1
|
Li C, Merkel M, Sussman DM. Connecting Anomalous Elasticity and Sub-Arrhenius Structural Dynamics in a Cell-Based Model. PHYSICAL REVIEW LETTERS 2025; 134:048203. [PMID: 39951612 DOI: 10.1103/physrevlett.134.048203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025]
Abstract
Understanding the structural dynamics of many-particle glassy systems remains a key challenge in statistical physics. Over the last decade, glassy dynamics has also been reported in biological tissues, but is far from being understood. It was recently shown that vertex models of dense biological tissue exhibit very atypical, sub-Arrhenius dynamics, and here we ask whether such atypical structural dynamics of vertex models are related to unusual elastic properties. It is known that at zero temperature these models have an elasticity controlled by their underconstrained or isostatic nature, but little is known about how their elasticity varies with temperature. To address this question we investigate the 2D Voronoi model and measure the temperature dependence of the intermediate-time plateau shear modulus and the bulk modulus. We find that unlike in conventional glass formers, these moduli increase monotonically with temperature until the system fluidizes. We further show that the structural relaxation time can be quantitatively linked to the plateau shear modulus G_{p}, i.e. G_{p} modulates the typical energy barrier scale for cell rearrangements. This suggests that the anomalous, structural dynamics of the 2D Voronoi model originates in its unusual elastic properties. Based on our results, we hypothesize that underconstrained systems might more generally give rise to a new class of "ultrastrong" glass formers.
Collapse
Affiliation(s)
- Chengling Li
- Emory University, Department of Physics, Atlanta, Georgia 30322, USA
| | - Matthias Merkel
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, 13009 Marseille, France
| | - Daniel M Sussman
- Emory University, Department of Physics, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Rozman J, Chaithanya K, Yeomans JM, Sknepnek R. Vertex model with internal dissipation enables sustained flows. Nat Commun 2025; 16:530. [PMID: 39789022 PMCID: PMC11718050 DOI: 10.1038/s41467-025-55820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos. When coupled to cell shape anisotropy, the internal viscous dissipation allows for long-range velocity correlations and thus enables the spontaneous emergence of flows with a large degree of spatiotemporal organisation. We demonstrate sustained flow in epithelial sheets confined to a channel, providing a link between the cell-level vertex model of tissue dynamics and continuum active nematics, whose behaviour in a channel is theoretically understood and experimentally realisable. Our findings also show a simple mechanism that could account for collective cell migration correlated over distances large compared to the cell size, as observed during morphogenesis.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Kvs Chaithanya
- School of Life Sciences, University of Dundee, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, UK.
- School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
3
|
Pandey S, Kolya S, Devendran P, Sadhukhan S, Das T, Nandi SK. The structure-dynamics feedback mechanism governs the glassy dynamics in epithelial monolayers. SOFT MATTER 2025; 21:269-276. [PMID: 39668670 DOI: 10.1039/d4sm01059k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The glass-like slow dynamics in confluent epithelial monolayers is crucial for wound healing, embryogenesis, cancer progression, etc. Experiments have indicated several unusual properties in these systems. Unlike ordinary glasses, the glassiness in cellular systems strongly correlates with their static properties and is sub-Arrhenius. These results imply that the slow dynamics in epithelial monolayers is either not glassy or the underlying mechanism is different from ordinary glasses. Combining the analytical mode-coupling theory (MCT), vertex model simulations, and cellular experiments, we show that the slow dynamics is glassy, though the mechanism differs from ordinary glasses. The structure-dynamics feedback mechanism of MCT, and not the barrier-crossing mechanism, dominates the glassy dynamics, where the relaxation time diverges as a power law with a universal exponent 3/2 and naturally explains the sub-Arrhenius relaxation. Our results suggest the possibility of describing various complex biological processes like cell division and apoptosis via the static properties of the systems, such as average cell shape or shape variability.
Collapse
Affiliation(s)
- Satyam Pandey
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Soumitra Kolya
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Padmashree Devendran
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Souvik Sadhukhan
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Tamal Das
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad-500046, India.
| |
Collapse
|
4
|
Lee CT, Merkel M. Generic Elasticity of Thermal, Underconstrained Systems. PHYSICAL REVIEW LETTERS 2024; 133:268201. [PMID: 39878997 DOI: 10.1103/physrevlett.133.268201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 01/31/2025]
Abstract
Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood. Here and in the companion paper [C. T. Lee and M. Merkel, Phys. Rev. E 110, 064147 (2024)PRESCM2470-004510.1103/PhysRevE.110.064147], we extend this theory to finite temperatures for a very broad class of underconstrained systems. In the vicinity of the athermal transition point, we derive from first principles expressions for elastic properties such as isotropic tension t and shear modulus G on temperature T, isotropic strain ϵ, and shear strain γ, which we confirm numerically. These expressions contain only three parameters: entropic rigidity κ_{S}, energetic rigidity κ_{E}, and a parameter b_{ϵ} describing the interaction between isotropic and shear strain, which can be determined from the microstructure of the system. Our results imply that in underconstrained systems, entropic and energetic rigidity interact like two springs in series. This also allows for a simple explanation of the previously numerically observed scaling relation t∼G∼T^{1/2} at ϵ=γ=0. Our work unifies the physics of systems as diverse as polymer fibers and networks, membranes, and vertex models for biological tissues.
Collapse
Affiliation(s)
- Cheng-Tai Lee
- CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France
| | - Matthias Merkel
- CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France
| |
Collapse
|
5
|
Latham ZD, Bermudez A, Hu JK, Lin NYC. Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions. BIOPHYSICS REVIEWS 2024; 5:041301. [PMID: 39416285 PMCID: PMC11479637 DOI: 10.1063/5.0220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging. Although cell jamming and unjamming follow physics principles described by the jamming diagram, they are fundamentally biological processes. In this review, we explore how cellular processes and interactions regulate jamming and unjamming transitions. We begin with an overview of how these transitions control tissue remodeling in epithelial model systems and describe recent findings of the physical principles governing tissue solidification and fluidization. We then explore the mechanistic pathways that modulate the jamming phase diagram axes, focusing on the regulation of cell fluctuations and geometric compatibility. Drawing upon seminal works in cell biology, we discuss the roles of cytoskeleton and cell-cell adhesion in controlling cell motility and geometry. This comprehensive view illustrates the molecular control of cell jamming and unjamming, crucial for tissue remodeling in various biological contexts.
Collapse
Affiliation(s)
- Zoe D. Latham
- Bioengineering Department, UCLA, Los Angeles, California 90095, USA
| | | | - Jimmy K. Hu
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
6
|
Yue H, Packard CR, Sussman DM. Scale-dependent sharpening of interfacial fluctuations in shape-based models of dense cellular sheets. SOFT MATTER 2024. [PMID: 39564787 DOI: 10.1039/d4sm00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The properties of tissue interfaces - between separate populations of cells, or between a group of cells and its environment - has attracted intense theoretical, computational, and experimental study. Recent work on shape-based models inspired by dense epithelia have suggested a possible "topological sharpening" effect, by which four-fold vertices spatially coordinated along a cellular interface lead to a cusp-like restoring force acting on cells at the interface, which in turn greatly suppresses interfacial fluctuations. We revisit these interfacial fluctuations, focusing on the distinction between short length scale reduction of interfacial fluctuations and long length scale renormalized surface tension. To do this, we implement a spectrally resolved analysis of fluctuations over extremely long simulation times. This leads to more quantitative information on the topological sharpening effect, in which the degree of sharpening depends on the length scale over which it is measured. We compare our findings with a Brownian bridge model of the interface, and close by analyzing existing experimental data in support of the role of short-length-scale topological sharpening effects in real biological systems.
Collapse
Affiliation(s)
- Haicen Yue
- Department of Physics, University of Vermont, Burlington, Vermont 05405, USA.
| | - Charles R Packard
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| | - Daniel M Sussman
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
7
|
Prahl LS, Liu J, Viola JM, Huang AZ, Chan TJ, Hayward-Lara G, Porter CM, Shi C, Zhang J, Hughes AJ. Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses. NATURE MATERIALS 2024; 23:1582-1591. [PMID: 39385019 PMCID: PMC11841712 DOI: 10.1038/s41563-024-02019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These 'tip domain' niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain 'ages' relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Hayward-Lara
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA, USA.
- Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Das S, Valoor R, Ratnayake P, Basu B. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. ACS APPLIED BIO MATERIALS 2024; 7:2809-2835. [PMID: 38602318 DOI: 10.1021/acsabm.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Three-dimensional (3D) bioprinting of hydrogels with a wide spectrum of compositions has been widely investigated. Despite such efforts, a comprehensive understanding of the correlation among the process science, buildability, and biophysical properties of the hydrogels for a targeted clinical application has not been developed in the scientific community. In particular, the quantitative analysis across the entire developmental path for 3D extrusion bioprinting of such scaffolds is not widely reported. In the present work, we addressed this gap by using widely investigated biomaterials, such as gelatin methacryloyl (GelMA), as a model system. Using extensive experiments and quantitative analysis, we analyzed how the individual components of methacrylated carboxymethyl cellulose (mCMC), needle-shaped nanohydroxyapatite (nHAp), and poly(ethylene glycol)diacrylate (PEGDA) with GelMA as baseline matrix of the multifunctional bioink can influence the biophysical properties, printability, and cellular functionality. The complex interplay among the biomaterial ink formulations, viscoelastic properties, and printability toward the large structure buildability (structurally stable cube scaffolds with 15 mm edge) has been explored. Intriguingly, the incorporation of PEGDA into the GelMA/mCMC matrix offered improved compressive modulus (∼40-fold), reduced swelling ratio (∼2-fold), and degradation rates (∼30-fold) compared to pristine GelMA. The correlation among microstructural pore architecture, biophysical properties, and cytocompatibility is also established for the biomaterial inks. These photopolymerizable bio(material)inks served as the platform for the growth and development of bone and cartilage matrix when human mesenchymal stem cells (hMSCs) are either seeded on two-dimensional (2D) substrates or encapsulated on 3D scaffolds. Taken together, this present study unequivocally establishes a significant step forward in the development of a broad spectrum of shape-fidelity compliant bioink for the 3D bioprinting of multifunctional scaffolds and emphasizes the need for invoking more quantitative analysis in establishing process-microstructure-property correlation.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Remya Valoor
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Praneeth Ratnayake
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Monfared S, Ravichandran G, Andrade JE, Doostmohammadi A. Short-range correlation of stress chains near solid-to-liquid transition in active monolayers. J R Soc Interface 2024; 21:20240022. [PMID: 38715321 PMCID: PMC11077009 DOI: 10.1098/rsif.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Using a three-dimensional model of cell monolayers, we study the spatial organization of active stress chains as the monolayer transitions from a solid to a liquid state. The critical exponents that characterize this transition map the isotropic stress percolation onto the two-dimensional random percolation universality class, suggesting short-range stress correlations near this transition. This mapping is achieved via two distinct, independent pathways: (i) cell-cell adhesion and (ii) active traction forces. We unify our findings by linking the nature of this transition to high-stress fluctuations, distinctly linked to each pathway. The results elevate the importance of the transmission of mechanical information in dense active matter and provide a new context for understanding the non-equilibrium statistical physics of phase transition in active systems.
Collapse
Affiliation(s)
- Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Kobenhavn, 2100, Denmark
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | - José E. Andrade
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | | |
Collapse
|
10
|
Lawson-Keister E, Zhang T, Nazari F, Fagotto F, Manning ML. Differences in boundary behavior in the 3D vertex and Voronoi models. PLoS Comput Biol 2024; 20:e1011724. [PMID: 38181065 PMCID: PMC10796063 DOI: 10.1371/journal.pcbi.1011724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 11/30/2023] [Indexed: 01/07/2024] Open
Abstract
An important open question in the modeling of biological tissues is how to identify the right scale for coarse-graining, or equivalently, the right number of degrees of freedom. For confluent biological tissues, both vertex and Voronoi models, which differ only in their representation of the degrees of freedom, have effectively been used to predict behavior, including fluid-solid transitions and cell tissue compartmentalization, which are important for biological function. However, recent work in 2D has hinted that there may be differences between the two models in systems with heterotypic interfaces between two tissue types, and there is a burgeoning interest in 3D tissue models. Therefore, we compare the geometric structure and dynamic sorting behavior in mixtures of two cell types in both 3D vertex and Voronoi models. We find that while the cell shape indices exhibit similar trends in both models, the registration between cell centers and cell orientation at the boundary are significantly different between the two models. We demonstrate that these macroscopic differences are caused by changes to the cusp-like restoring forces introduced by the different representations of the degrees of freedom at the boundary, and that the Voronoi model is more strongly constrained by forces that are an artifact of the way the degrees of freedom are represented. This suggests that vertex models may be more appropriate for 3D simulations of tissues with heterotypic contacts.
Collapse
Affiliation(s)
- Elizabeth Lawson-Keister
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, New York, United States of America
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fatemeh Nazari
- School of Biomedical Engineering, Ecole Centrale de Lille, Villeneuve-d’Ascq, France
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier and CNRS, Montpellier, France
| | - François Fagotto
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier and CNRS, Montpellier, France
| | - M. Lisa Manning
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
11
|
Sauer F, Grosser S, Shahryari M, Hayn A, Guo J, Braun J, Briest S, Wolf B, Aktas B, Horn L, Sack I, Käs JA. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303523. [PMID: 37553780 PMCID: PMC10502644 DOI: 10.1002/advs.202303523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| | - Steffen Grosser
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
- Institute for Bioengineering of CataloniaThe Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
| | - Mehrgan Shahryari
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Alexander Hayn
- Department of HepatologyLeipzig University Hospital04103LeipzigGermany
| | - Jing Guo
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Jürgen Braun
- Institute of Medical InformaticsCharité‐Universitätsmedizin10117BerlinGermany
| | - Susanne Briest
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Benjamin Wolf
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Bahriye Aktas
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Lars‐Christian Horn
- Division of Breast, Urogenital and Perinatal PathologyLeipzig University Hospital04103LeipzigGermany
| | - Ingolf Sack
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Josef A. Käs
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| |
Collapse
|
12
|
Lin SZ, Merkel M, Rupprecht JF. Structure and Rheology in Vertex Models under Cell-Shape-Dependent Active Stresses. PHYSICAL REVIEW LETTERS 2023; 130:058202. [PMID: 36800465 DOI: 10.1103/physrevlett.130.058202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Biological cells can actively tune their intracellular architecture according to their overall shape. Here we explore the rheological implication of such coupling in a minimal model of a dense cellular material where each cell exerts an active mechanical stress along its axis of elongation. Increasing the active stress amplitude leads to several transitions. An initially hexagonal crystal motif is first destabilized into a solid with anisotropic cells whose shear modulus eventually vanishes at a first critical activity. Increasing activity beyond this first critical value, we find a re-entrant transition to a regime with finite hexatic order and finite shear modulus, in which cells arrange according to a rhombile pattern with periodically arranged rosette structures. The shear modulus vanishes again at a third threshold beyond which spontaneous tissue flows and topological defects of the nematic cell shape field arise. Flow and stress fields around the defects agree with active nematic theory, with either contractile or extensile signs, as also observed in several epithelial tissue experiments.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Université, Université de Toulon, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
13
|
Sadhukhan S, Nandi SK. On the origin of universal cell shape variability in confluent epithelial monolayers. eLife 2022; 11:e76406. [PMID: 36563034 PMCID: PMC9833828 DOI: 10.7554/elife.76406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Cell shape is fundamental in biology. The average cell shape can influence crucial biological functions, such as cell fate and division orientation. But cell-to-cell shape variability is often regarded as noise. In contrast, recent works reveal that shape variability in diverse epithelial monolayers follows a nearly universal distribution. However, the origin and implications of this universality remain unclear. Here, assuming contractility and adhesion are crucial for cell shape, characterized via aspect ratio (r), we develop a mean-field analytical theory for shape variability. We find that all the system-specific details combine into a single parameter α that governs the probability distribution function (PDF) of r; this leads to a universal relation between the standard deviation and the average of r. The PDF for the scaled r is not strictly but nearly universal. In addition, we obtain the scaled area distribution, described by the parameter μ. Information of α and μ together can distinguish the effects of changing physical conditions, such as maturation, on different system properties. We have verified the theory via simulations of two distinct models of epithelial monolayers and with existing experiments on diverse systems. We demonstrate that in a confluent monolayer, average shape determines both the shape variability and dynamics. Our results imply that cell shape distribution is inevitable, where a single parameter describes both statics and dynamics and provides a framework to analyze and compare diverse epithelial systems. In contrast to existing theories, our work shows that the universal properties are consequences of a mathematical property and should be valid in general, even in the fluid regime.
Collapse
|
14
|
Tong S, Singh NK, Sknepnek R, Košmrlj A. Linear viscoelastic properties of the vertex model for epithelial tissues. PLoS Comput Biol 2022; 18:e1010135. [PMID: 35587514 PMCID: PMC9159552 DOI: 10.1371/journal.pcbi.1010135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/01/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Epithelial tissues act as barriers and, therefore, must repair themselves, respond to environmental changes and grow without compromising their integrity. Consequently, they exhibit complex viscoelastic rheological behavior where constituent cells actively tune their mechanical properties to change the overall response of the tissue, e.g., from solid-like to fluid-like. Mesoscopic mechanical properties of epithelia are commonly modeled with the vertex model. While previous studies have predominantly focused on the rheological properties of the vertex model at long time scales, we systematically studied the full dynamic range by applying small oscillatory shear and bulk deformations in both solid-like and fluid-like phases for regular hexagonal and disordered cell configurations. We found that the shear and bulk responses in the fluid and solid phases can be described by standard spring-dashpot viscoelastic models. Furthermore, the solid-fluid transition can be tuned by applying pre-deformation to the system. Our study provides insights into the mechanisms by which epithelia can regulate their rich rheological behavior.
Collapse
Affiliation(s)
- Sijie Tong
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Navreeta K. Singh
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
- Princeton Institute of Materials, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
15
|
Huang J, Cochran JO, Fielding SM, Marchetti MC, Bi D. Shear-Driven Solidification and Nonlinear Elasticity in Epithelial Tissues. PHYSICAL REVIEW LETTERS 2022; 128:178001. [PMID: 35570431 DOI: 10.1103/physrevlett.128.178001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Biological processes, from morphogenesis to tumor invasion, spontaneously generate shear stresses inside living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the collective response of the tissue to bulk shear deformations remain, however, poorly understood. Using a minimal cell-based computational model, we investigate the constitutive relation of confluent tissues under simple shear deformation. We show that an initially undeformed fluidlike tissue acquires finite rigidity above a critical applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems. Interestingly, shear-driven rigidity can be understood by a critical scaling analysis in the vicinity of the second order critical point that governs the liquid-solid transition of the undeformed system. We further show that a solidlike tissue responds linearly only to small strains and but then switches to a nonlinear response at larger stains, with substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that offers a simple physical explanation of shear-driven rigidity and nonlinear response in a tissue.
Collapse
Affiliation(s)
- Junxiang Huang
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - James O Cochran
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - M Cristina Marchetti
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Wen H, Zhu Y, Peng C, Kumar PBS, Laradji M. Collective motion of cells modeled as ring polymers. SOFT MATTER 2022; 18:1228-1238. [PMID: 35043821 DOI: 10.1039/d1sm01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is self-propelled by a motility force along the cell's polarity, which depends on its historical kinetics. Despite the repulsive interaction between the cells, a collective behavior sets in as a result of cells pushing against each other. This cooperative motion emerges as the amplitude of the motility force is increased and/or their areal density is increased. The degree of collectivity, characterized by the average cluster size, the velocity field order parameter, and the polarity field nematic order parameter, is found to increase with increasing the amplitude of the motility force and area coverage of the cells. Furthermore, the degree of alignment exhibited by the cell velocity field within a cluster is found to be stronger than that exhibited by the cell polarity. Comparison between the collective behavior of elongated cells and that of circular cells, at the same area coverage and motility force, shows that elongated cells exhibit a stronger collective behavior than circular cells, in agreement with earlier studies of self-propelled anisotropic particles. An investigation of two-cell collisions shows that while two clustered cells move in tandem, their polarities are misaligned. As such the cells push against each other while moving coherently.
Collapse
Affiliation(s)
- Haosheng Wen
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Chenhui Peng
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad-668557, Kerala, India
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
17
|
Ai BQ, Guo RX. Large-scale demixing in a binary mixture of cells with rigidity disparity in biological tissues. Phys Rev E 2021; 104:064411. [PMID: 35030891 DOI: 10.1103/physreve.104.064411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Physical demixing on large scales of embryonic cell populations is fundamental to metazoan development, but whether a rigidity disparity alone is sufficient to driving large-scale demixing in a binary mixture of cell tissues is still an open question. To answer this question, we study mixing and demixing in a binary mixture of rigidity disparity cell tissues without heterotypic interactions using the Voronoi-based cellular model. Under suitable system parameters, the solid-like cells in the mixture can aggregate into a large cluster and the large-scale demixing occurs, which addresses that a rigidity disparity alone is sufficient to drive large-scale demixing. Remarkably, there exists an optimal temperature or rigidity disparity at which the binary mixture can be separated to the maximum extent. The necessary condition for the separation of mixtures is that the two types of cells are solid-like and liquid-like, respectively. The observation of robust demixing on large scales suggests that the sorting of progenitor cells may occur very early in the development process before robust heterotypic interfacial tensions are established. Our findings are relevant to understanding the mechanisms that drive cell sorting in confluent tissues.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Rui-Xue Guo
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
18
|
Tah I, Sharp TA, Liu AJ, Sussman DM. Quantifying the link between local structure and cellular rearrangements using information in models of biological tissues. SOFT MATTER 2021; 17:10242-10253. [PMID: 33463648 DOI: 10.1039/d0sm01575j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Machine learning techniques have been used to quantify the relationship between local structural features and variations in local dynamical activity in disordered glass-forming materials. To date these methods have been applied to an array of standard (Arrhenius and super-Arrhenius) glass formers, where work on "soft spots" indicates a connection between the linear vibrational response of a configuration and the energy barriers to non-linear deformations. Here we study the Voronoi model, which takes its inspiration from dense epithelial monolayers and which displays anomalous, sub-Arrhenius scaling of its dynamical relaxation time with decreasing temperature. Despite these differences, we find that the likelihood of rearrangements can nevertheless vary by several orders of magnitude within the model tissue and extract a local structural quantity, "softness," that accurately predicts the temperature dependence of the relaxation time. We use an information-theoretic measure to quantify the extent to which softness determines impending topological rearrangements; we find that softness captures nearly all of the information about rearrangements that is obtainable from structure, and that this information is large in the solid phase of the model and decreases rapidly as state variables are varied into the fluid phase.
Collapse
Affiliation(s)
- Indrajit Tah
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA.
| | - Tristan A Sharp
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA.
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA.
| | | |
Collapse
|
19
|
Baumgarten K, Tighe BP. Moduli and modes in the Mikado model. SOFT MATTER 2021; 17:10286-10293. [PMID: 34151919 PMCID: PMC8612360 DOI: 10.1039/d1sm00551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We determine how low frequency vibrational modes control the elastic shear modulus of Mikado networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that when the fiber bending modulus is sufficiently small, (i) the shear modulus of 2D Mikado networks scales as a power law in the fiber line density, G ∼ ρα+1, and (ii) the networks also possess an anomalous abundance of soft (low-frequency) vibrational modes with a characteristic frequency ωκ ∼ ρβ/2. While it has been suggested that α and β are identical, the preponderance of evidence indicates that α is larger than theoretical predictions for β. We resolve this inconsistency by measuring the vibrational density of states in Mikado networks for the first time. Supported by these results, we then demonstrate analytically that α = β + 1. In so doing, we uncover new insights into the coupling between soft modes and shear, as well as the origin of the crossover from bending- to stretching-dominated response.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| |
Collapse
|
20
|
Pasupalak A, Samidurai SK, Li Y, Zheng Y, Ni R, Ciamarra MP. Unconventional rheological properties in systems of deformable particles. SOFT MATTER 2021; 17:7708-7713. [PMID: 34351349 DOI: 10.1039/d1sm00936b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate the existence of unconventional rheological and memory properties in systems of soft-deformable particles whose energy depends on their shape, via numerical simulations. At large strains, these systems experience an unconventional shear weakening transition characterized by an increase in the mechanical energy and a drastic drop in shear stress, which stems from the emergence of short-ranged tetratic order. In these weakened states, the contact network evolves reversibly under strain reversal, keeping memory of its initial state, while the microscopic dynamics is irreversible.
Collapse
Affiliation(s)
- Anshuman Pasupalak
- Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University, Singapore.
| | | | | | | | | | | |
Collapse
|
21
|
Gómez-Gálvez P, Anbari S, Escudero LM, Buceta J. Mechanics and self-organization in tissue development. Semin Cell Dev Biol 2021; 120:147-159. [PMID: 34417092 DOI: 10.1016/j.semcdb.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Self-organization is an all-important feature of living systems that provides the means to achieve specialization and functionality at distinct spatio-temporal scales. Herein, we review this concept by addressing the packing organization of cells, the sorting/compartmentalization phenomenon of cell populations, and the propagation of organizing cues at the tissue level through traveling waves. We elaborate on how different theoretical models and tools from Topology, Physics, and Dynamical Systems have improved the understanding of self-organization by shedding light on the role played by mechanics as a driver of morphogenesis. Altogether, by providing a historical perspective, we show how ideas and hypotheses in the field have been revisited, developed, and/or rejected and what are the open questions that need to be tackled by future research.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Samira Anbari
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla and Departamento de Biologia Celular, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
22
|
Sadhukhan S, Nandi SK. Theory and simulation for equilibrium glassy dynamics in cellular Potts model of confluent biological tissue. Phys Rev E 2021; 103:062403. [PMID: 34271700 DOI: 10.1103/physreve.103.062403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
Glassy dynamics in a confluent monolayer is indispensable in morphogenesis, wound healing, bronchial asthma, and many others; a detailed theoretical framework for such a system is, therefore, important. Vertex-model (VM) simulations have provided crucial insights into the dynamics of such systems, but their nonequilibrium nature makes theoretical development difficult. The cellular Potts model (CPM) of confluent monolayers provides an alternative model for such systems with a well-defined equilibrium limit. We combine numerical simulations of the CPM and an analytical study based on one of the most successful theories of equilibrium glass, the random first-order transition theory, and develop a comprehensive theoretical framework for a confluent glassy system. We find that the glassy dynamics within the CPM is qualitatively similar to that in the VM. Our study elucidates the crucial role of geometric constraints in bringing about two distinct regimes in the dynamics, as the target perimeter P_{0} is varied. The unusual sub-Arrhenius relaxation results from the distinctive interaction potential arising from the perimeter constraint in such systems. The fragility of the system decreases with increasing P_{0} in the low-P_{0} regime, whereas the dynamics is independent of P_{0} in the other regime. The rigidity transition, found in the VM, is absent within the CPM; this difference seems to come from the nonequilibrium nature of the former. We show that the CPM captures the basic phenomenology of glassy dynamics in a confluent biological system via comparison of our numerical results with existing experiments on different systems.
Collapse
Affiliation(s)
- Souvik Sadhukhan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Saroj Kumar Nandi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
23
|
Li YW, Wei LLY, Paoluzzi M, Ciamarra MP. Softness, anomalous dynamics, and fractal-like energy landscape in model cell tissues. Phys Rev E 2021; 103:022607. [PMID: 33736043 DOI: 10.1103/physreve.103.022607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/21/2021] [Indexed: 01/18/2023]
Abstract
Epithelial cell tissues have a slow relaxation dynamics resembling that of supercooled liquids. Yet, they also have distinguishing features. These include an extended short-time subdiffusive transient, as observed in some experiments and recent studies of model systems, and a sub-Arrhenius dependence of the relaxation time on temperature, as reported in numerical studies. Here we demonstrate that the anomalous glassy dynamics of epithelial tissues originates from the emergence of a fractal-like energy landscape, particles becoming virtually free to diffuse in specific phase space directions up to a small distance. Furthermore, we clarify that the stiffness of the cells tunes this anomalous behavior, tissues of stiff cells having conventional glassy relaxation dynamics.
Collapse
Affiliation(s)
- Yan-Wei Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Leon Loh Yeong Wei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona, Spain
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
24
|
Pajic-Lijakovic I, Milivojevic M. Multiscale nature of cell rearrangement caused by collective cell migration. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1-14. [PMID: 33495939 DOI: 10.1007/s00249-021-01496-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
Collective cell migration (CCM), a highly coordinated and fine-tuned migratory mode, is involved in a plethora of biological processes, such as embryogenesis, tissue repair and cancer invasion. Although a good comprehension of how cells collectively migrate by following molecular rules has been generated, the impact of cellular rearrangements on collective migration remains less understood. Thus, considering CCM from a multi-scale quantitative approach could result in a powerful tool to address the contribution of cellular rearrangements in CCM and help to understand this important but still controversial topic. In this work, a review of existing literature in CCM modeling at different scales is given along with assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems. In addition, three different time and space scales (free or weakly connected cells, cluster of cells and collision fronts of different cells clusters) are considered and the multi-scale nature of those processes was discussed with special emphasis of jamming and unjamming states.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
25
|
Zheng Y, Li YW, Ciamarra MP. Hyperuniformity and density fluctuations at a rigidity transition in a model of biological tissues. SOFT MATTER 2020; 16:5942-5950. [PMID: 32542303 DOI: 10.1039/d0sm00776e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. Here, we explore the presence of this hidden order in a manybody interacting model of biological tissue, known to exhibit a transition, or sharp crossover, from a solid to a fluid like phase. We show that the density fluctuations in the rigid phase are only suppressed up to a finite lengthscale. This length scale monotonically increases and grows rapidly as we approach the fluid phase reminiscent to divergent behavior at a critical point, such that the system is effectively hyperuniform in the fluid phase. Furthermore, complementary behavior of the structure factor across the critical point also indicates that hyperuniformity found in the fluid phase is stealthy.
Collapse
Affiliation(s)
- Yuanjian Zheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
| | - Yan-Wei Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. and MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Unit, Singapore and CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
26
|
Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE. Anisotropy links cell shapes to tissue flow during convergent extension. Proc Natl Acad Sci U S A 2020; 117:13541-13551. [PMID: 32467168 PMCID: PMC7306759 DOI: 10.1073/pnas.1916418117] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns-the cell shape index and a cell alignment index-are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.
Collapse
Affiliation(s)
- Xun Wang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
- Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
| | - Leo B Sutter
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
27
|
Sahu P, Sussman DM, Rübsam M, Mertz AF, Horsley V, Dufresne ER, Niessen CM, Marchetti MC, Manning ML, Schwarz JM. Small-scale demixing in confluent biological tissues. SOFT MATTER 2020; 16:3325-3337. [PMID: 32196025 DOI: 10.1039/c9sm01084j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers with a combination of theory via a vertex model and experiments on keratinocyte monolayers. Vertex models are distinct from particle models in that the interactions between the cells are shape-based, as opposed to distance-dependent. We investigate whether a disparity in cell shape or size alone is sufficient to drive demixing in bidisperse vertex model fluid mixtures. Surprisingly, we observe that both types of bidisperse systems robustly mix on large lengthscales. On the other hand, shape disparity generates slight demixing over a few cell diameters, a phenomenon we term micro-demixing. This result can be understood by examining the differential energy barriers for neighbor exchanges (T1 transitions). Experiments with mixtures of wild-type and E-cadherin-deficient keratinocytes on a substrate are consistent with the predicted phenomenon of micro-demixing, which biology may exploit to create subtle patterning. The robustness of mixing at large scales, however, suggests that despite some differences in cell shape and size, progenitor cells can readily mix throughout a developing tissue until acquiring means of recognizing cells of different types.
Collapse
Affiliation(s)
- Preeti Sahu
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA.
| | - Daniel M Sussman
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA. and Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Matthias Rübsam
- Department of Dermatology, CECAD Cologne, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Aaron F Mertz
- Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Eric R Dufresne
- Department of Physics, Yale University, New Haven, CT 06520, USA and Departments of Mechanical Engineering and Materials Science, Chemical and Environmental Engineering, and Cell Biology, Yale University, New Haven, CT 06520, USA and Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Carien M Niessen
- Department of Dermatology, CECAD Cologne, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - M Cristina Marchetti
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - M Lisa Manning
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA.
| | - J M Schwarz
- Department of Physics and BioInspired Syracuse, Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA. and Indian Creek Farm, Ithaca, NY 14850, USA
| |
Collapse
|
28
|
Henkes S, Kostanjevec K, Collinson JM, Sknepnek R, Bertin E. Dense active matter model of motion patterns in confluent cell monolayers. Nat Commun 2020; 11:1405. [PMID: 32179745 PMCID: PMC7075903 DOI: 10.1038/s41467-020-15164-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within the framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.
Collapse
Affiliation(s)
- Silke Henkes
- School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom.
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom.
| | - Kaja Kostanjevec
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, United Kingdom.
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom.
| | - Eric Bertin
- Université Grenoble Alpes and CNRS, LIPHY, F-38000, Grenoble, France.
| |
Collapse
|
29
|
Janssen LMC. Active glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:503002. [PMID: 31469099 DOI: 10.1088/1361-648x/ab3e90] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Active glassy matter has recently emerged as a novel class of non-equilibrium soft matter, combining energy-driven, active particle movement with dense and disordered glass-like behavior. Here we review the state-of-the-art in this field from an experimental, numerical, and theoretical perspective. We consider both non-living and living active glassy systems, and discuss how several hallmarks of glassy dynamics (dynamical slowdown, fragility, dynamical heterogeneity, violation of the Stokes-Einstein relation, and aging) are manifested in such materials. We start by reviewing the recent experimental evidence in this area of research, followed by an overview of the main numerical simulation studies and physical theories of active glassy matter. We conclude by outlining several open questions and possible directions for future work.
Collapse
Affiliation(s)
- Liesbeth M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
30
|
Czajkowski M, Sussman DM, Marchetti MC, Manning ML. Glassy dynamics in models of confluent tissue with mitosis and apoptosis. SOFT MATTER 2019; 15:9133-9149. [PMID: 31674622 DOI: 10.1039/c9sm00916g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent work on particle-based models of tissues has suggested that any finite rate of cell division and cell death is sufficient to fluidize an epithelial tissue. At the same time, experimental evidence has indicated the existence of glassy dynamics in some epithelial layers despite continued cell cycling. To address this discrepancy, we quantify the role of cell birth and death on glassy states in confluent tissues using simulations of an active vertex model that includes cell motility, cell division, and cell death. Our simulation data is consistent with a simple ansatz in which the rate of cell-life cycling and the rate of relaxation of the tissue in the absence of cell cycling contribute independently and additively to the overall rate of cell motion. Specifically, we find that a glass-like regime with caging behavior indicated by subdiffusive cell displacements can be achieved in systems with sufficiently low rates of cell cycling.
Collapse
Affiliation(s)
- Michael Czajkowski
- Physics Department, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Daniel M Sussman
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - M Cristina Marchetti
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - M Lisa Manning
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
31
|
Berthier L, Flenner E, Szamel G. Glassy dynamics in dense systems of active particles. J Chem Phys 2019; 150:200901. [DOI: 10.1063/1.5093240] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS, Université Montpellier, Montpellier, France
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
32
|
Merkel M, Baumgarten K, Tighe BP, Manning ML. A minimal-length approach unifies rigidity in underconstrained materials. Proc Natl Acad Sci U S A 2019; 116:6560-6568. [PMID: 30894489 PMCID: PMC6452732 DOI: 10.1073/pnas.1815436116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We present an approach to understand geometric-incompatibility-induced rigidity in underconstrained materials, including subisostatic 2D spring networks and 2D and 3D vertex models for dense biological tissues. We show that in all these models a geometric criterion, represented by a minimal length [Formula: see text], determines the onset of prestresses and rigidity. This allows us to predict not only the correct scalings for the elastic material properties, but also the precise magnitudes for bulk modulus and shear modulus discontinuities at the rigidity transition as well as the magnitude of the Poynting effect. We also predict from first principles that the ratio of the excess shear modulus to the shear stress should be inversely proportional to the critical strain with a prefactor of 3. We propose that this factor of 3 is a general hallmark of geometrically induced rigidity in underconstrained materials and could be used to distinguish this effect from nonlinear mechanics of single components in experiments. Finally, our results may lay important foundations for ways to estimate [Formula: see text] from measurements of local geometric structure and thus help develop methods to characterize large-scale mechanical properties from imaging data.
Collapse
Affiliation(s)
- Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244;
- Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
| | - Karsten Baumgarten
- Process & Energy Laboratory, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Process & Energy Laboratory, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
33
|
Sharp TA, Merkel M, Manning ML, Liu AJ. Inferring statistical properties of 3D cell geometry from 2D slices. PLoS One 2019; 14:e0209892. [PMID: 30707703 PMCID: PMC6358273 DOI: 10.1371/journal.pone.0209892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/13/2018] [Indexed: 02/01/2023] Open
Abstract
Although cell shape can reflect the mechanical and biochemical properties of the cell and its environment, quantification of 3D cell shapes within 3D tissues remains difficult, typically requiring digital reconstruction from a stack of 2D images. We investigate a simple alternative technique to extract information about the 3D shapes of cells in a tissue; this technique connects the ensemble of 3D shapes in the tissue with the distribution of 2D shapes observed in independent 2D slices. Using cell vertex model geometries, we find that the distribution of 2D shapes allows clear determination of the mean value of a 3D shape index. We analyze the errors that may arise in practice in the estimation of the mean 3D shape index from 2D imagery and find that typically only a few dozen cells in 2D imagery are required to reduce uncertainty below 2%. Even though we developed the method for isotropic animal tissues, we demonstrate it on an anisotropic plant tissue. This framework could also be naturally extended to estimate additional 3D geometric features and quantify their uncertainty in other materials.
Collapse
Affiliation(s)
- Tristan A. Sharp
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Matthias Merkel
- Physics Department, Syracuse University, Syracuse, NY, United States of America
| | - M. Lisa Manning
- Physics Department, Syracuse University, Syracuse, NY, United States of America
- Syracuse Biomaterials Institute, Syracuse, NY, United States of America
| | - Andrea J. Liu
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
34
|
Moshe M, Bowick MJ, Marchetti MC. Geometric Frustration and Solid-Solid Transitions in Model 2D Tissue. PHYSICAL REVIEW LETTERS 2018; 120:268105. [PMID: 30004729 DOI: 10.1103/physrevlett.120.268105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/05/2018] [Indexed: 06/08/2023]
Abstract
We study the mechanical behavior of two-dimensional cellular tissues by formulating the continuum limit of discrete vertex models based on an energy that penalizes departures from a target area A_{0} and a target perimeter P_{0} for the component cells of the tissue. As the dimensionless target shape index s_{0}=(P_{0}/sqrt[A_{0}]) is varied, we find a transition from a soft elastic regime for a compatible target perimeter and area to a stiffer nonlinear elastic regime frustrated by geometric incompatibility. We show that the ground state in the soft regime has a family of degenerate solutions associated with zero modes for the target area and perimeter. The onset of geometric incompatibility at a critical s_{0}^{c} lifts this degeneracy. The resultant energy gap leads to a nonlinear elastic response distinct from that obtained in classical elasticity models. We draw an analogy between cellular tissues and anelastic deformations in solids.
Collapse
Affiliation(s)
- Michael Moshe
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
| | - Mark J Bowick
- Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
35
|
Giavazzi F, Paoluzzi M, Macchi M, Bi D, Scita G, Manning ML, Cerbino R, Marchetti MC. Flocking transitions in confluent tissues. SOFT MATTER 2018; 14:3471-3477. [PMID: 29693694 PMCID: PMC5995478 DOI: 10.1039/c8sm00126j] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Collective cell migration in dense tissues underlies important biological processes, such as embryonic development, wound healing and cancer invasion. While many aspects of single cell movements are now well established, the mechanisms leading to displacements of cohesive cell groups are still poorly understood. To elucidate the emergence of collective migration in mechanosensitive cells, we examine a self-propelled Voronoi (SPV) model of confluent tissues with an orientational feedback that aligns a cell's polarization with its local migration velocity. While shape and motility are known to regulate a density-independent liquid-solid transition in tissues, we find that aligning interactions facilitate collective motion and promote solidification, with transitions that can be predicted by extending statistical physics tools such as effective temperature to this far-from-equilibrium system. In addition to accounting for recent experimental observations obtained with epithelial monolayers, our model predicts structural and dynamical signatures of flocking, which may serve as gateway to a more quantitative characterization of collective motility.
Collapse
Affiliation(s)
- Fabio Giavazzi
- Università degli Studi di Milano, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, 20090 Segrate, Italy.
| | | | | | | | | | | | | | | |
Collapse
|