1
|
Subramani T, Saravanan H, David H, Solanke J, Rajaramon S, Dandela R, Solomon AP. Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects. Bioorg Chem 2025; 156:108192. [PMID: 39874908 DOI: 10.1016/j.bioorg.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections. Quorum quenching has emerged as a promising approach, utilizing quorum quenching enzymes and quorum sensing inhibitors to disrupt quorum sensing signalling pathways, thus reducing virulence and biofilm formation. This review focuses on natural and synthetic bioorganic compounds that act as quorum-sensing inhibitors, providing insights into their mechanisms, structure-activity relationships, and potential as anti-virulence agents. The review also explores the communication languages of bacteria, including AHLs in gram-negative bacteria, oligopeptides in gram-positive bacteria, and LuxS, a universal microbial language. By highlighting recent advancements and prospects in bioorganic QSIs, this article underscores their crucial role in developing effective anti-virulence therapies and combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Tarunkarthick Subramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Harish Saravanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Jayshree Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
2
|
Ma X, Zeng J, Xiao W, Li W, Cheng J, Lin J. Relationship between Pyochelin and Pseudomonas Quinolone Signal in Pseudomonas aeruginosa: A Direction for Future Research. Int J Mol Sci 2024; 25:8611. [PMID: 39201297 PMCID: PMC11354437 DOI: 10.3390/ijms25168611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to survive in the host; however, the host immune system limits the availability of iron. Pyochelin (PCH) is a major siderophore produced by P. aeruginosa during infection, which can help P. aeruginosa survive in an iron-restricted environment and cause infection. The infection activity of P. aeruginosa is regulated by the Pseudomonas quinolone signal (PQS) quorum-sensing system. The system uses 2-heptyl-3-hydroxy-4-quinolone (PQS) or its precursor, 2-heptyl-4-quinolone (HHQ), as the signal molecule. PQS can control specific life processes such as mediating quorum sensing, cytotoxicity, and iron acquisition. This review summarizes the biosynthesis of PCH and PQS, the shared transport system of PCH and PQS, and the regulatory relationship between PCH and PQS. The correlation between the PQS and PCH is emphasized to provide a new direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (X.M.); (J.Z.); (W.X.); (W.L.)
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (X.M.); (J.Z.); (W.X.); (W.L.)
| |
Collapse
|
3
|
Nakashima T, Iwanabe T, Tanimoto H, Tomohiro T. Fluorescent Labeling of a Target Protein with an Alkyl Diazirine Photocrosslinker Bearing a Cinnamate Moiety. Chem Asian J 2024:e202400288. [PMID: 38641560 DOI: 10.1002/asia.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
A novel fluorogenic alkyl diazirine photocrosslinker bearing an o-hydroxycinnamate moiety has been developed for identification of the targets of bioactive molecules. The o-hydroxycinnamate moiety can be converted to the corresponding 7-hydroxycoumarin derivative, which should be created on the interacting site within the photocaptured target protein. The label yield and fluorescence intensity have been immensely improved in comparison with our previous aromatic crosslinkers to facilitate target identification in small quantities.
Collapse
Affiliation(s)
- Taikai Nakashima
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takumi Iwanabe
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroki Tanimoto
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takenori Tomohiro
- Laboratory of Biorecognition Chemistry, Faculty of Pharmaceutical Sciences, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
4
|
Nazeer RR, Wang M, Welch M. More than just a gel: the extracellular matrixome of Pseudomonas aeruginosa. Front Mol Biosci 2023; 10:1307857. [PMID: 38028553 PMCID: PMC10679415 DOI: 10.3389/fmolb.2023.1307857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Armed with an arsenal of protein secretion systems, antibiotic efflux pumps, and the occasional proclivity for explosive self-destruction, Pseudomonas aeruginosa has become a model for the study of bacterial pathogenesis and biofilm formation. There is accruing evidence to suggest that the biofilm matrix-the bioglue that holds the structure together-acts not only in a structural capacity, but is also a molecular "net" whose function is to capture and retain certain secreted products (including proteins and small molecules). In this perspective, we argue that the biofilm matrixome is a distinct extracellular compartment, and one that is differentiated from the bulk secretome. Some of the points we raise are deliberately speculative, but are becoming increasingly accessible to experimental investigation.
Collapse
Affiliation(s)
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Wright MH. Chemical biology tools for protein labelling: insights into cell-cell communication. Biochem J 2023; 480:1445-1457. [PMID: 37732646 PMCID: PMC10586760 DOI: 10.1042/bcj20220309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Multicellular organisms require carefully orchestrated communication between and within cell types and tissues, and many unicellular organisms also sense their context and environment, sometimes coordinating their responses. This review highlights contributions from chemical biology in discovering and probing mechanisms of cell-cell communication. We focus on chemical tools for labelling proteins in a cellular context and how these can be applied to decipher the target receptor of a signalling molecule, label a receptor of interest in situ to understand its biology, provide a read-out of protein activity or interactions in downstream signalling pathways, or discover protein-protein interactions across cell-cell interfaces.
Collapse
Affiliation(s)
- Megan H. Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
6
|
Juříková T, Mácha H, Lupjanová V, Pluháček T, Marešová H, Papoušková B, Luptáková D, Patil RH, Benada O, Grulich M, Palyzová A. The Deciphering of Growth-Dependent Strategies for Quorum-Sensing Networks in Pseudomonas aeruginosa. Microorganisms 2023; 11:2329. [PMID: 37764173 PMCID: PMC10534576 DOI: 10.3390/microorganisms11092329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudomonas aeruginosa is recognized as a significant cause of morbidity and mortality among nosocomial pathogens. In respiratory infections, P. aeruginosa acts not only as a single player but also collaborates with the opportunistic fungal pathogen Aspergillus fumigatus. This study introduced a QS molecule portfolio as a potential new biomarker that affects the secretion of virulence factors and biofilm formation. The quantitative levels of QS molecules, including 3-o-C12-HSL, 3-o-C8-HSL, C4-HSL, C6-HSL, HHQ, PQS, and PYO, measured using mass spectrometry in a monoculture, indicated metabolic changes during the transition from planktonic to sessile cells. In the co-cultures with A. fumigatus, the profile of abundant QS molecules was reduced to 3-o-C12-HSL, C4-HSL, PQS, and PYO. A decrease in C4-HSL by 50% to 170.6 ± 11.8 ng/mL and an increase 3-o-C12-HSL by 30% up to 784.4 ± 0.6 ng/mL were detected at the stage of the coverage of the hyphae with bacteria. Using scanning electron microscopy, we showed the morphological stages of the P. aeruginosa biofilm, such as cell aggregates, maturated biofilm, and cell dispersion. qPCR quantification of the genome equivalents of both microorganisms suggested that they exhibited an interplay strategy rather than antagonism. This is the first study demonstrating the quantitative growth-dependent appearance of QS molecule secretion in a monoculture of P. aeruginosa and a co-culture with A. fumigatus.
Collapse
Affiliation(s)
- Tereza Juříková
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Hynek Mácha
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Vanda Lupjanová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Helena Marešová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Barbora Papoušková
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Rutuja H. Patil
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic; (T.P.); (B.P.)
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.J.); (H.M.); (V.L.); (H.M.); (D.L.); (R.H.P.); (O.B.); (M.G.)
| |
Collapse
|
7
|
Shi Q, Wen H, Xu Y, Zhao X, Zhang J, Li Y, Meng Q, Yu F, Xiao J, Li X. Virtual screening-based discovery of AI-2 quorum sensing inhibitors that interact with an allosteric hydrophobic site of LsrK and their functional evaluation. Front Chem 2023; 11:1185224. [PMID: 37292175 PMCID: PMC10244669 DOI: 10.3389/fchem.2023.1185224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction: Quorum sensing (QS) is a bacterial intracellular and intercellular communication system that regulates virulence factor production, biofilm formation, and antibiotic sensitivity. Quorum-sensing inhibitors (QSIs) are a novel class of antibiotics that can effectively combat antibiotic resistance. Autoinducer-2 (AI-2) is a universal signaling molecule that mediates inter- and intraspecies QS systems among different bacteria. Furthermore, LsrK plays an important role in regulating the activity and stability of the intracellular AI-2 signaling pathway. Thus, LsrK is considered an important target for the development of QSIs. Methods: We designed a workflow integrating molecular dynamic (MD) simulations, virtual screening, LsrK inhibition assays, cell-based AI-2-mediated QS interference assays, and surface plasmon resonance (SPR)-based protein affinity assays to screen for potential LsrK kinase inhibitors. Results: MD simulation results of the LsrK/ATP complex revealed hydrogen bonds and salt bridge formation among four key residues, namely, Lys 431, Tyr 341, Arg 319, and Arg 322, which are critical for the binding of ATP to LsrK. Furthermore, MD simulation results indicated that the ATP-binding site has an allosteric pocket that can become larger and be occupied by small molecule compounds. Based on these MD simulation results, a constraint of forming at least one hydrogen bond with Arg 319, Arg 322, Lys 431, or Tyr 341 residues was introduced when performing virtual screening using Glide's virtual screening workflow (VSW). In the meantime, compounds with hydrophobic group likely to interact with the allosteric hydrophobic pocket are preferred when performing visual inspection. Seventy-four compounds were selected for the wet laboratory assays based on virtual screening and the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds. LsrK inhibition assays revealed 12 compounds inhibiting LsrK by more than 60% at a 200 μM concentration; four of these (Y205-6768, D135-0149, 3284-1358, and N025-0038) had IC50 values below 50 μM and were confirmed as ATP-competitive inhibitors. Six of these 12 LsrK inhibitors exhibited high AI-2 QS inhibition, of which, Y205-6768 had the highest activity with IC50 = 11.28 ± 0.70 μM. The SPR assay verified that compounds Y205-6768 and N025-0038 specifically bound to LsrK. MD simulation analysis of the docking complexes of the four active compounds with LsrK further confirmed the importance of forming hydrogen bonds and salt bridges with key basic amino acid residues including Lys 431, Tyr 341, Arg 319, and Arg 322 and filling the allosteric hydrophobic pocket next to the purine-binding site of LsrK. Discussion: Our study clarified for the first time that there is an allosteric site near the ATP-binding site of Lsrk and that it enriches the structure-activity relationship information of Lsrk inhibitors. The four identified compounds showed novel structures, low molecular weights, high activities, and novel LsrK binding modes, rendering them suitable for further optimization for effective AI-2 QSIs. Our work provides a valuable reference for the discovery of QSIs that do not inhibit bacterial growth, thereby avoiding the emergence of drug resistance.
Collapse
Affiliation(s)
- Qianqian Shi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Qionglai Medical Center Hospital, Chengdu, China
| | - Ye Li
- The No 968 Hospital of PLA, Jinzhou, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fang Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xingzhou Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
9
|
Hendrix H, Zimmermann-Kogadeeva M, Zimmermann M, Sauer U, De Smet J, Muchez L, Lissens M, Staes I, Voet M, Wagemans J, Ceyssens PJ, Noben JP, Aertsen A, Lavigne R. Metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. Cell Rep 2022; 38:110372. [PMID: 35172131 DOI: 10.1016/j.celrep.2022.110372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to P. aeruginosa. Here, we report that the lytic Pseudomonas bacterial virus LUZ19 targets this population density-dependent signaling system by expressing quorum sensing targeting protein (Qst) early during infection. We demonstrate that Qst interacts with PqsD, a key host quinolone signal biosynthesis pathway enzyme, resulting in decreased levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, suggesting that LUZ19 exploits the PQS system for successful infection. We establish a broad functional interaction network of Qst, which includes enzymes of cofactor biosynthesis pathways (CoaC/ThiD) and a non-ribosomal peptide synthetase pathway (PA1217). Qst therefore represents an exquisite example of intricate reprogramming of the bacterium by a phage, which may be further exploited as tool to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | | | - Michael Zimmermann
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Laurens Muchez
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Maries Lissens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Ines Staes
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium.
| |
Collapse
|
10
|
Vivero-Gomez RJ, Mesa GB, Higuita-Castro J, Robledo SM, Moreno-Herrera CX, Cadavid-Restrepo G. Detection of Quorum Sensing Signal Molecules, Particularly N-Acyl Homoserine Lactones, 2-Alky-4-Quinolones, and Diketopiperazines, in Gram-Negative Bacteria Isolated From Insect Vector of Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.760228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gram-negative bacteria are known to use a quorum sensing system to facilitate and stimulate cell to cell communication, mediated via regulation of specific genes. This system is further involved in the modulation of cell density and metabolic and physiological processes that putatively either affect the survival of insect vectors or the establishment of pathogens transmitted by them. The process of quorum sensing generally involves N-acyl homoserine lactones and 2-alkyl-4-quinolones signaling molecules. The present study aimed to detect and identify quorum sensing signaling molecules of AHLs and AHQs type that are secreted by intestinal bacteria, and link their production to their extracellular milieu and intracellular content. Isolates for assessment were obtained from the intestinal tract of Pintomyia evansi (Leishmania insect vector). AHLs and AHQs molecules were detected using chromatography (TLC) assays, with the aid of specific and sensitive biosensors. For identity confirmation, ultra-high-performance liquid chromatography coupled with mass spectrometry was used. TLC assays detected quorum sensing molecules (QSM) in the supernatant of the bacterial isolates and intracellular content. Interestingly, Pseudomonas otitidis, Enterobacter aerogenes, Enterobacter cloacae, and Pantoea ananatis isolates showed a migration pattern similar to the synthetic molecule 3-oxo-C6-HSL (OHHL), which was used as a control. Enterobacter cancerogenus secreted C6-HSL, a related molecules to N-hexanoyl homoserine lactone (HHL), while Acinetobacter gyllenbergii exhibited a migration pattern similar to 2-heptyl-4-quinolone (HHQ) molecules. In comparison to this, 3-oxo-C12-HSL (OdDHL) type molecules were produced by Lysobacter soli, Pseudomonas putida, A. gyllenbergii, Acinetobacter calcoaceticus, and Pseudomonas aeruginosa, while Enterobacter cloacae produced molecules similar to 2-heptyl-3-hydroxy-4-quinolone (PQS). For Pseudomonas putida, Enterobacter aerogenes, P. ananatis, and Pseudomonas otitidis extracts, peak chromatograms with distinct retention times and areas, consistent with the molecules described in case of TLC, were obtained using HPLC. Importantly, P. ananatis produced a greater variety of high QSM concentration, and thus served as a reference for confirmation and identification by UHPLC-MRM-MS/MS. The molecules that were identified included N-hexanoyl-L-homoserine lactone [HHL, C10H18NO3, (M + H)], N-(3-oxohexanoyl)-L-homoserine lactone [OHHL, C10H16NO4, (M + H)], N-(3-oxododecanoyl)-L-homoserine lactone [OdDHL, C16H28NO4, (M + H)], and 2-heptyl-3-hydroxy-4(1H)-quinolone [PQS, C16H22NO2, (M + H)]. Besides this, the detection of diketopiperazines, namely L-Pro-L-Tyr and ΔAla-L-Val cyclopeptides was reported for P. ananatis. These molecules might be potentially associated with the regulation of QSM system, and might represent another small molecule-mediated bacterial sensing system. This study presents the first report regarding the detection and identification of QSM and diketopiperazines in the gut sand fly bacteria. The possible effect of QSM on the establishment of Leishmania must be explored to determine its role in the modulation of intestinal microbiome and the life cycle of Pi. evansi.
Collapse
|
11
|
Loss of RND-type multidrug efflux pumps triggers iron starvation and lipid A modifications in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:e0059221. [PMID: 34252310 DOI: 10.1128/aac.00592-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-Division (RND) superfamily of proteins are invariably present in the genomes of Gram-negative bacteria and are largely responsible for the intrinsic antibiotic resistance of these organisms. The number of genes encoding RND transporters per genome vary from one to sixteen and correlates with environmental versatilities of bacterial species. Pseudomonas aeruginosa PAO1 strain, a ubiquitous nosocomial pathogen, possesses twelve RND pumps, which are implicated in development of clinical multidrug resistance and known to contribute to virulence, quorum sensing and many other physiological functions. In this study, we analyzed how P. aeruginosa physiology adapts to the lack of RND-mediated efflux activities. A combination of transcriptomics, metabolomics, genetic and analytical approaches showed that the P. aeruginosa PΔ6 strain lacking six best characterized RND pumps activates a specific adaptation response that involves significant changes in abundance and activities of several transport systems, quorum sensing, iron acquisition and lipid A modifications. Our results demonstrate that these cells accumulate large quantities of pseudomonas quorum signal (PQS), which triggers iron starvation and activation of siderophore biosynthesis and acquisition pathways. The accumulation of iron in turn activates lipid A modification and membrane protection pathways. A transcriptionally regulated RND pump MuxABC-OpmB contributes to these transformations by controlling concentrations of coumarins. Our results suggest that these changes reduce the permeability barrier of the outer membrane and are needed to protect the cell envelope of efflux-deficient P. aeruginosa.
Collapse
|
12
|
Di Menna L, Busceti CL, Ginerete RP, D'Errico G, Orlando R, Alborghetti M, Bruno V, Battaglia G, Fornai F, Leoni L, Rampioni G, Visca P, Monn JA, Nicoletti F. The bacterial quorum sensing molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibits signal transduction mechanisms in brain tissue and is behaviorally active in mice. Pharmacol Res 2021; 170:105691. [PMID: 34044128 DOI: 10.1016/j.phrs.2021.105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.
Collapse
Affiliation(s)
| | | | | | | | - R Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - M Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - V Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - G Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - F Fornai
- IRCCS Neuromed, Pozzilli, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - L Leoni
- Department of Science, Roma Tre University, Roma, Italy
| | - G Rampioni
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - P Visca
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | | | - F Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy.
| |
Collapse
|
13
|
Metier C, Dow J, Wootton H, Lynham S, Wren B, Wagner GK. Profiling of Haemophilus influenzae strain R2866 with carbohydrate-based covalent probes. Org Biomol Chem 2021; 19:476-485. [PMID: 33355321 DOI: 10.1039/d0ob01971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the application of four covalent probes based on anomerically pure d-galactosamine and d-glucosamine scaffolds for the profiling of Haemophilus influenzae strain R2866. The probes have been used successfully for the labelling of target proteins not only in cell lysates, but also in intact cells. Differences in the labelling patterns between lysates and intact cells indicate that the probes can penetrate into the periplasm, but not the cytoplasm of H. influenzae. Analysis of selected target proteins by LC-MS/MS suggests predominant labelling of nucleotide-binding proteins, including several known antibacterial drug targets. Our protocols will aid the identification of molecular determinants of bacterial pathogenicity in Haemophilus influenzae and other bacterial pathogens.
Collapse
Affiliation(s)
- Camille Metier
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Jennifer Dow
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Keppel Street, London, WC1E, 7HT, UK
| | - Hayley Wootton
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Keppel Street, London, WC1E, 7HT, UK
| | - Gerd K Wagner
- Queen's University Belfast, School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
14
|
Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020; 216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding "hits" than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the "chemical space" of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA
| | | | - Karunakaran Kalesh
- Department of Chemistry, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
15
|
Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18:1221-1233. [PMID: 32749905 DOI: 10.1080/14787210.2020.1794815] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Numerous bacterial behaviors are regulated by a cell-density dependent mechanism known as Quorum Sensing (QS). QS relies on communication between bacterial cells using diffusible signaling molecules known as autoinducers. QS regulates physiological processes such as metabolism, virulence, and biofilm formation. Quorum Quenching (QQ) is the inhibition of QS using chemical or enzymatic means to counteract behaviors regulated by QS. AREAS COVERED We examine the main, diverse QS mechanisms present in bacterial species, with a special emphasis on AHL-mediated QS. We also discuss key in vitro and in vivo systems in which interference in QS was investigated. Additionally, we highlight promising developments, such as the substrate preference of the used enzymatic quencher, in the application of interference in QS to counter bacterial virulence. EXPERT OPINION Enabled via the recent isolation of highly stable quorum quenching enzymes and/or molecular engineering efforts, the effects of the interference in QS were recently evaluated outside of the traditional model of single species culture. Signal disruption in complex microbial communities was shown to result in the disruption of complex microbial behaviors, and changes in population structures. These new findings, and future studies, may result in significant changes in the traditional views about QS.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| |
Collapse
|
16
|
Abstract
Bacteria can migrate in groups of flagella-driven cells over semisolid surfaces. This coordinated form of motility is called swarming behavior. Swarming is associated with enhanced virulence and antibiotic resistance of various human pathogens and may be considered as favorable adaptation to the diverse challenges that microbes face in rapidly changing environments. Consequently, the differentiation of motile swarmer cells is tightly regulated and involves multi-layered signaling networks. Controlling swarming behavior is of major interest for the development of novel anti-infective strategies. In addition, compounds that block swarming represent important tools for more detailed insights into the molecular mechanisms of the coordination of bacterial population behavior. Over the past decades, there has been major progress in the discovery of small-molecule modulators and mechanisms that allow selective inhibition of swarming behavior. Herein, an overview of the achievements in the field and future directions and challenges will be presented.
Collapse
Affiliation(s)
- Sina Rütschlin
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
17
|
PQS Signaling for More than a Quorum: the Collective Stress Response Protects Healthy Pseudomonas aeruginosa Populations. J Bacteriol 2019; 201:JB.00568-19. [PMID: 31527112 DOI: 10.1128/jb.00568-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this issue, Bru et al. connect Pseudomonas aeruginosa PQS signaling secretion during stress response to swarming behavior (J.-L. Bru, B. Rawson, C. Trinh, K. Whiteson, et al., J Bacteriol 201:e00383-19, 2019, https://doi.org/10.1128/JB.00383-19). Phage-infected or antibiotic-treated bacterial cells secrete PQS to repel healthy, unexposed cells away from the source of the stress. Thus, the collective stress response mechanism driven by PQS signaling influences spatial organization and population dynamics in P. aeruginosa that may provide competitive advantages in certain niches.
Collapse
|
18
|
Hayashi R, Morimoto S, Tomohiro T. Tag‐Convertible Photocrosslinker with Click‐On/OffN‐Acylsulfonamide Linkage for Protein Identification. Chem Asian J 2019; 14:3145-3148. [DOI: 10.1002/asia.201900859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ryuji Hayashi
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Shota Morimoto
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
- Department of Pharmaceutical SciencesSuzuka University of Medical Science Suzuka Mie 510-0293 Japan
| | - Takenori Tomohiro
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
19
|
Szamosvári D, Schuhmacher T, Hauck CR, Böttcher T. A thiochromenone antibiotic derived from the Pseudomonas quinolone signal selectively targets the Gram-negative pathogen Moraxella catarrhalis. Chem Sci 2019; 10:6624-6628. [PMID: 31367314 PMCID: PMC6624978 DOI: 10.1039/c9sc01090d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/23/2019] [Indexed: 01/20/2023] Open
Abstract
The Pseudomonas quinolone signal (PQS) is an important quorum sensing signal of the pathogen Pseudomonas aeruginosa. We discovered an additional activity of PQS as a narrow spectrum antibiotic. Exploiting the privileged structure of PQS by the synthesis of heteroatom-substituted analogues led to a class of 2-alkyl-3-hydroxythiochromen-4-ones with highly potent antibiotic activity against the nasopharyngeal pathogen Moraxella catarrhalis. Synthetic optimization resulted in minimum inhibitory concentrations in the nanomolar range even for clinical isolates of M. catarrhalis. Surprisingly, the growth of other human pathogens and commensals, including closely related Moraxella species, was not inhibited, indicating exceptional species selectivity. Mechanistic studies revealed that the antibiotic was bactericidal and likely inhibits a target in the primary energy metabolism causing rapid depletion of the cellular ATP pool.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Chemistry , Konstanz Research School Chemical Biology , Zukunftskolleg , University of Konstanz , 78457 Konstanz , Germany .
| | - Tamara Schuhmacher
- Department of Biology , University of Konstanz , 78457 Konstanz , Germany .
| | - Christof R Hauck
- Department of Biology , University of Konstanz , 78457 Konstanz , Germany .
| | - Thomas Böttcher
- Department of Chemistry , Konstanz Research School Chemical Biology , Zukunftskolleg , University of Konstanz , 78457 Konstanz , Germany .
| |
Collapse
|
20
|
Alford MA, Pletzer D, Hancock RE. Dismantling the bacterial virulence program. Microb Biotechnol 2019; 12:409-413. [PMID: 30864265 PMCID: PMC6465231 DOI: 10.1111/1751-7915.13388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the face of rising antimicrobial resistance, there is an urgent need for the development of efficient and effective anti-infective compounds. Adaptive resistance, a reversible bacterial phenotype characterized by the ability to surmount antibiotic challenge without mutation, is triggered to cope in situ with several stressors and is very common clinically. Thus, it is important to target stress-response effectors that contribute to in vivo adaptations and associated lifestyles such as biofilm formation. Interfering with these proteins should provide a means of dismantling bacterial virulence for treating infectious diseases, in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Robert E.W. Hancock
- Centre for Microbial Diseases and Immunity ResearchDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
21
|
Halloran MW, Lumb JP. Recent Applications of Diazirines in Chemical Proteomics. Chemistry 2019; 25:4885-4898. [PMID: 30444029 DOI: 10.1002/chem.201805004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/12/2018] [Indexed: 02/06/2023]
Abstract
The elucidation of substrate-protein interactions is an important component of the drug development process. Due to the complexity of native cellular environments, elucidating these fundamental biochemical interactions remains challenging. Photoaffinity labeling (PAL) is a versatile technique that can provide insight into ligand-target interactions. By judicious modification of substrates with a photoreactive group, PAL creates a covalent crosslink between a substrate and its biological target following UV-irradiation. Among the commonly employed photoreactive groups, diazirines have emerged as the gold standard. In this Minireview, recent developments in the field of diazirine-based photoaffinity labeling will be discussed, with emphasis being placed on their applications in chemical proteomic studies.
Collapse
Affiliation(s)
- Matthew W Halloran
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
22
|
Brown SP, Blackwell HE, Hammer BK. The State of the Union Is Strong: a Review of ASM's 6th Conference on Cell-Cell Communication in Bacteria. J Bacteriol 2018; 200:e00291-18. [PMID: 29760210 PMCID: PMC6018360 DOI: 10.1128/jb.00291-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 6th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria convened from 16 to 19 October 2017 in Athens, GA. In this minireview, we highlight some of the research presented at that meeting that addresses central questions emerging in the field, including the following questions. How are cell-cell communication circuits designed to generate responses? Where are bacteria communicating? Finally, why are bacteria engaging in such behaviors?
Collapse
Affiliation(s)
- Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Front Cell Infect Microbiol 2018; 8:230. [PMID: 30023354 PMCID: PMC6039570 DOI: 10.3389/fcimb.2018.00230] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
The Pseudomonas quinolone signal (PQS) has been studied primarily in the context of its role as a quorum-sensing signaling molecule. Recent data suggest, however, that this molecule may also function to mediate iron acquisition, cytotoxicity, outer-membrane vesicle biogenesis, or to exert host immune modulatory activities.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Juanli Cheng
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Wright MH. Chemical Proteomics of Host-Microbe Interactions. Proteomics 2018; 18:e1700333. [DOI: 10.1002/pmic.201700333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Megan H. Wright
- Astbury Centre for Structural Molecular Biology; School of Chemistry; University of Leeds; Leeds LS2 9JT United Kingdom
| |
Collapse
|