1
|
Hua Y, Wang R, Liu Y, Liu Q, Qi X, Ding Y, Lv J. Metabolomics analysis reveals characteristic metabolites in different levels of oxaliplatin-induced neurotoxicity. J Sep Sci 2024; 47:e2400164. [PMID: 38819794 DOI: 10.1002/jssc.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
Oxaliplatin (L-OHP), a third-generation platinum-based anti-tumor drug, finds widespread application in the first-line treatment of metastatic colorectal cancer. Despite its efficacy, the drug's usage is curtailed by a litany of side effects, with L-OHP-induced peripheral neuropathy (OIPN) being the most debilitating. This condition can be classified into varying degrees of severity. Employing serum metabolomics, a high-sensitivity, high-throughput technique, holds promise as a method to identify biomarkers for clinical assessment and monitoring of OIPN patients across different severity levels. In our study, we analyzed serum metabolites in patients with different OIPN levels using ultra-performance liquid chromatography-high resolution mass spectrometry. By employing statistical analyses and pathway enrichment studies, we aimed to identify potential biomarkers and metabolic pathways. Our findings characterized the serum metabolic profiles of patients with varying OIPN levels. Notably, pathway analysis revealed a significant correlation with lipid metabolism, amino acid metabolism, and energy metabolism. Multivariate statistical analysis and receiver operator characteristic curve evaluation pointed to anhalamine and glycochenodeoxycholic acid as potential biomarkers for OIPN C and A, which suggest that serum metabolomics may serve as a potent tool for exploring the metabolic status of patients suffering from diverse diseases and for discovering novel biomarkers.
Collapse
Affiliation(s)
- Yujiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Rong Wang
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Quan Liu
- Medical Oncology Three, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yongjuan Ding
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Juan Lv
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Chen C, Xu JL, Gu ZC, Zhou SS, Wei GL, Gu JL, Ma HL, Feng YQ, Song ZW, Yan ZP, Deng S, Ding R, Li SL, Huo JG. Danggui Sini decoction alleviates oxaliplatin-induced peripheral neuropathy by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder. Chin Med 2024; 19:58. [PMID: 38584284 PMCID: PMC10999090 DOI: 10.1186/s13020-024-00929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Danggui Sini decoction (DSD), a traditional Chinese medicine formula, has the function of nourishing blood, warming meridians, and unblocking collaterals. Our clinical and animal studies had shown that DSD can effectively protect against oxaliplatin (OXA)-induced peripheral neuropathy (OIPN), but the detailed mechanisms remain uncertain. Multiple studies have confirmed that gut microbiota plays a crucial role in the development of OIPN. In this study, the potential mechanism of protective effect of DSD against OIPN by regulating gut microbiota was investigated. METHODS The neuroprotective effects of DSD against OIPN were examined on a rat model of OIPN by determining mechanical allodynia, biological features of dorsal root ganglia (DRG) as well as proinflammatory indicators. Gut microbiota dysbiosis was characterized using 16S rDNA gene sequencing and metabolism disorders were evaluated using untargeted and targeted metabolomics. Moreover the gut microbiota mediated mechanisms were validated by antibiotic intervention and fecal microbiota transplantation. RESULTS DSD treatment significantly alleviated OIPN symptoms by relieving mechanical allodynia, preserving DRG integrity and reducing proinflammatory indicators lipopolysaccharide (LPS), IL-6 and TNF-α. Besides, DSD restored OXA induced intestinal barrier disruption, gut microbiota dysbiosis as well as systemic metabolic disorders. Correlation analysis revealed that DSD increased bacterial genera such as Faecalibaculum, Allobaculum, Dubosiella and Rhodospirillales_unclassified were closely associated with neuroinflammation related metabolites, including positively with short-chain fatty acids (SCFAs) and sphingomyelin (d18:1/16:0), and negatively with pi-methylimidazoleacetic acid, L-glutamine and homovanillic acid. Meanwhile, antibiotic intervention apparently relieved OIPN symptoms. Furthermore, fecal microbiota transplantation further confirmed the mediated effects of gut microbiota. CONCLUSION DSD alleviates OIPN by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224001, Jiangsu, China
- Department of Oncology, Yancheng TCM Hospital, Yancheng, 224001, Jiangsu, China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jian-Lin Xu
- Department of Oncology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224001, Jiangsu, China
- Department of Oncology, Yancheng TCM Hospital, Yancheng, 224001, Jiangsu, China
| | - Zhan-Cheng Gu
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, 215399, China
| | - Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Guo-Li Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211299, Jiangsu, China
| | - Jia-Lin Gu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hai-Long Ma
- Department of Paediatrics, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224001, Jiangsu, China
| | - Yan-Qi Feng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zi-Wei Song
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhan-Peng Yan
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Shan Deng
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Rong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Jie-Ge Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100 Shizi Street Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| |
Collapse
|
3
|
Yao W, Chen J, Lin Z, Wang N, Wang A, Wang B, Wu Y, Xu Z, Wang J. Scopoletin Induced Metabolomic Profile Disturbances in Zebrafish Embryos. Metabolites 2022; 12:metabo12100934. [PMID: 36295836 PMCID: PMC9609460 DOI: 10.3390/metabo12100934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Scopoletin, a typical example of a coumarin compound, exists in several Artemisia species and other plant genera. However, the systemic metabolic effects induced by scopoletin remain unclear. In the present study, we evaluated the metabolic profiles in scopoletin-exposed zebrafish embryos using UHPLC-Q-Obitrap-HRMS combined with multivariate analysis. Compared with the control group, 33 metabolites in scopoletin group were significantly upregulated, while 27 metabolites were significantly downregulated. Importantly, scopoletin exposure affected metabolites mainly involved in phosphonate and phosphinate metabolism, vitamin B6 metabolism, histidine metabolism, sphingolipid metabolism, and folate biosynthesis. These results suggested that scopoletin exposure to zebrafish embryos exhibited marked metabolic disturbance. This study provides a perspective of metabolic impacts and the underlying mechanism associated with scopoletin exposure.
Collapse
Affiliation(s)
- Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- Correspondence: (W.Y.); (J.W.)
| | - Jingpei Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhanyu Lin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310012, China
| | - Anli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- Correspondence: (W.Y.); (J.W.)
| |
Collapse
|
4
|
Hrichi H, Kouki N, Tar H. Analytical methods for the quantification of cisplatin, carboplatin, and oxaliplatin in various matrices over the last two decades. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666210929105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Platinum derivatives including cisplatin and its later generations carboplatin, and oxaliplatin remain the most largely used drugs in the therapy of malignant diseases. They exert notable anticancer activity towards numerous types of solid tumors such as gastric, colorectal, bladder, ovary, and several others. The chemotherapeutic activity of these compounds, however, is associated with many unwanted side effects and drug resistance problems limiting their application and effectiveness. Proper dosage is still an inherent problem, as these drugs are usually prescribed in small doses.
Objective:
Several analytical methods have been reported for the accurate quantification of cisplatin, carboplatin, and oxaliplatin and their metabolites either alone or in combination with other chemotherapeutic drugs, in different matrices such as pharmaceutical formulations, biological fluids, cancer cells, and environmental samples. The main goal of this review is to systematically study the analytical methods already used for the analysis of cisplatin, carboplatin, and oxaliplatin in various matrices during the last two decades.
Results and Conclusion:
In the literature, reviews showed that numerous analytical methods such as electroanalytical, UV-visible spectrophotometry, chromatographic, fluorescence, atomic absorption spectrophotometry, and other spectroscopic methods combined with mass spectrometry were used for the determination of these compounds in various matrices.
Collapse
Affiliation(s)
- Hajer Hrichi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Noura Kouki
- Chemistry Department, College of Science and Arts, Qassim University, Buraidah, P.O. Box: 51911, Saudi Arabia
| | - Haja Tar
- Chemistry Department, College of Science and Arts, Qassim University, Buraidah, P.O. Box: 51911, Saudi Arabia
| |
Collapse
|
5
|
Shi Y, Wang Y, Huang W, Wang Y, Wang R, Yuan Y. Integration of Metabolomics and Transcriptomics To Reveal Metabolic Characteristics and Key Targets Associated with Cisplatin Resistance in Nonsmall Cell Lung Cancer. J Proteome Res 2019; 18:3259-3267. [PMID: 31373204 DOI: 10.1021/acs.jproteome.9b00209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuhuan Shi
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| |
Collapse
|
6
|
Feng T, Liu F, Sun L, Huo H, Ren X, Wang M. Associated-Extraction Efficiency of Six Cyclodextrins on Various Flavonoids in Puerariae Lobatae Radix. Molecules 2018; 24:molecules24010093. [PMID: 30591701 PMCID: PMC6337629 DOI: 10.3390/molecules24010093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 01/23/2023] Open
Abstract
Puerariae Lobatae Radix (PLR), a well-known herbal medicine, is the root of Pueraria lobata (Willd.) Ohwi and has been employed for the treatment and prevention of cardiovascular and cerebrovascular diseases. The purpose of this study was to compare the associated-extraction efficiency of six cyclodextrins (CDs) on five flavonoids in PLR, namely puerarin, daidzein, daidzin, genistein and genistin, which are the major secondary metabolites, and exhibit low water solubility. The six CDs applied were β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxypropyl-γ-cyclodextrin (HP-γ-CD), carboxymethyl-β-cyclodextrin (CM-β-CD), and sulfobutyl ether β-cyclodextrin (SBE-β-CD). They can be grouped into one of the following three categories: traditional cyclodextrins (β-CD and γ-CD), water-soluble cyclodextrin derivatives (HP-β-CD and HP-γ-CD) and ionic cyclodextrin derivatives (SBE-β-CD and CM-β-CD). High-performance liquid chromatography (HPLC) was used to analyze the five flavonoids in the original aqueous extracts (OAE) in the presence or absence of various CDs. The associated-extraction efficiency of the various CDs followed the ranking: SBE-β-CD > HP-β-CD > CM-β-CD > HP-γ-CD > γ-CD > β-CD. It was clear that SBE-β-CD presented the highest associated-extraction capability, and it was used to extract the four flavonoids from three PLR products, including raw product, stir- fried product, and product simmered with wheat bran. The results showed that SBE-β-CD could improve the extraction capability of flavonoids, both from the raw product and in processed products of PLR. In conclusion, CDs, especially SBE-β-CD, have a promising application for the associated-extraction of flavonoids from PLR.
Collapse
Affiliation(s)
- Tao Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongna Huo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|