactions of the pyrene rings that enabled their static excimer formation. The well-defined distinct amphiphilic nanostructures of [2]rotaxanes including hollowspheres, mesoporous nanostructures, spheres, and network linkages can be driven smoothly depending on the molecular structures and their aggregated states in THF/water mixture. These fascinating diversiform nanostructures were mainly controlled by the skillful manner of reversible molecular shuttling of t-butylcalix[4]arene macrocycle and also the interplay of multinoncovalent interactions. To further understand the aggregation capabilities of [2]rotaxanes, the human lung fibroblasts (MRC-5) living cell incubated with either P1, P2, P1-b, or P2-b was studied and monitored by confocal laser scanning microscopy. The AISEE property was achieved at an astonishing level by integrating TPE and pyrene to MIM-based reversible molecular switching [2]rotaxanes; furthermore, distinct nanostructures, especially hollowspheres and mesoporous nanostructures, were observed, which are rarely reported in the literature but are highly desirable for future applications.
Collapse
Affiliation(s)
- Reguram Arumugaperumal
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Venkatesan Srinivasadesikan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Division Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Ming-Chang Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
26
|
Hoyas Pérez N, Lewis JEM. Synthetic strategies towards mechanically interlocked oligomers and polymers. Org Biomol Chem 2020; 18:6757-6780. [PMID: 32840554 DOI: 10.1039/d0ob01583k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanically interlocked molecules have fascinated chemists for decades. Initially a tantalising synthetic challenge, interlocked molecules have continued to capture the imagination for their aesthetics and, increasingly, for their potential as molecular machines and use in materials applications. Whilst preliminary statistical attempts to prepare these molecules were exceedingly inefficient, a raft of template-directed strategies have now been realised, providing a vast toolbox from which chemists can access interlocked structures in excellent yields. For many envisaged applications it is desirable to move away from small, discrete interlocked molecules and turn to oligomers and polymers instead, either due to the need for multiple mechanical bonds within the desired material, or to exploit an extended scaffold for the organisation and arrangement of individual mechanically interlocked units. In this tutorial-style review we outline the synthetic strategies that have been employed for the synthesis of mechanically interlocked oligomers and polymers, including oligo-/polymerisation of (pseudo)interlocked precursors, metal-organic self-assembly, the use of orthogonal template motifs, iterative approaches and grafting onto polymer backbones.
Collapse
Affiliation(s)
- Nadia Hoyas Pérez
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK.
| | | |
Collapse
|
27
|
Grosu IG, Filip X, Miclăuș MO, Filip C. Hydrogen-Mediated Noncovalent Interactions in Solids: What Can NMR Crystallography Tell About? Molecules 2020; 25:E3757. [PMID: 32824749 PMCID: PMC7463941 DOI: 10.3390/molecules25163757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogen atoms play a crucial role in the aggregation of organic (bio)molecules through diverse number of noncovalent interactions that they mediate, such as electrostatic in proton transfer systems, hydrogen bonding, and CH-π interactions, to mention only the most prominent. To identify and adequately describe such low-energy interactions, increasingly sensitive methods have been developed over time, among which quantum chemical computations have witnessed impressive advances in recent years. For reaching the present state-of-the-art, computations had to rely on a pool of relevant experimental data, needed at least for validation, if not also for other purposes. In the case of molecular crystals, the best illustration for the synergy between computations and experiment is given by the so-called NMR crystallography approach. Originally designed to increase the confidence level in crystal structure determination of organic compounds from powders, NMR crystallography is able now to offer also a wealth of information regarding the noncovalent interactions that drive molecules to pack in a given crystalline pattern or another. This is particularly true for the noncovalent interactions which depend on the exact location of labile hydrogen atoms in the system: in such cases, NMR crystallography represents a valuable characterization tool, in some cases complementing even the standard single-crystal X-ray diffraction technique. A concise introduction in the field is made in this mini-review, which is aimed at providing a comprehensive picture with respect to the current accuracy level reached by NMR crystallography in the characterization of hydrogen-mediated noncovalent interactions in organic solids. Different types of practical applications are illustrated with the example of molecular crystals studied by our research group, but references to other representative developments reported in the literature are also made. By summarizing the major concepts and methodological progresses, the present work is also intended to be a guide to the practical potential of this relatively recent analytical tool for the scientists working in areas where crystal engineering represents the main approach for rational design of novel materials.
Collapse
Affiliation(s)
| | | | | | - Claudiu Filip
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj, Romania; (I.G.G.); (X.F.); (M.O.M.)
| |
Collapse
|
28
|
Affiliation(s)
- Chak‐Shing Kwan
- Department of Chemistry The Hong Kong Baptist University Kowloon Hong Kong SAR P. R. China
| | - Ken Cham‐Fai Leung
- Department of Chemistry The Hong Kong Baptist University Kowloon Hong Kong SAR P. R. China
| |
Collapse
|
29
|
Arumugaperumal R, Hua WL, Raghunath P, Lin MC, Chung WS. Controlled Sol-Gel and Diversiform Nanostructure Transitions by Photoresponsive Molecular Switching of Tetraphenylethene- and Azobenzene-Functionalized Organogelators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29650-29660. [PMID: 32543823 DOI: 10.1021/acsami.0c06251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The implementation of stimuli-responsive materials with dynamically controllable features has long been an important objective that challenges chemists in the materials science field. We report here the synthesis and characterization of [2]rotaxanes (R1 and R1-b) with a molecular shuttle and photoresponsive properties. Axles T1 and T1-b were found to be highly efficient and versatile organogelators toward various nonpolar organic solvents, especially p-xylene, with critical gelation concentrations as low as 0.67 and 0.38 w/v %, respectively. The two molecular stations of switchable [2]rotaxanes (R1 and R1-b) can be revealed or concealed by t-butylcalix[4]arene macrocycle, thus inhibiting the gelation processes of the respective axles T1 and T1-b through the control of intermolecular hydrogen-bonding interactions. The sol-gel transition of axles T1 and T1-b could be achieved by the irradiation of UV-visible light, which interconverted between the extended and contracted forms. Interestingly, the morphologies of organogels in p-xylene, including flakes, nanobelts, fibers, and vesicles depending on the molecular structures of axles T1 and T1-b, were induced by UV-visible light irradiation. Further studies revealed that acid-base-controllable and reversible self-assembled nanostructures of these axle molecules were mainly constructed by the interplay of multi-noncovalent interactions, such as intermolecular π-π stacking, CH-π, and intermolecular hydrogen-bonding interactions. Surprisingly, our TPE molecular systems (R1, R1-b, T1, and T1-b) are nonemissive in their aggregated states, suggesting that not only fluorescence resonance energy transfer but also aggregation-caused quenching may have been functioning. Finally, the mechanical strength of these organogels in various solvents was monitored by rheological experiments.
Collapse
Affiliation(s)
| | - Wei-Ling Hua
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Putikam Raghunath
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Chang Lin
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
30
|
Shi CY, Zhang Q, Yu CY, Rao SJ, Yang S, Tian H, Qu DH. An Ultrastrong and Highly Stretchable Polyurethane Elastomer Enabled by a Zipper-Like Ring-Sliding Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000345. [PMID: 32350950 DOI: 10.1002/adma.202000345] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper-like sliding-ring mechanism in a hydrogen-bond-crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular-level zipper-like ring-sliding motion, which efficiently dissipates mechanical work in the solvent-free network. This research not only provides a distinct and general strategy for the construction of high-performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent-free polyurethane networks.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng-Yuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Si-Jia Rao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shun Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
31
|
Tian C, Fielden SDP, Pérez-Saavedra B, Vitorica-Yrezabal IJ, Leigh DA. Single-Step Enantioselective Synthesis of Mechanically Planar Chiral [2]Rotaxanes Using a Chiral Leaving Group Strategy. J Am Chem Soc 2020; 142:9803-9808. [PMID: 32356978 PMCID: PMC7266371 DOI: 10.1021/jacs.0c03447] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
We report a one-step
enantioselective synthesis of mechanically
planar chiral [2]rotaxanes. Previous studies of such molecules have
generally involved the separation of enantiomers from racemic mixtures
or the preparation and separation of diastereomeric intermediates
followed by post-assembly modification to remove other sources of
chirality. Here, we demonstrate a simple asymmetric metal-free active
template rotaxane synthesis using a primary amine, an activated ester
with a chiral leaving group, and an achiral crown ether lacking rotational
symmetry. Mechanically planar chiral rotaxanes are obtained directly
in up to 50% enantiomeric excess. The rotaxanes were characterized
by NMR spectroscopy, high-resolution mass spectrometry, chiral HPLC,
single crystal X-ray diffraction, and circular dichroism. Either rotaxane
enantiomer could be prepared selectively by incorporating pseudoenantiomeric
cinchona alkaloids into the chiral leaving group.
Collapse
Affiliation(s)
- Chong Tian
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen D P Fielden
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Borja Pérez-Saavedra
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.,School of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
| |
Collapse
|
32
|
Cornelissen MD, Pilon S, Steemers L, Wanner MJ, Frölke S, Zuidinga E, Jørgensen SI, van der Vlugt JI, van Maarseveen JH. A Covalent and Modular Synthesis of Homo- and Hetero[ n]rotaxanes. J Org Chem 2020; 85:3146-3159. [PMID: 31965801 PMCID: PMC7063575 DOI: 10.1021/acs.joc.9b03030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Incorporation
of 2,5-dihydroxyterephthalate as a covalent scaffold
in the axis of a 30-membered all-carbon macrocycle provides access
to a modular series of rotaxanes. Installment of tethered alkynes
or azides onto the terephthalic phenolic hydroxyl functionalities,
which are situated at opposite sides of the macrocycle, gives versatile
prerotaxane building blocks. The corresponding [2]rotaxanes are obtained
by introduction of bulky stoppering (“capping”) units
at the tethers and subsequent cleavage of the covalent ring/thread
ester linkages. Extension of this strategy via coupling of two prerotaxanes
bearing complementary linker functionalities (i.e., azide and alkyne)
and follow-up attachment of stopper groups provide efficient access
to [n]rotaxanes. The applicability and modular nature
of this novel approach were demonstrated by the synthesis of a series
of [2]-, [3]-, and [4]rotaxanes. Furthermore, it is shown that the
prerotaxanes allow late-stage functionalization of the ring fragment
introducing further structural diversity.
Collapse
Affiliation(s)
- Milo D Cornelissen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simone Pilon
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Luuk Steemers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martin J Wanner
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Steven Frölke
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ed Zuidinga
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Steen Ingemann Jørgensen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jarl Ivar van der Vlugt
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan H van Maarseveen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
33
|
Santra S, Ghosh P. Fluorophoric [2]rotaxanes: post-synthetic functionalization, conformational fluxionality and metal ion chelation. NEW J CHEM 2020. [DOI: 10.1039/d0nj00353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophoric [2]rotaxanes form an exciplex upon interpenetration and the exciplex signals are used to monitor the chelation properties of the interlocked systems.
Collapse
Affiliation(s)
- Saikat Santra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Department of Chemistry
| | - Pradyut Ghosh
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
34
|
He X, Li R, Xie M, Duan J, Tang Q, Shang Y. Copper-catalyzed cascade three-component azide–alkyne cycloaddition/condensation/transesterification: easy access to 3-triazolylcoumarins. NEW J CHEM 2020. [DOI: 10.1039/d0nj02100h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient strategy has been developed for the synthesis of 3-triazolylcoumarins in a one-pot, copper-catalyzed multicomponent reaction involving a cascade reaction of salicylaldehydes, ethyl 2-azidoacetate, and arylacetylenes.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
35
|
Zhang Z, Liu Y, Zhao J, Yan X. Engineering orthogonality in the construction of an alternating rhomboidal copolymer with high fidelity via integrative self-sorting. Polym Chem 2020. [DOI: 10.1039/c9py00848a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternating rhomboidal copolymer was prepared through the combination of orthogonal self-assembly between metal-coordination and host-guest chemistry as well as integrative self-sorting strategy associated with molecular size and steric effect.
Collapse
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
36
|
Zhou HY, Zong QS, Han Y, Chen CF. Recent advances in higher order rotaxane architectures. Chem Commun (Camb) 2020; 56:9916-9936. [PMID: 32638726 DOI: 10.1039/d0cc03057k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite dramatic advances in the template-directed synthesis of archetypal [2]rotaxanes, higher order rotaxanes with multiple molecular components (rings or dumbbells) are relatively daunting subjects owing to their synthetic challenges. With unique interlocked architectures, higher order rotaxanes have found applications in artificial molecular machines. In this feature article, we will focus on the recent advances in higher order rotaxanes with well-defined structures. Different types of rotaxane architectures will be described, and their synthetic approaches will be highlighted. Moreover, the stimuli-responsive molecular motion with increasing complexity in these diverse architectures will also be discussed.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Shou Zong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Soto MA, Lelj F, MacLachlan MJ. Programming permanent and transient molecular protection via mechanical stoppering. Chem Sci 2019; 10:10422-10427. [PMID: 32110334 PMCID: PMC6988755 DOI: 10.1039/c9sc03744f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chemical protection is an essential tool in synthetic chemistry, which involves blocking reactive sites on a molecule through covalent bonds. Physical approaches, such as encapsulation and host-mediated protection, have emerged as interesting alternatives that use steric bulk to inhibit reactivity. Here, we report the protection of a redox-active viologen through its incorporation into mechanically interlocked molecules (MIMs), namely hetero[4]rotaxanes. The viologen was confined inside a host cavity and flanked by two mechanical stoppers, which allowed for permanent and transient protection. Deprotection occurred on-demand via an unstoppering process, triggered by a proton transfer, polarity effect, or a thermal stimulus. We anticipate that permanent and transient mechanical stoppering could be incorporated into devices to function as molecular probes, transport/delivery systems, or stimuli-controlled degradable materials.
Collapse
Affiliation(s)
- Miguel A Soto
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
| | - Francesco Lelj
- La.M.I. and LaSCAMM INSTM Sezione Basilicata , Dipartimento di Chimica , Università della Basilicata , via dell'Ateneo Lucano 10 , Potenza , 85100 Italy
| | - Mark J MacLachlan
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
- Quantum Matter Institute , University of British Columbia , 2355 East Mall , Vancouver , BC , V6T 1Z4 Canada
- WPI Nano Life Science Institute , Kanazawa University , Kanazawa , 920-1192 Japan
| |
Collapse
|
38
|
Ng AWH, Yee C, Au‐Yeung HY. Radial Hetero[5]catenanes: Peripheral Isomer Sequences of the Interlocked Macrocycles. Angew Chem Int Ed Engl 2019; 58:17375-17382. [DOI: 10.1002/anie.201908576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Antony Wing Hung Ng
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chi‐Chung Yee
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au‐Yeung
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
39
|
Ng AWH, Yee C, Au‐Yeung HY. Radial Hetero[5]catenanes: Peripheral Isomer Sequences of the Interlocked Macrocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antony Wing Hung Ng
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chi‐Chung Yee
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au‐Yeung
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
40
|
Jin L, Li B, Cui Z, Shang J, Wang Y, Shao C, Pan T, Ge Y, Qi Z. Selenium Substitution-Induced Hydration Changes of Crown Ethers As Tools for Probing Water Interactions with Supramolecular Macrocycles in Aqueous Solutions. J Phys Chem B 2019; 123:9692-9698. [DOI: 10.1021/acs.jpcb.9b09618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Bo Li
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhiliyu Cui
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Chenguang Shao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
41
|
Zhang Y, Ouyang Y, Luo Z, Dong S. Convenient, Column Chromatography-Free, and Effective Synthesis of Benzo-21-crown-7 and Its Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Zhang
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan P. R. China
| | - Yunyun Ouyang
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; Hunan University; 410082 Changsha Hunan P. R. China
| |
Collapse
|
42
|
Sluysmans D, Stoddart JF. The Burgeoning of Mechanically Interlocked Molecules in Chemistry. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Hua T, Huang ZS, Cai K, Wang L, Tang H, Meier H, Cao D. Phenothiazine dye featuring encapsulated insulated molecular wire as auxiliary donor for high photovoltage of dye-sensitized solar cells by suppression of aggregation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Soto MA, MacLachlan MJ. Disabling Molecular Recognition through Reversible Mechanical Stoppering. Org Lett 2019; 21:1744-1748. [PMID: 30807186 DOI: 10.1021/acs.orglett.9b00310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mechanical stoppering of a guest molecule prevents its self-assembly with a macrocycle unit, so that both species coexist in a medium but do not recognize each other. The application of a chemical or physical stimulus reverses mechanical stoppering and subsequently enables molecular recognition. This process, which occurs without cross-reactivity and is perceptible at the macroscopic scale, could facilitate programming on/off states in supramolecular materials and molecular devices.
Collapse
Affiliation(s)
- Miguel A Soto
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , BC V6T 1Z1 , Canada
| | - Mark J MacLachlan
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , BC V6T 1Z1 , Canada.,WPI Nano Life Science Institute , Kanazawa University , Kanazawa , 920-1192 , Japan
| |
Collapse
|
45
|
Rao SJ, Nakazono K, Liang X, Nakajima K, Takata T. A supramolecular network derived by rotaxane tethering three ureido pyrimidinone groups. Chem Commun (Camb) 2019; 55:5231-5234. [DOI: 10.1039/c9cc01660k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rotaxane-cross-linked supramolecular network with good mechanical properties resulting from a trifunctional [2]rotaxane via intermolecular hydrogen bonding interactions.
Collapse
Affiliation(s)
- Si-Jia Rao
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Kazuko Nakazono
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
46
|
Lopez-Leonardo C, Martinez-Cuezva A, Bautista D, Alajarin M, Berna J. Homo and heteroassembly of amide-based [2]rotaxanes using α,α′-dimethyl-p-xylylenediamines. Chem Commun (Camb) 2019; 55:6787-6790. [DOI: 10.1039/c9cc02701g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective formation of [2]rotaxanes affords two out of seven possible interlocked isomers thanks to a marked conformational preference.
Collapse
Affiliation(s)
- C. Lopez-Leonardo
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - A. Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | | | - M. Alajarin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - J. Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
47
|
Mao M, Zhang XK, Xu TY, Wang XD, Rao SJ, Liu Y, Qu DH, Tian H. Towards a hexa-branched [7]rotaxane from a [3]rotaxane via a [2+2+2] alkyne cyclotrimerization process. Chem Commun (Camb) 2019; 55:3525-3528. [DOI: 10.1039/c9cc00363k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report a facile synthetic route for the preparation of a hexa-branched [7]rotaxane by using Co-catalyzed [2+2+2] alkyne cyclotrimerization from a [3]rotaxane.
Collapse
Affiliation(s)
- Min Mao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - Xiu-Kang Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - Tian-Yi Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - Xiao-Dong Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - Si-Jia Rao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - Yue Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- 130 Meilong Road
- Shanghai
| |
Collapse
|
48
|
Nandi M, Bej S, Ghosh TK, Ghosh P. A multifunctional catenated host for the efficient binding of Eu3+ and Gd3+. Chem Commun (Camb) 2019; 55:3085-3088. [DOI: 10.1039/c9cc00090a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[2]Catenane consists of various functional groups and shows efficient binding towards Eu3+ and Gd3+. A cavity-bound catenated structure is also demonstrated by single crystal X-ray analysis.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Somnath Bej
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tamal Kanti Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Pradyut Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
49
|
Schröder HV, Mekic A, Hupatz H, Sobottka S, Witte F, Urner LH, Gaedke M, Pagel K, Sarkar B, Paulus B, Schalley CA. Switchable synchronisation of pirouetting motions in a redox-active [3]rotaxane. NANOSCALE 2018; 10:21425-21433. [PMID: 30427015 DOI: 10.1039/c8nr05534c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the crown/ammonium [3]rotaxane R2 is reported which allows a switchable synchronisation of wheel pirouetting motions. The rotaxane is composed of a dumbbell-shaped axle molecule with two mechanically interlocked macrocycles which are decorated with a redox-active tetrathiafulvalene (TTF) unit. Electrochemical, spectroscopic, and electron paramagnetic resonance experiments reveal that rotaxane R2 can be reversibly switched between four stable oxidation states (R2, R2˙+, R22(˙+), and R24+). The oxidations enable non-covalent, cofacial interactions between the TTF units in each state-including a stabilised mixed-valence (TTF2)˙+ and a radical-cation (TTF˙+)2 dimer interaction-which dictate a syn (R2, R2˙+, and R22(˙+)) or anti (R24+) ground state co-conformation of the wheels in the rotaxane. Furthermore, the strength of these wheel-wheel interactions varies with the oxidation state, and thus electrochemical switching allows a controllable synchronisation of the wheels' pirouetting motions. DFT calculations explore the potential energy surface of the counter-rotation of the two interacting wheels in all oxidation states. The controlled coupling of pirouetting motions in rotaxanes can lead to novel molecular gearing systems which transmit rotational motion by switchable non-covalent interactions.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Heterorotaxanes, in which at least two types of macrocycles were introduced as the wheel components in rotaxanes, have attracted more and more attention during the past few decades owing to their unique structural features and intriguing properties. The coexistence of varied macrocycles endows the resultant heterorotaxanes not only versatile shuttling and switching behaviors but also great potential for the construction of functional rotaxane systems for applications. In this feature article, a survey of the successful synthesis of heterorotaxanes will be provided based on the various strategies towards the synthesis of heterorotaxanes, i.e. orthogonal binding approach, self-sorting approach, cooperative capture approach, active metal template approach, etc.
Collapse
Affiliation(s)
- Xu-Qing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China.
| | | | | | | |
Collapse
|