1
|
Nguyen HA, Darwish S, Pham HN, Ammar S, Ha-Duong NT. Gold and Iron Oxide Nanoparticle Assemblies on Turnip Yellow Mosaic Virus for In-Solution Photothermal Experiments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2509. [PMID: 37764538 PMCID: PMC10535558 DOI: 10.3390/nano13182509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The ability to construct three-dimensional architectures via nanoscale engineering is important for emerging applications in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics nanotechnologies. Because of their well-defined and highly organized symmetric structures, viral plant capsids provide a 3D scaffold for the precise placement of functional inorganic particles yielding advanced hierarchical hybrid nanomaterials. In this study, we used turnip yellow mosaic virus (TYMV), grafting gold nanoparticles (AuNP) or iron oxide nanoparticles (IONP) onto its outer surface. It is the first time that such an assembly was obtained with IONP. After purification, the resulting nano-biohybrids were characterized by different technics (dynamic light scattering, transmission electron microcopy, X-ray photoelectron spectroscopy…), showing the robustness of the architectures and their colloidal stability in water. In-solution photothermal experiments were then successfully conducted on TYMV-AuNP and TYMV-IONP, the related nano-biohybrids, evidencing a net enhancement of the heating capability of these systems compared to their free NP counterparts. These results suggest that these virus-based materials could be used as photothermal therapeutic agents.
Collapse
Affiliation(s)
- Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| | - Sendos Darwish
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| | - Hong Nam Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi 10000, Vietnam;
| | - Souad Ammar
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| | - Nguyet-Thanh Ha-Duong
- Laboratoire ITODYS, CNRS UMR-7086, Université Paris Cité, 15 rue J-A de Baïf, 75013 Paris, France; (S.D.); (S.A.)
| |
Collapse
|
2
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
3
|
Adam A, Harlepp S, Ghilini F, Cotin G, Freis B, Goetz J, Bégin S, Tasso M, Mertz D. Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
5
|
Belkahla H, Constantinescu AA, Gharbi T, Barbault F, Chevillot-Biraud A, Decorse P, Micheau O, Hémadi M, Ammar S. Grafting TRAIL through Either Amino or Carboxylic Groups onto Maghemite Nanoparticles: Influence on Pro-Apoptotic Efficiency. NANOMATERIALS 2021; 11:nano11020502. [PMID: 33671136 PMCID: PMC7922020 DOI: 10.3390/nano11020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine superfamily. TRAIL is able to induce apoptosis through engagement of its death receptors DR4 and DR5 in a wide variety of tumor cells while sparing vital normal cells. This makes it a promising agent for cancer therapy. Here, we present two different ways of covalently grafting TRAIL onto maghemite nanoparticles (NPs): (a) by using carboxylic acid groups of the protein to graft it onto maghemite NPs previously functionalized with amino groups, and (b) by using the amino functions of the protein to graft it onto NPs functionalized with carboxylic acid groups. The two resulting nanovectors, NH-TRAIL@NPs-CO and CO-TRAIL@NPs-NH, were thoroughly characterized. Biological studies performed on human breast and lung carcinoma cells (MDA-MB-231 and H1703 cell lines) established these nanovectors are potential agents for cancer therapy. The pro-apoptotic effect is somewhat greater for CO-TRAIL@NPs-NH than NH-TRAIL@NPs-CO, as evidenced by viability studies and apoptosis analysis. A computational study indicated that regardless of whether TRAIL is attached to NPs through an acid or an amino group, DR4 recognition is not affected in either case.
Collapse
Affiliation(s)
- Hanene Belkahla
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 15 rue Jean-Antoine de Baïf, 75013 Paris, France; (H.B.); (F.B.); (A.C.-B.); (P.D.)
- Lipides Nutrition Cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.A.C.); (O.M.)
- Nanomedicine, Imagery and Therapeutics, EA 4662, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon CEDEX, France;
| | - Andrei Alexandru Constantinescu
- Lipides Nutrition Cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.A.C.); (O.M.)
| | - Tijani Gharbi
- Nanomedicine, Imagery and Therapeutics, EA 4662, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon CEDEX, France;
| | - Florent Barbault
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 15 rue Jean-Antoine de Baïf, 75013 Paris, France; (H.B.); (F.B.); (A.C.-B.); (P.D.)
| | - Alexandre Chevillot-Biraud
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 15 rue Jean-Antoine de Baïf, 75013 Paris, France; (H.B.); (F.B.); (A.C.-B.); (P.D.)
| | - Philippe Decorse
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 15 rue Jean-Antoine de Baïf, 75013 Paris, France; (H.B.); (F.B.); (A.C.-B.); (P.D.)
| | - Olivier Micheau
- Lipides Nutrition Cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.A.C.); (O.M.)
| | - Miryana Hémadi
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 15 rue Jean-Antoine de Baïf, 75013 Paris, France; (H.B.); (F.B.); (A.C.-B.); (P.D.)
- Correspondence: (M.H.); (S.A.)
| | - Souad Ammar
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 15 rue Jean-Antoine de Baïf, 75013 Paris, France; (H.B.); (F.B.); (A.C.-B.); (P.D.)
- Correspondence: (M.H.); (S.A.)
| |
Collapse
|
6
|
Design and Synthesis of Luminescent Lanthanide-Based Bimodal Nanoprobes for Dual Magnetic Resonance (MR) and Optical Imaging. NANOMATERIALS 2021; 11:nano11020354. [PMID: 33535481 PMCID: PMC7912730 DOI: 10.3390/nano11020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Current biomedical imaging techniques are crucial for the diagnosis of various diseases. Each imaging technique uses specific probes that, although each one has its own merits, do not encompass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.). Bimodal imaging methods are therefore rapidly becoming an important topic in advanced healthcare. This bimodality can be achieved by successive image acquisitions involving different and independent probes, one for each mode, with the risk of artifacts. It can be also achieved simultaneously by using a single probe combining a complete set of physical and chemical characteristics, in order to record complementary views of the same biological object at the same time. In this scenario, and focusing on bimodal magnetic resonance imaging (MRI) and optical imaging (OI), probes can be engineered by the attachment, more or less covalently, of a contrast agent (CA) to an organic or inorganic dye, or by designing single objects containing both the optical emitter and MRI-active dipole. If in the first type of system, there is frequent concern that at some point the dye may dissociate from the magnetic dipole, it may not in the second type. This review aims to present a summary of current activity relating to this kind of dual probes, with a special emphasis on lanthanide-based luminescent nano-objects.
Collapse
|
7
|
Abstract
Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. This review deals with iron as a magic element in the nano realm and provides comprehensive data about its structure, properties, synthesis techniques, and applications of various forms of iron-based nanostructures in the science, medicine, and technology sectors.
Collapse
|
8
|
Falahati M, Attar F, Sharifi M, Haertlé T, Berret JF, Khan RH, Saboury AA. A health concern regarding the protein corona, aggregation and disaggregation. Biochim Biophys Acta Gen Subj 2019; 1863:971-991. [PMID: 30802594 PMCID: PMC7115795 DOI: 10.1016/j.bbagen.2019.02.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/23/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
Abstract
Nanoparticle (NP)-protein complexes exhibit the "correct identity" of NP in biological media. Therefore, protein-NP interactions should be closely explored to understand and modulate the nature of NPs in medical implementations. This review focuses mainly on the physicochemical parameters such as dimension, surface chemistry, morphology of NPs, and influence of pH on the formation of protein corona and conformational changes of adsorbed proteins by different kinds of techniques. Also, the impact of protein corona on the colloidal stability of NPs is discussed. Uncontrolled protein attachment on NPs may bring unwanted impacts such as protein denaturation and aggregation. In contrast, controlled protein adsorption by optimal concentration, size, pH, and surface modification of NPs may result in potential implementation of NPs as therapeutic agents especially for disaggregation of amyloid fibrils. Also, the effect of NPs-protein corona on reducing the cytotoxicity and clinical implications such as drug delivery, cancer therapy, imaging and diagnosis will be discussed. Validated correlative physicochemical parameters for NP-protein corona formation frequently derived from protein corona fingerprints of NPs which are more valid than the parameters obtained only on the base of NP features. This review may provide useful information regarding the potency as well as the adverse effects of NPs to predict their behavior in vivo.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, TehranMedical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, TehranMedical Sciences, Islamic Azad University, Tehran, Iran
| | - Thomas Haertlé
- UR1268, Biopolymers Interactions Assemblies, INRA, BP 71627, 44316 Nantes Cedex 3, France; Poznan University of Life Sciences, Department of Animal Nutrition and Feed Management, ul.Wołyńska 33, 60-637 Poznań, Poland; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Jean-François Berret
- Matière etSystèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et LéonieDuquet, F-75205 Paris, France
| | - Rizwan Hasan Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Carrillo-Carrion C, Bocanegra AI, Arnaiz B, Feliu N, Zhu D, Parak WJ. Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS NANO 2019; 13:4631-4639. [PMID: 30875468 DOI: 10.1021/acsnano.9b00728] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Colloidal CdSe/ZnS quantum dots were water solubilized by overcoating with an amphiphilic polymer. Human serum albumin (HSA) as a model protein was either adsorbed or chemically linked to the surface of the polymer-coated quantum dots. As the quantum dots are intrinsically fluorescent, and as the polymer coating and the HSA were fluorescent labeled, the final nanoparticle had three differently fluorescent components: the quantum dot core, the polymer shell, and the human serum albumin corona. Cells were incubated with these hybrid nanoparticles, and after removal of non-internalized nanoparticles, exocytosis of the three components of the nanoparticles was observed individually by flow cytometry and confocal microscopy. The data indicate that HSA is partly transported with the underlying polymer-coated quantum dots into cells. Upon desorption of proteins, those initially adsorbed to the quantum dots remain longer inside cells compared to free proteins. Part of the polymer shell is released from the quantum dots by enzymatic degradation, which is on a slower time scale than protein desorption. Data are quantitatively analyzed, and experimental pitfalls, such as the impact of cell proliferation and fluorescence quenching, are discussed.
Collapse
Affiliation(s)
- Carolina Carrillo-Carrion
- CIC biomaGUNE , 20014 San Sebastian , Spain
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas , Universidad de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | | | | | - Neus Feliu
- Fachbereich Physik und Chemie , Universität Hamburg , 22607 Hamburg , Germany
| | - Dingcheng Zhu
- Fachbereich Physik und Chemie , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- CIC biomaGUNE , 20014 San Sebastian , Spain
- Fachbereich Physik und Chemie , Universität Hamburg , 22607 Hamburg , Germany
| |
Collapse
|
10
|
Li L, Yang Q, Shi L, Zheng N, Li Z, Li K, Qiao S, Jia T, Sun T, Wang Y. Novel phthalocyanine-based polymeric micelles with high near-infrared photothermal conversion efficiency under 808 nm laser irradiation for in vivo cancer therapy. J Mater Chem B 2019; 7:2247-2251. [PMID: 32254673 DOI: 10.1039/c9tb00011a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photothermal therapy (PTT) has emerged as one of the promising methodologies for the treatment of cancer, and ideal photothermal agents need to be biodegradable and have strong optical absorbance in the near-infrared (NIR) optical window. Here, we report a new phthalocyanine molecule, 4OCSPC, which expands the absorbance edge to 850 nm. Under 808 nm NIR laser irradiation, 4OCSPC polymeric micelles showed robust photostability and a high photothermal conversion of 47.0%. Also, the 4OCSPC polymeric micelles exhibit a high in vivo PTT efficacy against 4T1 tumors in mice.
Collapse
Affiliation(s)
- Lu Li
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Estelrich J, Busquets MA. Iron Oxide Nanoparticles in Photothermal Therapy. Molecules 2018; 23:E1567. [PMID: 29958427 PMCID: PMC6100614 DOI: 10.3390/molecules23071567] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Photothermal therapy is a kind of therapy based on increasing the temperature of tumoral cells above 42 °C. To this aim, cells must be illuminated with a laser, and the energy of the radiation is transformed in heat. Usually, the employed radiation belongs to the near-infrared radiation range. At this range, the absorption and scattering of the radiation by the body is minimal. Thus, tissues are almost transparent. To improve the efficacy and selectivity of the energy-to-heat transduction, a light-absorbing material, the photothermal agent, must be introduced into the tumor. At present, a vast array of compounds are available as photothermal agents. Among the substances used as photothermal agents, gold-based compounds are one of the most employed. However, the undefined toxicity of this metal hinders their clinical investigations in the long run. Magnetic nanoparticles are a good alternative for use as a photothermal agent in the treatment of tumors. Such nanoparticles, especially those formed by iron oxides, can be used in combination with other substances or used themselves as photothermal agents. The combination of magnetic nanoparticles with other photothermal agents adds more capabilities to the therapeutic system: the nanoparticles can be directed magnetically to the site of interest (the tumor) and their distribution in tumors and other organs can be imaged. When used alone, magnetic nanoparticles present, in theory, an important limitation: their molar absorption coefficient in the near infrared region is low. The controlled clustering of the nanoparticles can solve this drawback. In such conditions, the absorption of the indicated radiation is higher and the conversion of energy in heat is more efficient than in individual nanoparticles. On the other hand, it can be designed as a therapeutic system, in which the heat generated by magnetic nanoparticles after irradiation with infrared light can release a drug attached to the nanoparticles in a controlled manner. This form of targeted drug delivery seems to be a promising tool of chemo-phototherapy. Finally, the heating efficiency of iron oxide nanoparticles can be increased if the infrared radiation is combined with an alternating magnetic field.
Collapse
Affiliation(s)
- Joan Estelrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27⁻31, 08028 Barcelona, Catalonia, Spain.
- Nstitut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| | - Maria Antònia Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27⁻31, 08028 Barcelona, Catalonia, Spain.
- Nstitut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|