1
|
Huang X, Shi Y, Jiang L, Chen W, Bao B, Liu T, Zhou Q, Li J, Lin Q, Zhu L. Precise photorelease in living cells by high-viscosity activatable coumarin-based photocages. Chem Sci 2025; 16:3611-3619. [PMID: 39877819 PMCID: PMC11770380 DOI: 10.1039/d4sc06578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions. Inspired by molecular rotor fluorophores, we have developed a series of high-viscosity activated photocages by modifying the C3 position of the coumarin scaffold with electron-withdrawing groups. In low-viscosity environments, both fluorescence and photocleavage of the photocages are inhibited by nonradiative decay caused by intramolecular free rotation. In contrast, in high-viscosity environments, the restriction of this intramolecular rotation restores fluorescence and photocleavage. These unique photolysis properties enable the selective photorelease of these photocages in high-viscosity conditions. As a proof of concept, we have developed a drug delivery system that targets abnormal mitochondria with high viscosity. This system demonstrates enhanced photolysis efficiency in abnormal mitochondria compared to normal ones, allowing for precise drug release in diseased mitochondria while ensuring excellent biological safety in healthy mitochondria. We anticipate that these photocages will serve as convenient and efficient tools for the precise release of active molecules in high-viscosity environments.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yajie Shi
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wanqi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Jiaxin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
2
|
Skwarecki AS, Stefaniak-Skorupa J, Nowak MG. Trimethyl Lock Based Tools for Drug Delivery and Cell Imaging - Synthesis and Properties. Chemistry 2025; 31:e202403486. [PMID: 39494549 DOI: 10.1002/chem.202403486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Trimethyl lock (TML) systems have become increasingly important in medicinal and bioorganic chemistry, particularly for their roles in the targeted delivery of therapeutic agents and as integral components in fluorogenic probes for cellular imaging. The simplicity and efficiency of their synthesis have established TML systems as versatile platforms for the controlled release of active molecules under particular physiological conditions. This review consolidates recent advancements in the application of TML systems, with a focus on their use in drug delivery, cellular imaging, and other areas where precise molecular release is crucial. Additionally, we discuss the synthetic strategies employed to construct TML-based conjugates, underscoring their potential to enhance the specificity and efficacy of bioactive compounds in various biomedical applications.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Joanna Stefaniak-Skorupa
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Laboratory of Polymer Chemistry, Faculty of Science, Universite Libre de Bruxelles, CP 206/1, Boulevard du Triophe, 1050, Brussels, Belgium
| |
Collapse
|
3
|
Bargakshatriya R, Pramanik SK. Stimuli-Responsive Prodrug Chemistries for Cancer Therapy. Chembiochem 2023; 24:e202300155. [PMID: 37341379 DOI: 10.1002/cbic.202300155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules' bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Roy NJ, Save SN, Sharma VK, Abraham B, Kuttanamkuzhi A, Sharma S, Lahiri M, Talukdar P. NAD(P)H:Quinone Acceptor Oxidoreductase 1 (NQO1) Activatable Salicylamide H + /Cl - Transporters. Chemistry 2023; 29:e202301412. [PMID: 37345998 DOI: 10.1002/chem.202301412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a detoxifying enzyme overexpressed in tumors, plays a key role in protecting cancer cells against oxidative stress and thus has been considered an attractive candidate for activating prodrug(s). Herein, we report the first use of NQO1 for the selective activation of 'protransporter' systems in cancer cells leading to the induction of apoptosis. Salicylamides, easily synthesizable small molecules, have been effectively used for efficient H+ /Cl- symport across lipid membranes. The ion transport activity of salicylamides was efficiently abated by caging the OH group with NQO1 activatable quinones via either ether or ester linkage. The release of active transporters, following the reduction of quinone caged 'protransporters' by NQO1, was verified. Both the transporters and protransporters exhibited significant toxicity towards the MCF-7 breast cancer line, mediated via the induction of oxidative stress, mitochondrial membrane depolarization, and lysosomal deacidification. Induction of cell death via intrinsic apoptotic pathway was verified by monitoring PARP1 cleavage.
Collapse
Affiliation(s)
- Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shreyada N Save
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, Maharashtra, India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Benchamin Abraham
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Abhijith Kuttanamkuzhi
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, Maharashtra, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
5
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
6
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Ding C, Chen C, Zeng X, Chen H, Zhao Y. Emerging Strategies in Stimuli-Responsive Prodrug Nanosystems for Cancer Therapy. ACS NANO 2022; 16:13513-13553. [PMID: 36048467 DOI: 10.1021/acsnano.2c05379] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prodrugs are chemically modified drug molecules that are inactive before administration. After administration, they are converted in situ to parent drugs and induce the mechanism of action. The development of prodrugs has upgraded conventional drug treatments in terms of bioavailability, targeting, and reduced side effects. Especially in cancer therapy, the application of prodrugs has achieved substantial therapeutic effects. From serendipitous discovery in the early stage to functional design with pertinence nowadays, the importance of prodrugs in drug design is self-evident. At present, studying stimuli-responsive activation mechanisms, regulating the stimuli intensity in vivo, and designing nanoscale prodrug formulations are the major strategies to promote the development of prodrugs. In this review, we provide an outlook of recent cutting-edge studies on stimuli-responsive prodrug nanosystems from these three aspects. We also discuss prospects and challenges in the future development of such prodrugs.
Collapse
Affiliation(s)
- Chendi Ding
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
- School of Medicine, Jinan University, 855 Xingye East Road, Guangzhou 510632, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chunbo Chen
- Clinical Research Center, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
8
|
Meng T, Ma W, Fan M, Tang W, Duan X. Enhancing the Contrast of Tumor Imaging for Image-Guided Surgery Using a Tumor-Targeting Probiotic with the Continuous Expression of a Biomarker. Anal Chem 2022; 94:10109-10117. [PMID: 35802615 DOI: 10.1021/acs.analchem.2c01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor recurrence commonly results from tumor-positive resection margins and metastatic lesions. The complete removal of tumor-positive margins is particularly essential in clinics. Thus, we designed a strategy based on Escherichia coli Nissle 1917 (EcN) nitroreductase (NTR) with a polyethylene glycol (PEG) polymer coating (PC-EcN-NTR) to specifically target and colonize in tumors for high-contrast tumor imaging by providing a large amount of NTR as biomarkers in situ. NTR is a favorable biomarker for tumor detection and imaging. The nfsB-encoding plasmid with a 16S promoter was transfected into EcN for the continuous and stable expression of NTR (E. coli. NfsB). PC-EcN-NTR can accumulate and proliferate for a long time in tumors to substantially express NTR. When the NTR-activated fluorescence (FL) probe was sprayed on the tumor, the tumor region showed fluorescence signals within 5 min. Compared to the tumor without colonization with bacteria, the PC-EcN-NTR-colonized tumors displayed 3.15× enhanced fluorescence signals. Furthermore, the fluorescence signals of the whole tumor can last at least 3 h, which is suitable for a long and meticulous surgical operation. More importantly, in the PC-EcN-NTR-harboring tumor, obvious FL appeared even at the very edge (approximately 200 μm away from the edge) of the tumor tissue. A TCF-Based near-infrared-II fluorescent probe (probe 2) was designed and synthesized. Results similar to those of probe 1 were observed when probe 2 was used for in vivo tumor imaging, which further proved the generality of the enhancing ability of the tumor-targeting probiotic. This strategy will hopefully guide the surgical resection of tumors via monitoring intense NTR activity. It may spur the use of tumor-targeting probiotic and enzyme-activated fluorescent probes for the processes of tumor diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Tianjiao Meng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wenbo Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Mengyue Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
9
|
Johan AN, Li Y. Development of Photoremovable Linkers as a Novel Strategy to Improve the Pharmacokinetics of Drug Conjugates and Their Potential Application in Antibody-Drug Conjugates for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:655. [PMID: 35745573 PMCID: PMC9230074 DOI: 10.3390/ph15060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Although there have been extensive research and progress on the discovery of anticancer drug over the years, the application of these drugs as stand-alone therapy has been limited by their off-target toxicities, poor pharmacokinetic properties, and low therapeutic index. Targeted drug delivery, especially drug conjugate, has been recognized as a technology that can bring forth a new generation of therapeutics with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate is of essential importance because it impacts the circulation time of the conjugate and the release of the drug for full activity at the target site. Recently, the light-triggered linker has attracted a lot of attention due to its spatiotemporal controllability and attractive prospects of improving the overall pharmacokinetics of the conjugate. In this paper, the latest developments of UV- and IR-triggered linkers and their application and potential in drug conjugate development are reviewed. Some of the most-well-researched photoresponsive structural moieties, such as UV-triggered coumarin, ortho-nitrobenzyl group (ONB), thioacetal ortho-nitrobenzaldehyde (TNB), photocaged C40-oxidized abasic site (PC4AP), and IR-triggered cyanine and BODIPY, are included for discussion. These photoremovable linkers show better physical and chemical stabilities and can undergo rapid cleavage upon irradiation. Very importantly, the drug conjugates containing these linkers exhibit reduced off-target toxicity and overall better pharmacokinetic properties. The progress on photoactive antibody-drug conjugates, such as antibody-drug conjugates (ADC) and antibody-photoabsorber conjugate (APC), as precision medicine in clinical cancer treatment is highlighted.
Collapse
Affiliation(s)
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
10
|
Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med Chem 2022; 14:363-383. [PMID: 35102756 DOI: 10.4155/fmc-2021-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NAD(P)H: quinine oxidoreductase (NQO1) is a class of flavoprotein enzymes commonly expressed in eukaryotic cells. It actively participates in the metabolism of various quinones and their in vivo bioactivation through electron reduction reactions. The expression level of NQO1 is highly upregulated in many solid tumor cells compared with that in normal cells. NQO1 has been considered a candidate molecular target because of its overexpression and bioactivity in different tumors. NQO1-responsive prodrugs and nanocarriers have recently been identified as effective objectives for achieving controlled drug release, reducing adverse reactions and improving clinical efficacy. This review systematically introduces the research advances in applying NQO1-responsive prodrugs and nanocarriers to cancer treatment. It also discusses the existing problems and the developmental prospects of these two antitumor drug delivery systems.
Collapse
|
11
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
12
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
13
|
Suzuki AZ, Sakano T, Sasaki H, Watahiki R, Sone M, Horikawa K, Furuta T. Design and synthesis of gene-directed caged cyclic nucleotides exhibiting cell type selectivity. Chem Commun (Camb) 2021; 57:5630-5633. [PMID: 34018507 DOI: 10.1039/d1cc01405f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We designed a new caging group that can be photoactivated only in the presence of a non-endogenous enzyme when exposed to 405 nm light. Because cells or tissues can be genetically tagged by an exogenously expressed enzyme, this novel method can serve as a strategy for adding targeting abilities to photocaged compounds.
Collapse
Affiliation(s)
- Akinobu Z Suzuki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Taichi Sakano
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Hirona Sasaki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Rei Watahiki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Kazuki Horikawa
- Department of Optical Imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto Cho, Tokushima City, Tokushima 770-8503, Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| |
Collapse
|
14
|
Liao X, Yu X, Yu H, Huang J, Zhang B, Xiao J. Development of an anti-infective coating on the surface of intraosseous implants responsive to enzymes and bacteria. J Nanobiotechnology 2021; 19:241. [PMID: 34384446 PMCID: PMC8359346 DOI: 10.1186/s12951-021-00985-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Background Bacterial proliferation on the endosseous implants surface presents a new threat to the using of the bone implants. Unfortunately, there is no effective constructed antibacterial coating which is bacterial anti-adhesion substrate-independent or have long-term biofilm inhibition functions. Methods Drug release effect was tested in Chymotrypsin (CMS) solution and S. aureus. We used bacterial inhibition rate assays and protein leakage experiment to analyze the in vitro antibacterial effect of (Montmorillonite/Poly-l-lysine-Chlorhexidine)10 [(MMT/PLL-CHX)10] multilayer film. We used the CCK-8 assay to analyze the effect of (MMT/PLL-CHX)10 multilayer films on the growth and proliferation of rat osteoblasts. Rat orthopaedic implant-related infections model was constructed to test the antimicrobial activity effect of (MMT/PLL-CHX)10 multilayer films in vivo. Results In this study, the (MMT/PLL-CHX)10 multilayer films structure were progressively degraded and showed well concentration-dependent degradation characteristics following incubation with Staphylococcus aureus and CMS solution. Bacterial inhibition rate assays and protein leakage experiment showed high levels of bactericidal activity. While the CCK-8 analysis proved that the (MMT/PLL-CHX)10 multilayer films possess perfect biocompatibility. It is somewhat encouraging that in the in vivo antibacterial tests, the K-wires coated with (MMT/PLL-CHX)10 multilayer films showed lower infections incidence and inflammation than the unmodified group, and all parameters are close to SHAM group. Conclusion (MMT/PLL-CHX)10 multilayer films provides a potential therapeutic method for orthopaedic implant-related infections.
Collapse
Affiliation(s)
- Xin Liao
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Xingfang Yu
- Department of Orthopedics, The Affiliated Yiwu Hospital of Wenzhou Medical University, 699 Jiangdong Road, Yiwu, 322000, Zhejiang, China
| | - Haiping Yu
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Jiaqi Huang
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Bi Zhang
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Jie Xiao
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Shin Y, Husni P, Kang K, Lee D, Lee S, Lee E, Youn Y, Oh K. Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics 2021; 13:725. [PMID: 34069233 PMCID: PMC8157172 DOI: 10.3390/pharmaceutics13050725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Kioh Kang
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Dayoon Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Sehwa Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Eunseong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Yuseok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kyungtaek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| |
Collapse
|
16
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
17
|
Dal Corso A, Arosio S, Arrighetti N, Perego P, Belvisi L, Pignataro L, Gennari C. A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chem Commun (Camb) 2021; 57:7778-7781. [PMID: 34263896 DOI: 10.1039/d1cc02895b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cyclative cleavage of an amine-carbamate self-immolative spacer to deliver a hydroxyl cargo was inhibited by spacer derivatisation with a phosphate monoester handle. This trifunctional spacer was installed in a model anticancer prodrug that showed fast drug release only when incubated with both a protease and a phosphatase enzyme.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Simone Arosio
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Noemi Arrighetti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Pharmacology Unit, Department of Applied Research and Technological Development, via Amadeo 42, Milan, 20133, Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Luca Pignataro
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| | - Cesare Gennari
- Università degli Studi di Milano, Dipartimento di Chimica, via C. Golgi, 19, Milan, I-20133, Italy.
| |
Collapse
|
18
|
Wang N, Yu KK, Li K, Li MJ, Wei X, Yu XQ. Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial Application and Data Encryption-Decryption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57686-57694. [PMID: 33331759 DOI: 10.1021/acsami.0c15364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, hydrogels as an attractive class of intelligent soft materials have been applied in various advanced fields, including electronic materials, wearable devices, and wound dressing materials. However, it still remains a critical challenge to integrate information encryption transmission capability, antibacterial activity, high mechanical performance, adhesiveness, and self-healable ability into one material and achieve the synergistic characteristics through a simple method. In our study, a facile strategy of a plant-inspired hydrogel was proposed, which provides a novel initiator-free photo-cross-linked hydrogel system by simply mixing the coumarin derivative Pho-CA and the monomer in water, and then obtaining the hydrogel Gel-C-Am under the irradiation of UV light without adding any other cross-linking agents and initiators, and this process is very similar to the growth process of plants in nature. This novel hydrogel presents desirable mechanical properties (including twist, stretchability, and recoverability), which exhibits elongation of approximately 1600%. More interestingly, Gel-C-Am hydrogel displays reversible adhesiveness to various substrates (such as glass, paper, leaves, and rubber), and its adhesion properties can be regulated by water: the viscosity disappears when its surface becomes wet, and the viscosity will recover after the water evaporates. In addition, the developed hydrogel has certain self-healable ability. Two pieces of the Gel-C-Am hydrogel can combine together and reshape into one piece in water, and the fused hydrogel has uniform and interconnected pores under SEM. Based on the characteristic of Pho-CA whose fluorescence get recovery after UV irradiation, the hydrogel can be used in the field of encryption and decryption. Also, the resulting Gel-C-Am hydrogel shows an effective antibacterial activity and can potentially be addressed as antibacterial coatings. Taken together, the formation of the novel fluorescent hydrogel system is just like the growth of a plant in the presence of water and light, Pho-CA and the monomer will form a highly stretchable and recoverable self-healing hydrogel with water-controlled adhesiveness. The developed Gel-C-Am hydrogel shows favorable attributes and is suitable for applications in antibacterial polymeric coatings and information encryption transmission.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meng-Jie Li
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xi Wei
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Su D, Chen X, Zhang Y, Gao X. Activatable imaging probes for cancer-linked NAD(P)H:quinone oxidoreductase-1 (NQO1): Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Li H, Yao Q, Sun W, Shao K, Lu Y, Chung J, Kim D, Fan J, Long S, Du J, Li Y, Wang J, Yoon J, Peng X. Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via in Situ Spraying. J Am Chem Soc 2020; 142:6381-6389. [DOI: 10.1021/jacs.0c01365] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Yueqing Li
- School of Pharmaceutical Science and Technology, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| |
Collapse
|
21
|
Sun IC, Yoon HY, Lim DK, Kim K. Recent Trends in In Situ Enzyme-Activatable Prodrugs for Targeted Cancer Therapy. Bioconjug Chem 2020; 31:1012-1024. [DOI: 10.1021/acs.bioconjchem.0c00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Jeong C, Noh I, Rejinold NS, Kim J, Jon S, Kim YC. Self-Assembled Supramolecular Bilayer Nanoparticles Composed of Near-Infrared Dye as a Theranostic Nanoplatform To Encapsulate Hydrophilic Drugs Effectively. ACS Biomater Sci Eng 2019; 6:474-484. [DOI: 10.1021/acsbiomaterials.9b01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
24
|
Liu M, Han J, Yan C, Guo Z, Xiao Z, Zhu WH. Photocontrollable Release with Coumarin-Based Profragrances. ACS APPLIED BIO MATERIALS 2019; 2:4002-4009. [PMID: 35021333 DOI: 10.1021/acsabm.9b00536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The achievement of controllable and lasting scent on a targeted surface is a long-term goal in the field of flavors and fragrances. Herein, we design a novel series of phototriggered coumarin-based profragrances conjugated with volatile carboxylic fragrances via activatable chemical bridge of ester group, thereby achieving the controllable release of volatile fragrances under ambient conditions. Upon exposure to light, the fragile ester group of profragrances allows the slow release of fragrance molecules, building up a new light-sensitive fragrance delivery system. The incorporated coumarin unit of CM-OH as phototrigger is killing two birds with one stone, that is, precise photocontrollable release of fragrance molecules, and unprecedented fluorescence intensity to monitor the releasing process of fragrance molecules with linear relationship (R2 > 0.95). In comparison, the light-induced releasing amount from profragrances of CM-O-EA, CM-O-PEA, CM-O-PA, and CM-O-CA is much lower than corresponding free fragrances by 33-, 8.5-, 13-, and 983-fold, respectively. As demonstrated, the coumarin-based profragrances provide a phototriggered platform to realize the controllable release of volatile fragrances, resulting in a long-lasting headspace concentration on the targeted surface of wallpaper.
Collapse
Affiliation(s)
- Ming Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianwei Han
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
25
|
Wang J, Chen Q, Wu J, Zhu W, Wu Y, Fan X, Zhang G, Li Y, Jiang G. A highly selective and light-up red emissive fluorescent probe for imaging of penicillin G amidase inBacillus cereus. NEW J CHEM 2019. [DOI: 10.1039/c9nj00890j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly selective and red-emissive fluorescent probe (HCyNB) for penicillin G amidase (PGA) has been prepared and used for imaging of endogenousPGAin penicillinase-producingBacillus subtilis.
Collapse
Affiliation(s)
- Jianguo Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Qingqing Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Jie Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Wenping Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Yongquan Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Guanxin Zhang
- Organic Solids Laboratory
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yibao Li
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Guoyu Jiang
- Key Laboratory of Organo-Pharmaceutical Chemistry
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| |
Collapse
|
26
|
Okoh OA, Klahn P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. Chembiochem 2018; 19:1668-1694. [PMID: 29888433 DOI: 10.1002/cbic.201800269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Trimethyl lock (TML) systems are based on ortho-hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug-delivery systems, prodrug approaches, cell-imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.
Collapse
Affiliation(s)
- Okoh Adeyi Okoh
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Philipp Klahn
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
27
|
Bhattarai N, Chen M, Pérez RL, Ravula S, Chhotaray P, Hamdan S, McDonough K, Tiwari S, Warner IM. Enhanced chemotherapeutic toxicity of cyclodextrin templated size-tunable rhodamine 6G nanoGUMBOS. J Mater Chem B 2018; 6:5451-5459. [DOI: 10.1039/c8tb01115j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rhodamine 6G nanoGUMBOS were templated with cyclodextrin to develop size tunable nanodrugs with enhanced cellular uptake and selective chemotherapeutic toxicity.
Collapse
Affiliation(s)
| | - Mi Chen
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Rocío L. Pérez
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Sudhir Ravula
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | | | - Suzana Hamdan
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| | - Karen McDonough
- AgCenter Biotechnology Labs
- Louisiana State University
- Baton Rouge
- USA
| | - Suman Tiwari
- Department of Biology
- University of Louisiana Monroe
- Monroe
- USA
| | - Isiah M. Warner
- Department of Chemistry
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|