1
|
Hong S, Piao J, Hu J, Liu X, Xu J, Mao H, Piao J, Piao MG. Advances in cell-penetrating peptide-based nose-to-brain drug delivery systems. Int J Pharm 2025; 678:125598. [PMID: 40300721 DOI: 10.1016/j.ijpharm.2025.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
The incidence of brain disorders has gained worldwide attention and the presence of the blood-brain barrier prevents numerous drugs from reaching the targeted brain. The specific physiology of the nasal cavity and the brain provides the feasibility of direct nose-brain delivery, a system that bypasses the blood-brain barrier in a non-invasive manner for brain-targeted drug delivery via intracellular and extracellular mechanisms. The use of CPPs provides further feasibility for naso-brain drug delivery studies, and liposomes, nanopolymer particles, and gels modified with CPPs have demonstrated significant brain-targeting capabilities after nasal delivery. In this paper, the physiology of the nasal cavity and brain, the pathways of naso-brain delivery and the influencing factors are discussed in detail. At the same time, the introduction, classification, mechanism of action and application of CPPs in the nasal-brain delivery system are discussed in detail to provide a theoretical basis for the in-depth study of the application of CPPs in the nasal-brain delivery system.
Collapse
Affiliation(s)
- Shuai Hong
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jinyou Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Junsheng Hu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Xinyu Liu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jing Xu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Heying Mao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China.
| | - Ming Guan Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002 Jilin, China.
| |
Collapse
|
2
|
Wang D, Yin F, Li Z, Zhang Y, Shi C. Current progress and remaining challenges of peptide-drug conjugates (PDCs): next generation of antibody-drug conjugates (ADCs)? J Nanobiotechnology 2025; 23:305. [PMID: 40259322 PMCID: PMC12013038 DOI: 10.1186/s12951-025-03277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/24/2025] [Indexed: 04/23/2025] Open
Abstract
Drug conjugates have emerged as a promising alternative delivery system designed to deliver an ultra-toxic payload directly to the target cancer cells, maximizing therapeutic efficacy while minimizing toxicity. Among these, antibody-drug conjugates (ADCs) have garnered significant attention from both academia and industry due to their great potential for cancer therapy. However, peptide-drug conjugates (PDCs) offer several advantages over ADCs, including more accessible industrial synthesis, versatile functionalization, high tissue penetration, and rapid clearance with low immunotoxicity. These factors position PDCs as up-and-coming drug candidates for future cancer therapy. Despite their potential, PDCs face challenges such as poor pharmacokinetic properties and low bioactivity, which hinder their clinical development. How to design PDCs to meet clinical needs is a big challenge and urgent to resolve. In this review, we first carefully analyzed the general consideration of successful PDC design learning from ADCs. Then, we summarised the basic functions of each component of a PDC construct, comprising of peptides, linkers and payloads. The peptides in PDCs were categorized into three types: tumor targeting peptides, cell penetrating peptide and self-assembling peptide. We then analyzed the potential of these peptides for drug delivery, such as overcoming drug resistance, controlling drug release and improving therapeutic efficacy with reduced non-specific toxicity. To better understand the potential druggability of PDCs, we discussed the pharmacokinetics of PDCs and also briefly introduced the current PDCs in clinical trials. Lastly, we discussed the future perspectives for the successful development of an oncology PDC. This review aimed to provide useful information for better construction of PDCs in future clinical applications.
Collapse
Affiliation(s)
- Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Pingshan Translational Medicine Center, Shenzhen, 518118, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
3
|
Peggion C, Panetta V, Lastella L, Formaggio F, Ricci A, Oancea S, Hilma G, Biondi B. Relevance of amphiphilicity and helicity on the antibacterial action of a histatin 5-derived peptide. J Pept Sci 2024; 30:e3609. [PMID: 38676397 DOI: 10.1002/psc.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Peptide dhvar4, derived from the active domain of our salivary peptide histatin 5, bears a Phe residue in the middle of its hydrophilic face when folded into an α-helix. We then synthesized an analog with this Phe replaced by Lys and two analogs preserving Phe but bearing two and three α-aminoisobutyric acid (Aib) residues to stabilize the helical structure. The aim of this design was to verify which of the two features is more favorable to the biological activity. We performed a conformational study by means of circular dichroism and nuclear magnetic resonance, made antibacterial tests, and assessed the stability of the peptides in human serum. We observed that amphiphilicity is more important than helix stability, provided a peptide can adopt a helical conformation in a membrane-mimetic environment.
Collapse
Affiliation(s)
| | - Valeria Panetta
- Department of Chemistry, University of Padova, Padova, Italy
| | - Luana Lastella
- Department of Chemistry, University of Padova, Padova, Italy
| | - Fernando Formaggio
- Department of Chemistry, University of Padova, Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova, Italy
| | | | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, Sibiu, Romania
| | - Geta Hilma
- Public Health Directorate, Sibiu, Romania
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Padova, Italy
| |
Collapse
|
4
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Mallick AM, Biswas A, Mishra S, Jadhav S, Chakraborty K, Tripathi A, Mukherjee A, Roy RS. Engineered vitamin E-tethered non-immunogenic facial lipopeptide for developing improved siRNA based combination therapy against metastatic breast cancer. Chem Sci 2023; 14:7842-7866. [PMID: 37502330 PMCID: PMC10370593 DOI: 10.1039/d3sc01071f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
RNA interference based therapeutic gene silencing is an emerging platform for managing highly metastatic breast cancer. Cytosolic delivery of functional siRNA remains the key obstacle for efficient RNAi therapy. To overcome the challenges of siRNA delivery, we have engineered a vitamin E-tethered, short, optimum protease stabilized facial lipopeptide based non-immunogenic, biocompatible siRNA transporter to facilitate the clinical translation in future. Our designed lipopeptide has an Arginine-Sarcosine-Arginine segment for providing optimum protease-stability, minimizing adjacent arginine-arginine repulsion and reducing intermolecular aggregation and α-tocopherol as the lipidic moiety for facilitating cellular permeabilization. Interestingly, our designed non-immunogenic siRNA transporter has exhibited significantly better long term transfection efficiency than HiPerFect and can transfect hard to transfect primary cell line, HUVEC. Our engineered siRNA therapeutics demonstrated high efficacy in managing metastasis against triple negative breast cancer by disrupting the crosstalk of endothelial cells and MDA-MB-231 and reduced stemness and metastatic markers, as evidenced by downregulating critical oncogenic pathways. Our study aimed at silencing Notch1 signalling to achieve "multi-targeted" therapy with a single putative molecular medicine. We have further developed mechanistically rational combination therapy combining Notch1 silencing with a repurposed drug m-TOR inhibitor, metformin, which demonstrated synergistic interaction and enhanced antitumor efficacy against cancer metastasis.
Collapse
Affiliation(s)
- Argha Mario Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Abhijit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sonali Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411008 India
| | - Kasturee Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411008 India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
6
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Liu W, Yang W, Li X, Qi D, Chen H, Liu H, Yu S, Wang G, Liu Y. Evaluating the Properties of Ginger Protease-Degraded Collagen Hydrolysate and Identifying the Cleavage Site of Ginger Protease by Using an Integrated Strategy and LC-MS Technology. Molecules 2022; 27:5001. [PMID: 35956951 PMCID: PMC9370692 DOI: 10.3390/molecules27155001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Methods: An integrated strategy, including in vitro study (degree of hydrolysis (DH) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) and in vivo study (absorption after oral administration in rats), was developed to evaluate the properties of the fish skin gelatin hydrolysates prepared using different proteases (pepsin, alkaline protease, bromelain, and ginger protease). Meanwhile, in order to identify the hydrolysis site of ginger protease, the peptides in the ginger protease-degraded collagen hydrolysate (GDCH) were comprehensively characterized by liquid chromatography/tandem mass spectrometry (LC-MS) method. (2) Results: The GDCH exhibited the highest DH (20.37%) and DPPH radical scavenging activity (77.73%), and in vivo experiments showed that the GDCH was more efficiently absorbed by the gastrointestinal tract. Further oral administration experiments revealed that GDCH was not entirely degraded to free amino acids and can be partially absorbed as dipeptides and tripeptides in intact forms, including Pro-Hyp, Gly-Pro-Hyp, and X-Hyp-Gly tripeptides. LC-MS results determined the unique substrate specificity of ginger protease recognizing Pro and Hyp at the P2 position based on the amino acids at the P2 position from the three types of tripeptides (Gly-Pro-Y, X-Hyp-Gly, and Z-Pro-Gly) and 136 identified peptides (>4 amino acids). Interestingly, it suggested that ginger protease can also recognize Ala in the P2 position. (3) Conclusions: This study comprehensively evaluated the properties of GDCH by combining in vitro and in vivo strategies, and is the first to identify the cleavage site of ginger protease by LC-MS technique. It provides support for the follow-up study on the commercial applications of ginger protease and bioactivities of the hydrolysate produced by ginger protease.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenning Yang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyan Li
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dongying Qi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hongjiao Chen
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Huining Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shuang Yu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
| | - Yang Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
8
|
Takada H, Tsuchiya K, Demizu Y. Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity. Bioconjug Chem 2022; 33:1311-1318. [PMID: 35737901 DOI: 10.1021/acs.bioconjchem.2c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secondary structures of cell-penetrating peptides (CPPs) influence their properties including their cell-membrane permeability, tolerability to proteases, and intracellular distribution. Herein, we developed helix-stabilized arginine-rich peptides containing α,α-disubstituted α-amino acids and their conjugates with antisense phosphorodiamidate morpholino oligomers (PMOs), to investigate the relationships among the helicity of the peptides, cellular uptake, and antisense activity of the peptide-conjugated PMOs. We demonstrated that helical CPPs can efficiently deliver the conjugated PMO into cells compared with nonhelical CPPs and that their antisense activities are synergistically enhanced in the presence of an endosomolytic reagent or an endosomal escape domain peptide.
Collapse
Affiliation(s)
- Hiroyuki Takada
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan
| | - Keisuke Tsuchiya
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan.,Graduate School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. On-Resin Synthesis of Linear Aryl Thioether Containing Peptides and in-Solution Cyclization via Cysteine S NAr Reaction. Org Lett 2022; 24:1673-1677. [PMID: 35195423 DOI: 10.1021/acs.orglett.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic peptides represent one of the most promising therapeutic agents in drug discovery due to their good affinity and selectivity. Herein, an on-resin synthesis of aryl thioether containing peptides and a concise cyclization strategy via chemoselective cysteine SNAr reaction was developed. The arylation group could be incorporated into a series of amino acids and used for standard SPPS and peptides cyclization. Constructed cyclic peptides showed increased cellular uptakes compared to their linear peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ao Pang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
10
|
Pace JR, Lampkin BJ, Abakah C, Moyer A, Miao J, Deprey K, Cerulli RA, Lin YS, Baleja JD, Baker D, Kritzer JA. Stapled β-Hairpins Featuring 4-Mercaptoproline. J Am Chem Soc 2021; 143:15039-15044. [PMID: 34516087 DOI: 10.1021/jacs.1c04378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides constrained by intramolecular cross-links, especially stapled α-helices, have emerged as versatile scaffolds for drug development. However, there are fewer examples of similarly constrained scaffolds for other secondary structures. Here, we used a novel computational strategy to identify an optimal staple for antiparallel β-strands, and then we incorporated that staple within a β-hairpin peptide. The hairpin uses 4-mercaptoproline as a novel staple component, which contributes to a unique, kinked structure. The stapled hairpins show a high degree of structure in aqueous solution, excellent resistance to degradation in cell lysates, and cytosolic penetration at micromolar concentrations. They also overlay with a unique subset of kinked hairpin motifs at protein-protein interaction interfaces. Thus, these scaffolds represent promising starting points for developing inhibitors of cellular protein-protein interactions.
Collapse
Affiliation(s)
- Jennifer R Pace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Bryan J Lampkin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles Abakah
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Adam Moyer
- Molecular Engineering and Sciences Institute, University of Washington, Seattle Washington 98195, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Robert A Cerulli
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - James D Baleja
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - David Baker
- Molecular Engineering and Sciences Institute, University of Washington, Seattle Washington 98195, United States.,Department of Biochemistry, Institute for Protein Design, and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Herlan CN, Meschkov A, Schepers U, Bräse S. Cyclic Peptoid-Peptide Hybrids as Versatile Molecular Transporters. Front Chem 2021; 9:696957. [PMID: 34249865 PMCID: PMC8267177 DOI: 10.3389/fchem.2021.696957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Addressing intracellular targets is a challenging task that requires potent molecular transporters capable to deliver various cargos. Herein, we report the synthesis of hydrophobic macrocycles composed of both amino acids and peptoid monomers. The cyclic tetramers and hexamers were assembled in a modular approach using solid as well as solution phase techniques. To monitor their intracellular localization, the macrocycles were attached to the fluorophore Rhodamine B. Most molecular transporters were efficiently internalized by HeLa cells and revealed a specific accumulation in mitochondria without the need for cationic charges. The data will serve as a starting point for the design of further cyclic peptoid-peptide hybrids presenting a new class of highly efficient, versatile molecular transporters.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anna Meschkov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Karlsruhe Institute of Technology (KIT), EPICUR European University, Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems- Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
12
|
Illa O, Ospina J, Sánchez-Aparicio JE, Pulido X, Abengozar MÁ, Gaztelumendi N, Carbajo D, Nogués C, Rivas L, Maréchal JD, Royo M, Ortuño RM. Hybrid Cyclobutane/Proline-Containing Peptidomimetics: The Conformational Constraint Influences Their Cell-Penetration Ability. Int J Mol Sci 2021; 22:ijms22105092. [PMID: 34065025 PMCID: PMC8151717 DOI: 10.3390/ijms22105092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
A new family of hybrid β,γ-peptidomimetics consisting of a repetitive unit formed by a chiral cyclobutane-containing trans-β-amino acid plus a Nα-functionalized trans-γ-amino-l-proline joined in alternation were synthesized and evaluated as cell penetrating peptides (CPP). They lack toxicity on the human tumoral cell line HeLa, with an almost negligible cell uptake. The dodecapeptide showed a substantial microbicidal activity on Leishmania parasites at 50 µM but with a modest intracellular accumulation. Their previously published γ,γ-homologues, with a cyclobutane γ-amino acid, showed a well-defined secondary structure with an average inter-guanidinium distance of 8–10 Å, a higher leishmanicidal activity as well as a significant intracellular accumulation. The presence of a very rigid cyclobutane β-amino acid in the peptide backbone precludes the acquisition of a defined conformation suitable for their cell uptake ability. Our results unveiled the preorganized charge-display as a relevant parameter, additional to the separation among the charged groups as previously described. The data herein reinforce the relevance of these descriptors in the design of CPPs with improved properties.
Collapse
Affiliation(s)
- Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
- Correspondence: (O.I.); (M.R.); (R.M.O.)
| | - Jimena Ospina
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
| | - José-Emilio Sánchez-Aparicio
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
| | - Ximena Pulido
- Institut de Recerca Biomèdica, c/Baldiri Reixac 10, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/ Jordi Girona 18–26, 08034 Barcelona, Spain
- Departamento de Química, Universidad del Tolima, Santa Helena Parte Alta, Ibagué 730006299, Tolima, Colombia
| | - María Ángeles Abengozar
- Centro de Investigaciones Biológicas Margarita Salas, c/ Ramiro de Maeztu 9, CSIC, 28040 Madrid, Spain; (M.Á.A.); (L.R.)
| | - Nerea Gaztelumendi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.G.); (C.N.)
| | - Daniel Carbajo
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona, 18-26, 08034 Barcelona, Spain;
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.G.); (C.N.)
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, c/ Ramiro de Maeztu 9, CSIC, 28040 Madrid, Spain; (M.Á.A.); (L.R.)
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
| | - Miriam Royo
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/ Jordi Girona 18–26, 08034 Barcelona, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona, 18-26, 08034 Barcelona, Spain;
- Correspondence: (O.I.); (M.R.); (R.M.O.)
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
- Correspondence: (O.I.); (M.R.); (R.M.O.)
| |
Collapse
|
13
|
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021; 12:5977-5993. [PMID: 33995995 PMCID: PMC8098664 DOI: 10.1039/d1sc00165e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.
Collapse
Affiliation(s)
- Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Nanjing 210023 Jiangsu China
| | - Robert S Dawber
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Martin Walko
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
14
|
Li S, Zhang X, Guo C, Peng Y, Liu X, Wang B, Zhuang R, Chang M, Wang R. Hydrocarbon staple constructing highly efficient α-helix cell-penetrating peptides for intracellular cargo delivery. Chem Commun (Camb) 2020; 56:15655-15658. [PMID: 33355559 DOI: 10.1039/d0cc06312f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of all-hydrocarbon cross-linking on the cell-penetrating properties of Tat were systematically investigated. These stapled cell-penetrating peptides were designed to exhibit a cationic secondary amphipathic profile. We found that the hydrophobicity and helical conformation of these hydrocarbon staple peptides correlate well with their cellular uptake efficiency. Our results also revealed that higher affinity to heparan sulfate of the rigid stapled Tat peptides correlated well with the higher cellular uptake compared with non-stapled Tat peptides with flexible charge display. Notably, the stapled Tat peptides showed increased endosomal escape, high proteolytic stability, and low cytotoxicity. Therefore, they present a potent system for the intracellular transport of bioactive cargos.
Collapse
Affiliation(s)
- Shu Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Benhamou RI, Vezina-Dawod S, Choudhary S, Won Wang K, Meyer SM, Yildirim I, Disney MD. Macrocyclization of a Ligand Targeting a Toxic RNA Dramatically Improves Potency. Chembiochem 2020; 21:3229-3233. [PMID: 32649032 PMCID: PMC7674229 DOI: 10.1002/cbic.202000445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/21/2022]
Abstract
RNA molecules both contribute to and are causative of many human diseases. One method to perturb RNA function is to target its structure with small molecules. However, discovering bioactive ligands for RNA targets is challenging. Here, we show that the bioactivity of a linear dimeric ligand that inactivates the RNA trinucleotide repeat expansion that causes myotonic dystrophy type 1 [DM1; r(CUG)exp ] can be improved by macrocyclization. Indeed, the macrocyclic compound is ten times more potent than the linear compound for improving DM1-associated defects in cells, including in patient-derived myotubes (muscle cells). This enhancement in potency is due to the macrocycle's increased affinity and selectively for the target, which inhibit r(CUG)exp 's toxic interaction with muscleblind-like 1 (MBNL1), and its superior cell permeability. Macrocyclization could prove to be an effective way to enhance the bioactivity of modularly assembled ligands targeting RNA.
Collapse
Affiliation(s)
- Raphael I Benhamou
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Simon Vezina-Dawod
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Shruti Choudhary
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kye Won Wang
- Department of Chemistry, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA
| | - Samantha M Meyer
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
16
|
Illa O, Olivares JA, Gaztelumendi N, Martínez-Castro L, Ospina J, Abengozar MÁ, Sciortino G, Maréchal JD, Nogués C, Royo M, Rivas L, Ortuño RM. Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti- Leishmania Drug Delivery Systems. Int J Mol Sci 2020; 21:E7502. [PMID: 33053805 PMCID: PMC7590151 DOI: 10.3390/ijms21207502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Two series of new hybrid γ/γ-peptides, γ-CC and γ-CT, formed by (1S,2R)-3-amino-2,2,dimethylcyclobutane-1-carboxylic acid joined in alternation to a Nα-functionalized cis- or trans-γ-amino-l-proline derivative, respectively, have been synthesized and evaluated as cell penetrating peptides (CPP) and as selective vectors for anti-Leishmania drug delivery systems (DDS). They lacked cytotoxicity on the tumoral human cell line HeLa with a moderate cell-uptake on these cells. In contrast, both γ-CC and γ-CT tetradecamers were microbicidal on the protozoan parasite Leishmania beyond 25 μM, with significant intracellular accumulation. They were conjugated to fluorescent doxorubicin (Dox) as a standard drug showing toxicity beyond 1 μM, while free Dox was not toxic. Intracellular accumulation was 2.5 higher than with Dox-TAT conjugate (TAT = transactivator of transcription, taken as a standard CPP). The conformational structure of the conjugates was approached both by circular dichroism spectroscopy and molecular dynamics simulations. Altogether, computational calculations predict that the drug-γ-peptide conjugates adopt conformations that bury the Dox moiety into a cavity of the folded peptide, while the positively charged guanidinium groups face the solvent. The favorable charge/hydrophobicity balance in these CPP improves the solubility of Dox in aqueous media, as well as translocation across cell membranes, making them promising candidates for DDS.
Collapse
Affiliation(s)
- Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - José-Antonio Olivares
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Nerea Gaztelumendi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Laura Martínez-Castro
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Jimena Ospina
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - María-Ángeles Abengozar
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, c/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| | - Carme Nogués
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Míriam Royo
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/Jordi Girona, 18–26, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/Jordi Girona, 18–26, 08034 Barcelona, Spain
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, c/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.I.); (J.-A.O.); (L.M.-C.); (J.O.); (G.S.); (J.-D.M.)
| |
Collapse
|
17
|
Tian Y, Zhou S. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1668. [PMID: 32929866 DOI: 10.1002/wnan.1668] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Cell penetrating peptides (CPPs), known as protein translocation domains, have emerged as efficient molecular transporters to overcome biological barriers and deliver cell-impermeable cargoes into cells. The conjugation of CPPs to polymeric nanoplatforms enhances the drug delivery efficiency thus increasing their therapeutic efficacy. However, conventional CPPs are generally lack of cell specificity and could be easily degraded in vivo. These limitations lead to the development of new CPPs with superior properties. To address the issue of cell specificity, activatable CPPs have been designed to be activated at desired site through different stimuli. On the other hand, macrocyclization has been used to constrain linear CPPs into their cyclic forms. This chemical optimization of peptides endows CPPs with enhanced stability and cell permeability. This brief review will cover recent advances in terms of different types of CPPs for enhanced cell penetration. In addition, the modification chemistry used to functionalize polymeric nanoplatforms with CPPs and their recent applications for drug delivery will also be discussed. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yuan Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Yoo DY, Barros SA, Brown GC, Rabot C, Bar-Sagi D, Arora PS. Macropinocytosis as a Key Determinant of Peptidomimetic Uptake in Cancer Cells. J Am Chem Soc 2020; 142:14461-14471. [PMID: 32786217 DOI: 10.1021/jacs.0c02109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptides and peptidomimetics represent the middle space between small molecules and large proteins-they retain the relatively small size and synthetic accessibility of small molecules while providing high binding specificity for biomolecular partners typically observed with proteins. During the course of our efforts to target intracellular protein-protein interactions in cancer, we observed that the cellular uptake of peptides is critically determined by the cell line-specifically, we noted that peptides show better uptake in cancer cells with enhanced macropinocytic indices. Here, we describe the results of our analysis of cellular penetration by different classes of conformationally stabilized peptides. We tested the uptake of linear peptides, peptide macrocycles, stabilized helices, β-hairpin peptides, and cross-linked helix dimers in 11 different cell lines. Efficient uptake of these conformationally defined constructs directly correlated with the macropinocytic activity of each cell line: high uptake of compounds was observed in cells with mutations in certain signaling pathways. Significantly, the study shows that constrained peptides follow the same uptake mechanism as proteins in macropinocytic cells, but unlike proteins, peptide mimics can be readily designed to resist denaturation and proteolytic degradation. Our findings expand the current understanding of cellular uptake in cancer cells by designed peptidomimetics and suggest that cancer cells with certain mutations are suitable mediums for the study of biological pathways with peptide leads.
Collapse
Affiliation(s)
- Daniel Y Yoo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stephanie A Barros
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Gordon C Brown
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Christian Rabot
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
20
|
Yokoo H, Misawa T, Demizu Y. De Novo Design of Cell-Penetrating Foldamers. CHEM REC 2020; 20:912-921. [PMID: 32463155 DOI: 10.1002/tcr.202000047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Cell-penetrating peptides (CPPs) have gained much attention as carriers of hydrophilic molecules, such as drugs, peptides, and nucleic acids, into cells. CPPs are mainly composed of cationic amino acid residues, which play an important role in their intracellular uptake via interactions with acidic groups on cell surfaces. In addition, the secondary structures of CPPs also affect their cell-membrane permeability. Based on this knowledge, a variety of cell-penetrating foldamers (oligomers that form organized secondary structures) have been developed to date. In this account, we describe recent attempts to develop cell-penetrating foldamers containing various building blocks, and their application as DDS carriers.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
21
|
Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183098. [DOI: 10.1016/j.bbamem.2019.183098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
|
22
|
Yang QQ, Zhu LJ, Xi TK, Zhu HY, Chen XX, Wu M, Sun C, Xu C, Fang GM, Meng X. Delivery of cell membrane impermeable peptides into living cells by using head-to-tail cyclized mitochondria-penetrating peptides. Org Biomol Chem 2019; 17:9693-9697. [PMID: 31691700 DOI: 10.1039/c9ob02075f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of cyclic Arg-rich mitochondria-penetrating peptides were prepared with variation in the macrocycle size and the chirality of Arg residues. A cyclic heptapeptide was demonstrated to be an efficient mitochondria-specific delivery vector for delivering membrane impermeable peptides.
Collapse
Affiliation(s)
- Qian-Qian Yang
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Liang-Jing Zhu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Tong-Kuai Xi
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Han-Ying Zhu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Xiao-Xu Chen
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Meng Wu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Chuan Sun
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Changzhi Xu
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Ge-Min Fang
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Xiangming Meng
- Department of Chemistry, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
23
|
Safa N, Anderson JC, Vaithiyanathan M, Pettigrew JH, Pappas GA, Liu D, Gauthier TJ, Melvin AT. CPProtectides: Rapid uptake of well-folded β-hairpin peptides with enhanced resistance to intracellular degradation. Pept Sci (Hoboken) 2019; 111. [PMID: 31276085 DOI: 10.1002/pep2.24092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell penetrating peptides (CPPs) have emerged as powerful tools for delivering bioactive cargoes, such as biosensors or drugs to intact cells. One limitation of CPPs is their rapid degradation by intracellular proteases. β-hairpin "protectides" have previously been demonstrated to be long-lived under cytosolic conditions due to their secondary structure. The goal of this work was to demonstrate that arginine-rich β-hairpin peptides function as both protectides and as CPPs. Peptides exhibiting a β-hairpin motif were found to be rapidly internalized into cells with their uptake efficiency dependent on the number of arginine residues in the sequence. Cellular internalization of the β-hairpin peptides was compared to unstructured, scrambled sequences and to commercially available, arginine-rich CPPs. The unstructured peptides displayed greater uptake kinetics compared to the structured β-hairpin sequences; however, intracellular stability studies revealed that the β-hairpin peptides exhibited superior stability under cytosolic conditions with a 16-fold increase in peptide half-life. This study identifies a new class of long-lived CPPs that can overcome the stability limitations of peptide-based reporters or bioactive delivery mechanisms in intact cells.
Collapse
Affiliation(s)
- Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Jeffery C Anderson
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | | | - Jacob H Pettigrew
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Gavin A Pappas
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Dong Liu
- LSU AgCenter Biotechnology Lab, Louisiana State University, Baton Rouge, Louisiana
| | - Ted J Gauthier
- LSU AgCenter Biotechnology Lab, Louisiana State University, Baton Rouge, Louisiana
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
24
|
Douat C, Bornerie M, Antunes S, Guichard G, Kichler A. Hybrid Cell-Penetrating Foldamer with Superior Intracellular Delivery Properties and Serum Stability. Bioconjug Chem 2019; 30:1133-1139. [PMID: 30860823 DOI: 10.1021/acs.bioconjchem.9b00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequence specific molecules with high folding ability (i.e., foldamers) can be used to precisely control the distribution and projection of side chains in space and have recently been introduced as tailored systems for delivering nucleic acids into cells. Designed oligourea sequences with an amphipathic distribution of Arg- and His-type residues were shown to form tight complexes with plasmid DNA, and to effectively promote the release of DNA from the endosomes. Herein, we report the synthesis of new cell-penetrating foldamer sequences in which the foldamer segment is conjugated via a reducible disulfide bond to a ligand that binds cell-surface expressed nucleoproteins with the idea that this system could facilitate both assemblies with nucleic acids and cell entry. This new system was evaluated for delivery of DNA in several cell lines and was found to compare favorably with all comparators tested (DOTAP and b-PEI as well as a number of known cell penetrating peptides) in various cell lines and particularly in culture medium containing up to 50% of serum. These results suggest that this dual molecular platform which is long lasting and noncytotoxic could be of practical use for in vivo applications.
Collapse
Affiliation(s)
- Céline Douat
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| | - Mégane Bornerie
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Stéphanie Antunes
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Antoine Kichler
- Equipe 3Bio , CAMB 7199 CNRS-Univ. Strasbourg, Faculté de Pharmacie , 74 route du Rhin , F-67401 Illkirch cedex, France
| |
Collapse
|
25
|
Yuan F, Tian Y, Qin W, Li J, Yang D, Zhao B, Yin F, Li Z. Evaluation of topologically distinct constrained antimicrobial peptides with broad-spectrum antimicrobial activity. Org Biomol Chem 2019; 16:5764-5770. [PMID: 30004546 DOI: 10.1039/c8ob00483h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic peptides with a high affinity for membranes and emerged as a promising therapeutic approach with potential for treating infectious diseases. Chemical stabilization of short peptides proved to be a successful approach for enhancing their bio-physical properties. Herein, we designed and synthesized a panel of conformationally constrained antimicrobial peptides with either α-helical or β-hairpin conformation using templating strategies. These synthetic short constrained peptides possess different topological distributions of hydrophobic and hydrophilic residues and displayed distinct antimicrobial activity. Notably, the conformationally constrained α-helical peptides displayed a faster internalization into the bacteria cells compared to their β-hairpin analogues. These synthetic short constrained peptides showed killing effects on a broad spectrum of microorganisms mainly through pore formation and membrane damage which provided a potentially promising skeleton for the next generation of stabilized antimicrobial peptides.
Collapse
Affiliation(s)
- Fang Yuan
- Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin Y, Mazo MM, Skaalure SC, Thomas MR, Schultz SR, Stevens MM. Activatable cell-biomaterial interfacing with photo-caged peptides. Chem Sci 2018; 10:1158-1167. [PMID: 30774914 PMCID: PMC6349021 DOI: 10.1039/c8sc04725a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
We report an effective strategy to design activatable cell–material interfacing systems enabling photo-modulated cellular entry of cargoes and cell adhesion towards surfaces.
Spatio-temporally tailoring cell–material interactions is essential for developing smart delivery systems and intelligent biointerfaces. Here we report new photo-activatable cell–material interfacing systems that trigger cellular uptake of various cargoes and cell adhesion towards surfaces. To achieve this, we designed a novel photo-caged peptide which undergoes a structural transition from an antifouling ligand to a cell-penetrating peptide upon photo-irradiation. When the peptide is conjugated to ligands of interest, we demonstrate the photo-activated cellular uptake of a wide range of cargoes, including small fluorophores, proteins, inorganic (e.g., quantum dots and gold nanostars) and organic nanomaterials (e.g., polymeric particles), and liposomes. Using this system, we can remotely regulate drug administration into cancer cells by functionalizing camptothecin-loaded polymeric nanoparticles with our synthetic peptide ligands. Furthermore, we show light-controlled cell adhesion on a peptide-modified surface and 3D spatiotemporal control over cellular uptake of nanoparticles using two-photon excitation. We anticipate that the innovative approach proposed in this work will help to establish new stimuli-responsive delivery systems and biomaterials.
Collapse
Affiliation(s)
- Yiyang Lin
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Manuel M Mazo
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Stacey C Skaalure
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Michael R Thomas
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Simon R Schultz
- Department of Bioengineering and Centre for Neurotechnology , Imperial College London , London SW7 2AZ , UK
| | - Molly M Stevens
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| |
Collapse
|
27
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
28
|
Yang D, Qin W, Shi X, Zhu B, Xie M, Zhao H, Teng B, Wu Y, Zhao R, Yin F, Ren P, Liu L, Li Z. Stabilized β-Hairpin Peptide Inhibits Insulin Degrading Enzyme. J Med Chem 2018; 61:8174-8185. [DOI: 10.1021/acs.jmedchem.8b00418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
- Department of Science & Technology of Shandong Province, Jinan 250101, Shandong, China
| | - Weirong Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Bili Zhu
- School of Medicine, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Mingsheng Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Hui Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yujie Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Peigen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Lizhong Liu
- School of Medicine, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| |
Collapse
|
29
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
30
|
Hyun S, Lee Y, Jin SM, Cho J, Park J, Hyeon C, Kim KS, Lee Y, Yu J. Oligomer Formation Propensities of Dimeric Bundle Peptides Correlate with Cell Penetration Abilities. ACS CENTRAL SCIENCE 2018; 4:885-893. [PMID: 30062117 PMCID: PMC6062827 DOI: 10.1021/acscentsci.8b00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 05/29/2023]
Abstract
LK-3, an amphipathic dimeric peptide linked by two disulfide bonds, and related isomeric bundles were synthesized, and their cell penetrating abilities were investigated. The measurements using size exclusion chromatography and dynamic light scattering show that LK-3 and its isomers form cell penetrating oligomers. Calculations, performed for various types of peptide isomers, elucidate a strong correlation between the amphipathic character of dimers and cell penetration ability. The results suggest that the amphipathicities of LK-3 and related bundle dimers are responsible for their oligomerization propensities which in turn determine their cell penetrating abilities. The observations made in this study provide detailed information about the mechanism of cell uptake of LK-3 and suggest a plausible insight of the early stage of nanoparticle formation of the cell penetrating amphipathic peptides.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute
of Molecular Biology and Genetics, Seoul
National University, Seoul 08826, Korea
| | - Yuno Lee
- Korea
Institute for Advanced Study, Seoul 02455, Korea
| | - Sun Mi Jin
- Department
of Chemistry and Education, Seoul National
University, Seoul 08826, Korea
| | - Jane Cho
- Department
of Chemistry and Education, Seoul National
University, Seoul 08826, Korea
| | - Jeemin Park
- Neuroscience,
Research Animal Resource Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | | | - Key-Sun Kim
- Neuroscience,
Research Animal Resource Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | - Yan Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehoon Yu
- Department
of Chemistry and Education, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
31
|
Ma W, Jin GW, Gehret PM, Chada NC, Suh WH. A Novel Cell Penetrating Peptide for the Differentiation of Human Neural Stem Cells. Biomolecules 2018; 8:biom8030048. [PMID: 29987263 PMCID: PMC6163344 DOI: 10.3390/biom8030048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
Retinoic acid (RA) is a bioactive lipid that has been shown to promote neural stem cell differentiation. However, the highly hydrophobic molecule needs to first solubilize and translocate across the cell membrane in order to exert a biological response. The cell entry of RA can be aided by cell penetrating peptides (CPPs), which are short amino acid sequences that are able to carry bioactive cargo past the cell membrane. In this work, a novel cell penetrating peptide was developed to deliver RA to human neural stem cells and, subsequently, promote neuronal differentiation. The novel CPP consists of a repeating sequence, whose number of repeats is proportional to the efficiency of cell penetration. Using fluorescence microscopy, the mode of translocation was determined to be related to an endocytic pathway. The levels of β-III tubulin (Tubb3) and microtubule associated protein 2 (MAP2) expression in neural stem cells treated with RA conjugated to the CPP were assessed by quantitative immunocytochemistry.
Collapse
Affiliation(s)
- Weili Ma
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Geun-Woo Jin
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Paul M Gehret
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Neil C Chada
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
32
|
Fang GM, Chen XX, Yang QQ, Zhu LJ, Li NN, Yu HZ, Meng XM. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Shi X, Zhao R, Jiang Y, Zhao H, Tian Y, Jiang Y, Li J, Qin W, Yin F, Li Z. Reversible stapling of unprotected peptides via chemoselective methionine bis-alkylation/dealkylation. Chem Sci 2018; 9:3227-3232. [PMID: 29844896 PMCID: PMC5931191 DOI: 10.1039/c7sc05109c] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/27/2022] Open
Abstract
We have developed a general peptide macrocyclization strategy that involves a facile and chemoselective methionine bis-alkylation/dealkylation process. This method provides a straightforward and easy approach to generate cyclic peptides with tolerances of all amino acids (including Cys), variable loop sizes, and different linkers. The Met bis-alkylation we apply in this strategy yields two additional on-tether positive charges that could assist in the cellular uptake of the peptides. Notably, the bis-alkylated peptide could be reduced to release the original peptide both in vitro and within cellular environments. This strategy provides an intriguing and facile traceless post-peptide-synthesis modification with enhanced cellular uptakes. Peptides constructed with this method could be utilized to zero in on various protein targets or to achieve other goals, such as drug delivery.
Collapse
Affiliation(s)
- Xiaodong Shi
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Rongtong Zhao
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Yixiang Jiang
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Hui Zhao
- Division of Life Sciences , Clarivate Analytics , Beijing , 100190 , China
| | - Yuan Tian
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , 611756 , China
| | - Yanhong Jiang
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Jingxu Li
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Weirong Qin
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Feng Yin
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zigang Li
- Key Laboratory of Chemical Genomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| |
Collapse
|