1
|
Li K, Song J, Lu Y, Zhang D, Wang Y, Wang X, Tang Y, Yu Y, Zhang X, Yang X, Cai Q. Biodegradable Piezoelectric Janus Membrane Enabling Dual Antibacterial and Osteogenic Functions for Periodontitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23707-23721. [PMID: 40202058 DOI: 10.1021/acsami.5c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Guided tissue regeneration (GTR) using barrier membranes is a common clinical approach for treating periodontitis-induced alveolar bone loss. However, conventional GTR membranes lack antibacterial and osteoinductive properties, limiting their effectiveness. Piezoelectric materials, which generate electrical outputs under chewing forces, offer antibacterial and bone-regenerative potential due to their oppositely charged surfaces. Inspired by this, a piezoelectric Janus membrane was developed for dual-function GTR therapy. Biodegradable poly(l-lactide) (PLLA) and PLLA/gelatin membranes were electrospun, annealed, and polarized to create the A-P(+)/PG(-) piezoelectric Janus membrane. Notably, in this Janus membrane, the outer surface of the PLLA side (A-P(+)) carries positive charges and is positioned toward the gingival tissue to kill bacteria via charge interactions; the inner surface of the PG side (PG(-)) holds negative charges and faces the alveolar bone defect, promoting bone growth through immunomodulation and enhanced mineralization. In a mouse model of periodontitis, the Janus membrane A-P(+)/PG(-) demonstrated dual functionality, effectively reducing inflammation, inhibiting bone resorption. The bone mineral density of A-P(+)/PG(-) reached 1637 ± 37 mg/cm3 at 8 weeks after surgery, which was superior to commercial collagen membranes lacking antibacterial properties. Overall, this study introduces an innovative approach, leveraging biodegradable piezoelectric PLLA to construct a versatile Janus GTR membrane with enhanced antibacterial and osteogenic activity for periodontitis treatment.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Daixing Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujing Tang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Oral Translational Medicine Research Center, Joint Training Base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair, Reconstruction and Regeneration, The First People's Hospital of Jinzhong, Jinzhong, 030600, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Zhang J, Li Y, Xiang Z, Pu H, Ji C, Ren X, Fu D, Wang Y. In Situ H 2S-Releasing Stents Optimize Vascular Healing. ACS NANO 2025; 19:12864-12882. [PMID: 40159867 DOI: 10.1021/acsnano.4c16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stent implantation remains a cornerstone of interventional cardiology, providing a minimally invasive solution to restore blood flow in occluded vessels. However, current stents face persistent challenges in simultaneously preventing neointimal hyperplasia and promoting reendothelialization, compromising their long-term efficacy. To address these limitations, we developed an in situ H2S-releasing polymer brush-coated stent that actively modulates material-blood interactions, creating a favorable microenvironment for vascular healing. H2S enhances the stent's antithrombotic properties by inhibiting fibrinogen binding and platelet activation, while also mitigating oxidative stress and promoting macrophage polarization toward the anti-inflammatory M2 phenotype. In vivo, the H2S-releasing stents significantly improved vascular healing by accelerating endothelialization and inhibiting smooth muscle cell overproliferation, resulting in a thinner neointima with functional endothelial coverage. Transcriptomic analysis further elucidated the underlying mechanisms, revealing H2S-mediated modulation of key biological pathways that support vascular healing. These findings underscore the potential of in situ H2S release as an effective strategy for optimizing vascular implants and improving long-term outcomes.
Collapse
Affiliation(s)
- Jiayi Zhang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Li
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Xiang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongxia Pu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Ji
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xingrong Ren
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Li G, Wang Y, Pang Y, Wang X, Li X, Leng H, Yu Y, Yang X, Cai Q. Magnesium-gallate MOF integrated conductive cryogel for inflammation regulation and boosting bone regeneration. Int J Biol Macromol 2025; 306:141672. [PMID: 40043977 DOI: 10.1016/j.ijbiomac.2025.141672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
The regeneration and repair of natural bone is a complex and multifaceted process. Potentially, multifunctional scaffolds that exhibit synergistic effects of various biological activities and align with the dynamic bone healing process, are highly expected to achieve desirable bone repairing outcomes. Bioavailable magnesium (Mg) is an essential element taking part in bone regeneration via promoting angiogenesis and osteogenesis. Polyphenol gallic acid (GA) is an anti-inflammatory molecule that can modulate immune microenvironment. To control their release behaviors, Mg2+ and GA can react with each other to form metal-organic frameworks (MOF), which are then embedded into conductive porous scaffolds made of gelatin cryogel and poly(3,4-ethyldioxyethiophene): polystyrene sulfonate (PEDOT:PSS). In in vitro cell culture, the MOF-integrated conductive scaffold can simultaneously provide sustained supply of Mg2+ and GA to modulate the biological responses of a variety of cells. In in vivo evaluations, it shows remarkably enhanced new bone formation, as compared to groups of only MOF-contained non-conductive scaffold or conductive scaffold without MOF in rat calvarial defect model. In summary, conductive scaffold associated with sustained release of bioactive factors can serve as an effective treatment for inducing neo-bone growth benefiting from the synergistical contributions of diverse bioactive factors.
Collapse
Affiliation(s)
- Guangyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyun Pang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaomin Li
- SINOPEC Beijing Research Institute of Chemical Industry Co. Ltd., Beijing 100728, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China.
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
5
|
Jang W, Kim DY, Mun SJ, Choi JH, Roh YH, Bong KW. Direct functionalization of cell‐adhesion promoters to hydrogel microparticles synthesized by stop‐flow lithography. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Do Yeon Kim
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Jun Hee Choi
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| |
Collapse
|
6
|
An S, Nam J, Kanimozhi C, Song Y, Kim S, Shin N, Gopalan P, Kim M. Photoimageable Organic Coating Bearing Cyclic Dithiocarbonate for a Multifunctional Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3274-3283. [PMID: 35045603 DOI: 10.1021/acsami.1c19559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the fabrication of photocross-linkable and surface-functionalizable polymeric thin films using reactive cyclic dithiocarbonate (DTC)-containing copolymers. The chemical functionalities of these material surfaces were precisely defined with light illumination. The DTC copolymers, namely, poly(dithiocarbonate methylene methacrylate-random-alkyl methacrylate)s, were synthesized via reversible addition-fragmentation chain transfer polymerization, and the reaction kinetics was thoroughly analyzed. The copolymers were cross-linked into a coating using a bifunctional urethane cross-linker that contains a photolabile o-nitrobenzyl group and releases aniline upon exposure to light. The nucleophilic attack of the aromatic amine opens the DTC group, forming a carbamothioate bond and generating a reactive thiol group in the process. The surface concentrations of the unreacted DTC and thiol were effectively controlled by varying the amounts of the copolymer and the cross-linker. The use of methacrylate comonomers led to additional reactive surface functionality such as carboxylic acid via acid hydrolysis. The successful transformations of the resulting DTC, thiol, and carboxylic acid groups to different functionalities via sequential nucleophilic ring opening, thiol-ene, and carbodiimide coupling reactions under ambient conditions were confirmed quantitatively using X-ray photoelectron spectroscopy. The presented chemistries were readily adapted to the immobilization of complex molecules such as a fluorophore and a protein in lithographically defined regions, highlighting their potential in creating organic coatings that can have multiple functional groups under ambient conditions.
Collapse
Affiliation(s)
- Sol An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jieun Nam
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Catherine Kanimozhi
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Youngjoo Song
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seungjun Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Naechul Shin
- Department of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Liu S, Sun J, Yuan S, Yang Y, Gong Y, Wang Y, Guo R, Zhang X, Liu Y, Mi H, Wang M, Liu M, Li R. Treated dentin matrix induces odontogenic differentiation of dental pulp stem cells via regulation of Wnt/β-catenin signaling. Bioact Mater 2022; 7:85-97. [PMID: 34466719 PMCID: PMC8379347 DOI: 10.1016/j.bioactmat.2021.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/03/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Treated dentin matrix (TDM) is an ideal scaffold material containing multiple extracellular matrix factors. The canonical Wnt signaling pathway is necessary for tooth regeneration. Thus, this study investigated whether the TDM can promote the odontogenic differentiation of human dental pulp stem cells (hDPSCs) and determined the potential role of Wnt/β-catenin signaling in this process. Different concentrations of TDM promoted the dental differentiation of the hDPSCs and meanwhile, the expression of GSK3β was decreased. Of note, the expression of the Wnt/β-catenin pathway-related genes changed significantly in the context of TDM induction, as per RNA sequencing (RNA seq) data. In addition, the experiment showed that new dentin was visible in rat mandible cultured with TDM, and the thickness was significantly thicker than that of the control group. In addition, immunohistochemical staining showed lower GSK3β expression in new dentin. Consistently, the GSK3β knockdown hDPSCs performed enhanced odotogenesis compared with the control groups. However, GSK3β overexpressing could decrease odotogenesis of TDM-induced hDPSCs. These results were confirmed in immunodeficient mice and Wistar rats. These suggest that TDM promotes odontogenic differentiation of hDPSCs by directly targeting GSK3β and activating the canonical Wnt/β-catenin signaling pathway and provide a theoretical basis for tooth regeneration engineering.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Yuan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou, Henan 450001, China
| | - Yuping Gong
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runying Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Mi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiyue Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhe Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
DNA nanotechnology-facilitated ligand manipulation for targeted therapeutics and diagnostics. J Control Release 2021; 340:292-307. [PMID: 34748871 DOI: 10.1016/j.jconrel.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Ligands, mostly binding to proteins to form complexes and catalyze chemical reactions, can serve as drug and probe molecules, as well as sensing elements. DNA nanotechnology can integrate the high editability of DNA nanostructures and the biological activity of ligands into functionalized DNA nanostructures in a manner of controlled ligand stoichiometry, type, and arrangement, which provides significant advantages for targeted therapeutics and diagnostics. As therapeutic agents, multiple- and multivalent-ligands functionalized DNA nanostructures increase ligand-receptor affinity and activate multivalent ligand-receptor interactions, enabling improved regulation of cell signaling and enhanced control of cell behavior. As diagnostic agents, multiple ligands interaction via DNA nanostructures endows DNA nanosensors with high sensitivity and excellent signal transduction capability. Herein, we review the principles and advantages of using DNA nanostructures to manipulate ligands for targeted therapeutics and diagnostics and provide future perspectives.
Collapse
|
9
|
Feng KC, Li J, Wang L, Chuang YC, Liu H, Pinkas-Sarafova A, Chang CC, Nam CY, Simon M, Rafailovich M. Combination of 3D Printing and ALD for Dentin Fabrication from Dental Pulp Stem Cell Culture. ACS APPLIED BIO MATERIALS 2021; 4:7422-7430. [DOI: 10.1021/acsabm.1c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuan-Che Feng
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
| | - Juyi Li
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
| | - Likun Wang
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
| | - Ya-Chen Chuang
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
| | - Haijiao Liu
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
| | - Adriana Pinkas-Sarafova
- Department for Continuing Education, Suffolk County Community College, Sayville, New York 11782, United States
| | | | - Chang-Yong Nam
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Lab, Upton, New York 117973, United States
| | - Marcia Simon
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook Univeristy, Stony Brook, New York 11794, United States
| |
Collapse
|
10
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Vigneswari S, Chai JM, Kamarudin KH, Amirul AAA, Focarete ML, Ramakrishna S. Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB- co-4HB) for H9c2 Myoblast Cell Proliferation. Front Bioeng Biotechnol 2020; 8:567693. [PMID: 33195129 PMCID: PMC7653028 DOI: 10.3389/fbioe.2020.567693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jun Meng Chai
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Khadijah Hilmun Kamarudin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, George Town, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
In situ ornamenting poly(ε-caprolactone) electrospun fibers with different fiber diameters using chondrocyte-derived extracellular matrix for chondrogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces 2020; 197:111374. [PMID: 33032177 DOI: 10.1016/j.colsurfb.2020.111374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022]
Abstract
Biomimetic instructive tissue engineering scaffolds are critical for achieving successful tissue regeneration. In the present study, we developed a novel scaffold via ornamenting poly(ε-caprolactone) (PCL) electrospun fibers with a chondrocyte-derived extracellular matrix (ECM)-coating, which was applied for chondrogenesis of mesenchymal stem cells (MSCs). PCL fibrous films with different fiber diameters (1282±121 nm, 549±61 nm and 285±38 nm) were first prepared via electrospinning. Rabbit articular chondrocytes (rACs) were cultured on PCL fibrous scaffolds, followed by a decellularization treatment to generate decellularized ECM (dECM)-coated PCL scaffolds (dECM/PCL). Rabbit bone marrow-derived MSCs (rMSCs) were then seeded onto these scaffolds and adhesion, proliferation and chondrogenic differentiation were evaluated. dECM/PCL scaffolds displayed distinct surface microstructural features with varying fiber diameters and fibrous mesh-like ECM with more developed collagen fibers was observed on nanofibers. On dECM/PCL scaffolds, rMSCs tended to spread more at 24 h post-seeding and proliferated better within 7 d compared to those on uncoated PCL scaffolds. Based on analysis of gene expression, rMSCs underwent the best chondrogenic differentiation on dECM/PCL scaffolds of 549-nm fibers. Collectively, such dECM/PCL composite scaffolds are very promising for cartilage tissue regeneration.
Collapse
|
14
|
Sumida H, Yoshizaki Y, Kuzuya A, Ohya Y. Versatile Cell-Specific Ligand Arrangement System onto Desired Compartments of Biodegradable Matrices for Site-Selective Cell Adhesion Using DNA Tags. Biomacromolecules 2020; 21:3713-3723. [PMID: 32786732 DOI: 10.1021/acs.biomac.0c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A promising approach for the regeneration of tissues or organs with three-dimensional hierarchical structures is the preparation of scaffold-cell complexes that mimic these hierarchical structures. This requires an effective technique for immobilizing cell-specific ligands at arbitrarily chosen positions on matrices. Here, we report a versatile system for arranging cell-specific ligands onto desired compartments of biodegradable matrices for site-selective cell arrangement. We utilized the specific binding abilities of specific DNAs, immobilizing them as tags to arrange cell-recognition ligands at desired areas of the matrices by specific binding with cell-recognition ligand-DNA conjugates. We synthesized poly(l-lactide) (PLLA), a biodegradable polymer, with an oligo-DNA (trimer of deoxyguanosine: dG3) attached via a poly(ethylene glycol) (PEG) spacer to generate dG3-PEG-b-PLLA. The peptides Arg-Gly-Asp-Ser (RGDS) and Arg-Glu-Asp-Val (REDV) were chosen as cell-recognition ligands and were attached to an adapter DNA (aDNA), which can specifically bind to the dG3 moiety through G-quadruplex formation. The obtained dG3-PEG-b-PLLA was deposited on a small spot of the PLLA film, and the aDNA-RGDS or aDNA-REDV conjugate was added on the film to immobilize these ligands at the spot. We confirmed the specific adhesion of L929 cells (a mouse fibroblast cell line) and human umbilical vein endothelial cells (HUVECs) on the small areas coated with dG3-PEG-b-PLLA in the presence of aDNA-RGDS and aDNA-REDV, respectively, even after applying shear stress by flowing medium across the spot. Cell-specific attachment of the target cells was effectively achieved in a spatially controlled manner. This technique has the potential for the construction of cell-scaffold complexes that mimic the hierarchical structures of natural organs and may represent a breakthrough in realizing regenerative medicine and tissue engineering of complex organs.
Collapse
Affiliation(s)
- Hiromichi Sumida
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Akinori Kuzuya
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.,Collaborate Research Center of Engineering, Medicine and Pharmacology, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| |
Collapse
|
15
|
Zheng H, Tian Y, Gao Q, Yu Y, Xia X, Feng Z, Dong F, Wu X, Sui L. Hierarchical Micro-Nano Topography Promotes Cell Adhesion and Osteogenic Differentiation via Integrin α2-PI3K-AKT Signaling Axis. Front Bioeng Biotechnol 2020; 8:463. [PMID: 32509748 PMCID: PMC7248375 DOI: 10.3389/fbioe.2020.00463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Surface topography dictates important aspects of cell biological behaviors. In our study, hierarchical micro-nano topography (SLM-AHT) with micro-scale grooves and nano-scale pores was fabricated and compared with smooth topography (S) and irregular micro-scale topography (SLA) surfaces to investigate mechanism involved in cell-surface interactions. Integrin α2 had a higher expression level on SLM-AHT surface compared with S and SLA surfaces, and the expression levels of osteogenic markers icluding Runx2, Col1a1, and Ocn were concomitantly upregulated on SLM-AHT surface. Moreover, formation of mature focal adhesions were significantly enhanced in SLM-AHT group. Noticablely, silencing integrin α2 could wipe out the difference of osteogenic gene expression among surfaces with different topography, indicating a crucial role of integrin α2 in topography induced osteogenic differentiation. In addition, PI3K-AKT signaling was proved to be regulated by integrin α2 and consequently participate in this process. Taken together, our findings illustrated that integrin α2-PI3K-AKT signaling axis plays a key role in hierarchical micro-nano topography promoting cell adhesion and osteogenic differentiation.
Collapse
Affiliation(s)
- Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yujuan Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qian Gao
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yingjie Yu
- Health Science Center, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyou Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhipeng Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Feng Dong
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Yang T, Li Y, Hong Y, Chi L, Liu C, Lan Y, Wang Q, Yu Y, Xu Q, Teng W. The Construction of Biomimetic Cementum Through a Combination of Bioskiving and Fluorine-Containing Biomineralization. Front Bioeng Biotechnol 2020; 8:341. [PMID: 32391345 PMCID: PMC7193115 DOI: 10.3389/fbioe.2020.00341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous attention is given to the construction of biomimetic cementum for regeneration of tooth cementum, the lack of recapitulating the composition and hierarchical structure of cementum often leads to the poor performance of constructed materials. How to highly mimic the sophisticated composition and hierarchy of cementum remains a longstanding challenge in constructing the biomimetic cementum. Inspired by cementum formation process, a novel construction approach via a combination of bioskiving and fluorine-containing biomineralization is developed in this study. The alternative collagen lamellae (ACL) that can highly mimic the rotated plywood structure of cementum collagen matrix is fabricated via bioskiving. Followed by biomineralization in the amorphous calcium phosphate (ACP) solution with different concentration of fluorine, a series of biomimetic cementum is constructed. Screened by physicochemical characterization, the biomimetic cementum with the composition and hierarchical structure highly similar to human cementum is selected. Through in vitro biological assay, this biomimetic cementum is proven to significantly promote the adhesion, proliferation, and cementogenic differentiation of periodontal ligament cells (PDLCs). Furthermore, in vivo study demonstrates that biomimetic cementum could induce cementogenesis. This biomimetic cementum constructed via combinatory application of bioskiving and fluorine-containing biomineralization stands as a promising candidate for achieving cementum regeneration.
Collapse
Affiliation(s)
- Tao Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanshan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yubing Hong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu Lan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingjie Yu
- Institute of Translational Medicine, The First Affiliated Hospital, Shenzhen University, Health Science Center, Shenzhen, China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Yang T, Xie P, Wu Z, Liao Y, Chen W, Hao Z, Wang Y, Zhu Z, Teng W. The Injectable Woven Bone-Like Hydrogel to Perform Alveolar Ridge Preservation With Adapted Remodeling Performance After Tooth Extraction. Front Bioeng Biotechnol 2020; 8:119. [PMID: 32154241 PMCID: PMC7047753 DOI: 10.3389/fbioe.2020.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
Grafting bone substitute is paramount to prevent the alveolar ridge resorption after tooth extraction and facilitate the subsequent implant treatment. An ideal bone substitute should acquire the excellent osteogenic property, more importantly, possess the suitable remodeling rate in balance with bone formation and desirable clinical manageability. However, none of bone substitute is simultaneously characterized by these features, and currently, the limited remodeling property leads to the excessive waiting time before implantation. Enlightened by woven bone, the transitional tissue that is able to induce osteogenesis during bone healing could be easily remodeled within a short period and depend on the favorable injectability of hydrogel, an injectable woven bone-like hydrogel (IWBLH) was constructed in this study to address the above problems. To mimic the component and hierarchical structure of woven bone, amorphous calcium phosphate (ACP) and mineralized collagen fibril were synthesized and compounded with alginate to form IWBLHs with various ratio. Screened by physiochemical characterization and in vitro biological assays, an optimal IWBLH was selected and further explored in rat model of tooth extraction. Compared with the most widely used bone substitute, we showed that IWBLH could be easily handled to fully fill the tooth socket, perform a comparable function to prevent the alveolar bone resorption, and completely remodeled within 4 weeks. This IWBLH stands as a promising candidate for alveolar ridge preservation (ARP) in future.
Collapse
Affiliation(s)
- Tao Yang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Wu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yunmao Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhichao Hao
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Teng
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Townsend JM, Hukill ME, Fung KM, Ohst DG, Johnson JK, Weatherly RA, Detamore MS. Biodegradable electrospun patch containing cell adhesion or antimicrobial compounds for trachea repair in vivo. Biomed Mater 2020; 15:025003. [PMID: 31791031 PMCID: PMC7065275 DOI: 10.1088/1748-605x/ab5e1b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Difficulty breathing due to tracheal stenosis (i.e. narrowed airway) diminishes the quality of life and can potentially be life-threatening. Tracheal stenosis can be caused by congenital anomalies, external trauma, infection, intubation-related injury, and tumors. Common treatment methods for tracheal stenosis requiring surgical intervention include end-to-end anastomosis, slide tracheoplasty and/or laryngotracheal reconstruction. Although the current methods have demonstrated promise for treatment of tracheal stenosis, a clear need exists for the development of new biomaterials that can hold the trachea open after the stenosed region has been surgically opened, and that can support healing without the need to harvest autologous tissue from the patient. The current study therefore evaluated the use of electrospun nanofiber scaffolds encapsulating 3D-printed PCL rings to patch induced defects in rabbit tracheas. The nanofibers were a blend of polycaprolactone (PCL) and polylactide-co-caprolactone (PLCL), and encapsulated either the cell adhesion peptide, RGD, or antimicrobial compound, ceragenin-131 (CSA). Blank PCL/PLCL and PCL were employed as control groups. Electrospun patches were evaluated in a rabbit tracheal defect model for 12 weeks, which demonstrated re-epithelialization of the luminal side of the defect. No significant difference in lumen volume was observed for the PCL/PLCL patches compared to the uninjured positive control. Only the RGD group did not lead to a significant decrease in the minimum cross-sectional area compared to the uninjured positive control. CSA reduced bacteria growth in vitro, but did not add clear value in vivo. Adequate tissue in-growth into the patches and minimal tissue overgrowth was observed inside the patch material. Areas of future investigation include tuning the material degradation time to balance cell adhesion and structural integrity.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Makenna E. Hukill
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | - Robert A. Weatherly
- Section of Otolaryngology, Department of Surgery, Children’s Mercy Hospital, Kansas City, MO, 64108
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
19
|
Zhang Y, Hu J, Xie R, Yang Y, Cao J, Tu Y, Zhang Y, Qin T, Zhao X. A programmable, fast-fixing, osteo-regenerative, biomechanically robust bone screw. Acta Biomater 2020; 103:293-305. [PMID: 31857258 DOI: 10.1016/j.actbio.2019.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023]
Abstract
The use of a screw for repairing defected bones is limited by the dilemma between stiffness, bioactivity and internal fixation ability in current products. For polymer bone screw, it is difficult to achieve the bone stiffness and osteo-induction. Polymer composites may enhance bioactivity and mechanical properties but sacrifice the shape memory properties enormously. Herein, we fabricated a programmable bone screw which is composed of shape memory polyurethane, hydroxyapatite and arginylglycylaspartic acid to resolve the above problem. This composite has significantly improved mechanical and shape-memory properties with a modulus of 250 MPa, a shape fixity ratio of ~90% and a shape recovery ratio of ~96%. Moreover, shape fixity and recovery ratios of the produced SMPC screw in the simulative biological condition were respectively ~80% and ~82%. The produced screw could quickly recover to its original shape in vitro within 20 s leading to easy internal fixation. Additionally, the composite could support mesenchymal stem cell survival, proliferation and osteogenic differentiation in vitro tests. It also promoted tissue growth and showed beneficial mechanical compatibility after implantation into a rabbit femoral intracondyle for 12 weeks with little inflammation. Such bone screw exhibited a fast-fixing, tightened fitting, enhanced supporting and boosted bioactivity simultaneously in the defective bone, which provides a solution to the long-standing problem for bone repairing. We envision that our composite material will provide valuable insights into the development of a new generation of bone screws with good fixation and osteogenic properties. STATEMENT OF SIGNIFICANCE: The main obstacles to a wider use of a bone screw are unsatisfied stiffness, inflammatory response and screw loosening issues. Herein, we report a programmable screw with mechanically robust, bioactive and fast-fixing performances. The shape memory polymer composite takes advantage of the component in the natural bone and possesses a stable bush-like structure inside through the covalent bonding, and thus achieve significantly improved mechanical and memory properties. Based on its shape memory effect, the produced screw was proved to offer a recovery force to surroundings and promote the bone regeneration effectively. Therefore, the composite realizes our expectations on functions through structure design and paves a practical and effective way for the development of a new generation of bone screws.
Collapse
|
20
|
Characterization of Polysaccharides Extracted from Sargassum fusiforme and Its Effective Prevention of Contrast-Induced Nephropathy via Enhancing Antioxidant Capacity. INT J POLYM SCI 2019. [DOI: 10.1155/2019/9035818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contrast-induced nephropathy (CIN) is a common complication in patients with coronary arteriography, and oxidative stress is involved in the CIN pathogenesis. Sargassum fusiforme (SF) is a brown seaweed with medicinal value, and its polysaccharides have good antioxidant activity. In this study, the crude polysaccharides (cSFP-C) were extracted by cold water, precipitated by ethanol, purified by CaCl2, and detected with high contents of sulfate radical and fucose. cSFP-C is composed of glucose, glucuronic acid, xylose, rhamnose, mannose, galactose, and fucose with a molar ratio of 1.0 : 0.4 : 5.6 : 1.2 : 1.7 : 12.3 : 56.1. The cSFP-C has the typical absorption of polysaccharides. Antioxidation assays in vitro showed that cSFP-C exhibited superoxide radical scavenging activity which was better than the hot water-extracted crude polysaccharides (cSFP-H). 20 rats were divided into 4 groups (n=5): sham group; CIN group; CIN+cSFP-C group, and cSFP-C group. The CIN+cSFP-C group and cSFP-C group were pretreated intragastrically with cSFP-C at a dose of 9.45 g/kg twice daily for 5 consecutive days. Then, the CIN group and CIN+cSFP-C group were given indomethacin to develop CIN. The in vivo results showed that cSFP-C could decrease blood creatinine and urea nitrogen, inhibiting pathological injury in the renal tissues. The MDA content of renal tissues was decreased, while the activity of SOD was increased. The crude sulfated polysaccharides extracted from S. fusiforme have a renoprotective effect on oxidative stress to alleviate the kidney injury in CIN rats.
Collapse
|
21
|
Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers. Carbohydr Polym 2019; 226:115259. [DOI: 10.1016/j.carbpol.2019.115259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022]
|
22
|
Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomater 2019; 96:55-67. [PMID: 31152941 DOI: 10.1016/j.actbio.2019.05.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Local anesthetics, which cause temporary loss of pain by inhibiting the transmission of nerve impulses, have been widely used in clinical practice. However, neurotoxicity and short half-lives have significantly limited their clinical applications. To overcome those barriers, numerous drug delivery systems (DDS) have been designed to encapsulate local anesthetic agents, so that large doses can be released slowly and provide analgesia over a prolonged period. So far, multiple classes of local anesthetic carriers have been investigated, with some of them already on the market. Among those, polymer-based delivery platforms are the most extensively explored, especially in the form of polymeric nanoparticle carriers. This review gives a specific focus on the most commonly used natural and synthetic polymers for local anesthetics delivery, owing to their excellent biocompatibility, biodegradability and versatility. State-of-the-art studies concerning such polymer delivery systems have been discussed in depth. We also highlight the impact of those delivery platforms as well as some key challenges that need to be overcome for their broader clinical applications. STATEMENT OF SIGNIFICANCE: Currently, local anesthetics have been widely used in clinically practices to prevent transmission of nerve impulses. However, the applications of anesthetics are greatly limited due to their neurotoxicity and short half-lives. Moreover, it is difficult to maintain frequent administrations which can cause poor compliance and serious consequences. Numerous drug delivery systems have been developed to solve those issues. In this review, we highlight the recent advances in polymer-based drug delivery systems for local anesthetics. The advantages as well as shortcomings for different types of polymer-based drug delivery systems are summarized in this paper. In the end, we also give prospects for future development of polymer drug delivery systems for anesthetics.
Collapse
|
23
|
Kim J, Choe J, Son D, Kim M. Copolymerization Kinetics of a Simple Methacrylate and Functional Comonomers Via Cu(0)‐mediated Reversible Deactivation Radical Polymerization. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jisu Kim
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| | - Jongwon Choe
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| | - Dongwan Son
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical EngineeringInha University Incheon 22212 South Korea
| |
Collapse
|
24
|
Zhang L, Feng KC, Yu Y, Chuang YC, Chang CC, Vadada S, Patel R, Singh V, Simon M, Rafailovich M. Effect of Graphene on Differentiation and Mineralization of Dental Pulp Stem Cells in Poly(4-vinylpyridine) Matrix in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:2435-2443. [DOI: 10.1021/acsabm.9b00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linxi Zhang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- ThINC Facility, Advanced Energy Center, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kuan-Che Feng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingjie Yu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ya-Chen Chuang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- ThINC Facility, Advanced Energy Center, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chung-Chueh Chang
- ThINC Facility, Advanced Energy Center, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sahith Vadada
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Rushikesh Patel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Vedant Singh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Marcia Simon
- Department of Oral Biology and Pathology, University School of Dental Medicine, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
25
|
Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:96-104. [DOI: 10.1016/j.msec.2018.10.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/02/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
|
26
|
Zhang Y, Hu J, Zhao X, Xie R, Qin T, Ji F. Mechanically Robust Shape Memory Polyurethane Nanocomposites for Minimally Invasive Bone Repair. ACS APPLIED BIO MATERIALS 2019; 2:1056-1065. [PMID: 35021395 DOI: 10.1021/acsabm.8b00655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yuanchi Zhang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Jinlian Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- Smart Biomaterial Research Center, The Hong Kong Polytechnic University, Shen Zhen Base, Hong Kong 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ruiqi Xie
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Tingwu Qin
- Institute of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Fenglong Ji
- School of Textiles Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
27
|
Cui C, Wen M, Zhou F, Zhao Y, Yuan X. Target regulation of both VECs and VSMCs by dual-loading miRNA-126 and miRNA-145 in the bilayered electrospun membrane for small-diameter vascular regeneration. J Biomed Mater Res A 2018; 107:371-382. [PMID: 30461189 DOI: 10.1002/jbm.a.36548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 11/10/2022]
Abstract
Clinical utility of small-diameter vascular grafts is still challenging in blood vessel regeneration owing to thrombosis and intimal hyperplasia. To cope with the issues, modulation of gene expression via microRNAs (miRNAs) could be a feasible approach by rational regulating physiological activities of both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Our previous studies demonstrated that individually loaded miRNA-126 (miR-126) or miRNA-145 (miR-145) in the electrospun membranes showed the tendency to promote vascular regeneration. In this work, the bilayered electrospun graft in 1.5-mm diameter was developed by emulsion electrospinning to dual-load miR-126 and miR-145 for target regulation of both VECs and VSMCs, respectively. Accelerated release of miR-126 was achieved by introducing poly(ethylene glycol) in the inner electrospun poly(ethylene glycol)-b-poly(l-lactide-co-caprolactone) ultrafine fibrous membrane, reaching 61.3 ± 1.2% of the cumulative release in the initial 10 days, whereas the outer electrospun poly(l-lactide-co-glycolide) membrane composed of microfibers fulfilled prolonged release of miR-145 for about 56 days. In vivo tests suggested that dual-loading with miR-126 and miR-145 in the bilayered electrospun membranes could modulate both VECs and VSMCs for rapid endothelialization and hyperplasia inhibition as well. It is reasonably expected that dual target-delivery of miR-126 and miR-145 in the electrospun vascular grafts has effective potential for small-diameter vascular regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 371-382, 2019.
Collapse
Affiliation(s)
- Ce Cui
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Meiling Wen
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Fang Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
28
|
Townsend JM, Ott LM, Salash JR, Fung KM, Easley JT, Seim HB, Johnson JK, Weatherly RA, Detamore MS. Reinforced Electrospun Polycaprolactone Nanofibers for Tracheal Repair in an In Vivo Ovine Model. Tissue Eng Part A 2018; 24:1301-1308. [PMID: 29580173 PMCID: PMC6150933 DOI: 10.1089/ten.tea.2017.0437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/01/2018] [Indexed: 01/24/2023] Open
Abstract
Tracheal stenosis caused by congenital anomalies, tumors, trauma, or intubation-related damage can cause severe breathing issues, diminishing the quality of life, and potentially becoming fatal. Current treatment methods include laryngotracheal reconstruction or slide tracheoplasty. Laryngotracheal reconstruction utilizes rib cartilage harvested from the patient, requiring a second surgical site. Slide tracheoplasty involves a complex surgical procedure to splay open the trachea and reconnect both segments to widen the lumen. A clear need exists for new and innovative approaches that can be easily adopted by surgeons, and to avoid harvesting autologous tissue from the patient. This study evaluated the use of an electrospun patch, consisting of randomly layered polycaprolactone (PCL) nanofibers enveloping 3D-printed PCL rings, to create a mechanically robust, suturable, air-tight, and bioresorbable graft for the treatment of tracheal defects. The study design incorporated two distinct uses of PCL: electrospun fibers to promote tissue integration, while remaining air-tight when wet, and 3D-printed rings to hold the airway open and provide external support and protection during the healing process. Electrospun, reinforced tracheal patches were evaluated in an ovine model, in which all sheep survived for 10 weeks, although an overgrowth of fibrous tissue surrounding the patch was observed to significantly narrow the airway. Minimal tissue integration of the surrounding tissue and the electrospun fibers suggested the need for further improvement. Potential areas for further improvement include a faster degradation rate, agents to increase cellular adhesion, and/or an antibacterial coating to reduce the initial bacterial load.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | | | | | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeremiah T. Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado
| | | | - Robert A. Weatherly
- Section of Otolaryngology, Department of Surgery, Children's Mercy Hospital, Kansas City, Missouri
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
29
|
Niu Y, Stadler FJ, He T, Zhang X, Yu Y, Chen S. Smart multifunctional polyurethane microcapsules for the quick release of anticancer drugs in BGC 823 and HeLa tumor cells. J Mater Chem B 2017; 5:9477-9481. [PMID: 32264561 DOI: 10.1039/c7tb02570j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Smart multifunctional drug delivery systems (DDSs) based on cytophilic fluorescent polyurethane copolymer microcapsules with high tumor cell internalization, triggered release, quick cancer cell death and real time fluorescent monitoring abilities is developed as a facile and versatile approach for precision cancer therapy.
Collapse
Affiliation(s)
- Yuqing Niu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | |
Collapse
|