1
|
Yin X, Wang C, Wei S, Liu M, Hu K, Song X, Sun G, Lu L. Carbon dots-based dual-mode sensor for highly selective detection of nitrite in food substrates through diazo coupling reaction. Food Chem 2025; 463:141213. [PMID: 39270494 DOI: 10.1016/j.foodchem.2024.141213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
As an antioxidant and preservative agent, nitrite (NO2-) plays an essential role in the food industry to maintain freshness or inhibit microbial growth. However, excessive addition of NO2- is detrimental to health, so accurate and portable detection of NO2- is critical for food quality control. Notably, the selectivity of most carbon dots (CDs)-based fluorescence sensors was not enough due to the nonspecific interaction mechanism of hydrogen bond, electrostatic interaction and inner filter effect etc. Herein, a novel fluorescence/UV-vis absorption (FL/UV-vis) dual-mode sensor was developed on basis of mC-CDs, which were prepared by simple solvothermal treatment of m-Phenylenediamine (m-PDA) and cyanidin cation (CC). The fluorescence of these mC-CDs could be selectively responded by NO2- through the specific diazo coupling reaction between NO2- and amino groups on the surface of mC-CDs, thus effectively improving the selectivity of NO2- detection. The CDs-based fluorescence sensor possessed a low detection limit of 0.091 μM and 0.143 μM for FL and UV-vis methods and the excellent linear range of 0.0-60.0 μM. Furthermore, the mC-CDs sensor was employed to detect NO2- in real samples with a recovery rate of 97.11 %-104.15 % for quantitative addition. Moreover, the smartphone-assisted fluorescence sensing platform developed could identify the subtle color changes that could not be distinguished by the naked eye, and had the advantages of fast detection speed and intelligence. More importantly, the portable solid phase sensor based on mC-CDs had been successfully applied to the specific fluorescence identification and concentration monitoring of NO2-. Accordingly, the designed sensor provided a new strategy for the highly selective and convenient sensing of NO2- in food substrates, and paved the way for the wide application of CDs-based nanomaterials in the detection of food safety.
Collapse
Affiliation(s)
- Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Min Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Kaixin Hu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xuewei Song
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
2
|
Wang M, Dong X, Guo B, Wang D, Tang Y. "Turn-on-off" Fluorescent Probes Based on Carbon Nanoparticles for Hypochlorite and Fe 2+ Detection. J Fluoresc 2025:10.1007/s10895-024-04131-8. [PMID: 39776098 DOI: 10.1007/s10895-024-04131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
The identification of ClO- and iron ions in water medium is a difficult task and has been one of the hot issues in analytical chemistry. For this objective, we synthesized carbon nanoparticles (CNPs) through a solvothermal reaction between 1, 3, 5-trimesic acid and o-phenylenediamine, which served as a sequential fluorescent probe for ClO- and Fe2+ ions. The obtained CNPs were spherical particles with a diameter of 26.5 nm, exhibiting excellent fluorescence stability under a wide pH range, high ionic strength, and UV irradiation. Interestingly, the fluorescence of CNPs was selectively enhanced in the presence of ClO-, and the resultant enhanced emission was extremely quenched by Fe2+. In view of this, a "turn-on-off" fluorescent probe was established, which possessed wonderful sensitivity and selectivity for quantitative analysis of ClO- and Fe2+, with corresponding detection limits of 0.15 µM and 0.088 µM, respectively. In addition, the practicality and viability of the developed probe were validated by quantifying ClO- and Fe2+ in tap water and river water.
Collapse
Affiliation(s)
- Minhui Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Xuemei Dong
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Beibei Guo
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Dinghai Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Yecang Tang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
3
|
Sun D, Ji Y, Sun X, Li G, Liu Z, Piao C. Ratiometric fluorescent platform for on-site monitoring of sodium pyrosulfite in preserved fruits. Food Chem 2024; 459:140367. [PMID: 39024866 DOI: 10.1016/j.foodchem.2024.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
The rapid detection of pyrosulfites in food chemistry is crucial to food safety and health. Here, a coumarin-type ratiometric fluorescent probe was developed based on the Michael addition reaction to detect sodium pyrosulfite (Na2S2O5). The probe exhibited high selectivity and fast response (t1/2 = 6 s) to Na2S2O5 and a low detection limit (26 nM). Because of its excellent ratiometric response performance, the probe was successfully applied to measure the amount of Na2S2O5 in preserved fruits. Colour information analysis and formula calculations were performed to quickly determine the sodium pyrosulfite amount in an actual sample by using a smartphone. Therefore, the intelligent strategy of combining the sensing process and smartphone provides a convenient and efficient method for the fast monitoring of sodium metabisulfite in actual food.
Collapse
Affiliation(s)
- Depeng Sun
- College of Agriculture, Yanbian University, Yanji 133002, PR China
| | - Yuefeng Ji
- College of Agriculture, Yanbian University, Yanji 133002, PR China
| | - Xinyao Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Guanhao Li
- College of Agriculture, Yanbian University, Yanji 133002, PR China
| | - Zhixue Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Chunxiang Piao
- College of Agriculture, Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
4
|
Hota NP, Kulathu Iyer S. N-doped carbon quantum dots for the selective detection of OCl - ions, bioimaging, and the production of Fe 3O 4 nanoparticles utilized in the synthesis of substituted imidazole. RSC Adv 2024; 14:35448-35459. [PMID: 39507691 PMCID: PMC11538961 DOI: 10.1039/d4ra06474g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Nitrogen-doped quantum dots (NCQD) were synthesized by solvothermal means using o-phenylenediamine and l-tartaric acid. The resultant NCQD produced a high quantum yield (40.3%) and a vivid green fluorescence. They were about 6 nm in size. The NCQD is useful in HeLa cell bioimaging investigations and is used for the fluorescence detection of OCl- ions. The quantum dots' Limit of Detection (LoD) was discovered to be 40 nM. Additionally, cytotoxicity testing was conducted, and we found out that HeLa cells safely endured up to 6.5 mg ml-1 of NCQD. Furthermore, NCQDs were employed to synthesize Fe3O4 nanoparticles, with the quantum dots acting as a reducing and stabilizing agent. The nanoparticles exhibited remarkable catalytic activity towards organic processes due to their size of 11 nm and surface area of 67.360 m2 g-1. Excellent yields of tri-substituted imidazole derivatives were produced using Fe3O4 nanoparticles as nanocatalysts in a solvent-free method.
Collapse
Affiliation(s)
- Namrata Priyadarshini Hota
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632 014 India
| | | |
Collapse
|
5
|
Zhao C, Yuan P, Wang D, Li S, Yao H, Yang LP, Wang LL, Du F. N-aminomorpholine-functionalized bromine-doped carbon dots for hypochlorous acid detection in foods and imaging in live cells. Food Chem 2024; 441:138284. [PMID: 38181668 DOI: 10.1016/j.foodchem.2023.138284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
Hypochlorous acid (HClO) is used in food preservation. However, excessive HClO can deteriorate nutritional composition of food, compromise its quality, and potentially induce various diseases. Consequently, the development of multifunctional fluorescent probes for the sensitive and selective detection of HClO is highly anticipated for food safety. In this work, we designed a nanoprobe using N-aminomorpholine (AM)-functionalized bromine-doped carbon dots (Br-CDs-AM) for sensing HClO. This nanoprobe exhibits pH stability, strong resistance to photobleaching, superior long-term photostability (12 weeks), high sensitivity (19.3 nM), and an ultrarapid response (8 s) for detecting HClO residues in food matrices with percentage recovery (96.5 %-108 %) and RSDs less than 5.34 %. In addition, extremely low cytotoxicity and outstanding biocompatibility enable the nanoprobe to be used primarily for lysosome tracking and rapidly visualizing HClO in live cells. Thus, this study provides a new pathway to design unconventional nanoprobes for food safety assessment and subcellular organelle-specific imaging HClO.
Collapse
Affiliation(s)
- Chengda Zhao
- The Affiliated Nanhua Hospital, Department of Anesthesiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pengxiang Yuan
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shiyao Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Li Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Fangfang Du
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
6
|
Mishra A, Lzaod S, Dutta T, Bhattacharya S. Selective Bacterial Growth Inactivation by pH-Sensitive Sulfanilamide Functionalized Carbon Dots. ACS APPLIED BIO MATERIALS 2024; 7:2752-2761. [PMID: 38662509 DOI: 10.1021/acsabm.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Carbon dots (CDs) were synthesized hydrothermally by mixing citric acid (CA) and an antifolic agent, sulfanilamide (SNM), employed for pH sensing and bacterial growth inactivation. Sulfanilamide is a prodrug; aromatic hetero cyclization of the amine moiety along with other chemical modifications produces an active pharmacological compound (chloromycetin and miconazole), mostly administered for the treatment of various microbial infections. On the other hand, the efficacy of the sulfanilamide molecule as a drug for antimicrobial activity was very low. We anticipated that the binding of the sulfanilamide molecule on the carbon dot (CD) surface may form antibacterial CDs. Citric acid was hybridized with sulfanilamide during the hydrothermal preparation of the CDs. The molecular fragments of bioactivated sulfanilamide molecule play a crucial role in bacterial growth inactivation for Gram-positive and Gram-negative bacteria. The functional groups of citric acid and sulfanilamide were conserved during the CD formation, facilitating the zwitterionic behavior of CDs associated with its photophysical activity. At low concentrations of CDs, the antibacterial activity was apparent for Gram-positive bacteria only. This Gram-positive bacteria selectivity was also rationalized by zeta potential measurement.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Chemistry, National Institute of Technology Raipur, Raipur 492010, India
| | - Stanzin Lzaod
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Sagarika Bhattacharya
- Department of Chemistry, National Institute of Technology Raipur, Raipur 492010, India
| |
Collapse
|
7
|
Chen H, Li D, Zheng Y, Wang K, Zhang H, Feng Z, Huang B, Wen H, Wu J, Xue W, Huang S. Construction of optical dual-mode sensing platform based on green emissive carbon quantum dots for effective detection of ClO - and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123733. [PMID: 38157745 DOI: 10.1016/j.saa.2023.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypochlorite (ClO-) is an important redox regulator in reactive oxygen species, which play a considerable role in oxidative stress and related diseases. Hence, accurate and sensitive monitoring of ClO- concentration was urgently needed in the fields of life sciences, food and environment. Bright green fluorescent carbon quantum dots (G-CQDs) were synthesized utilizing one-step hydrothermal method with citric acid and acriflavine precursors. Through TEM, FTIR, XPS and zeta potential characterization procedures, G-CQDs illustrated uniformly dispersed and significant number of -NH2 and -OH on the surface. Meanwhile, the fluorescence and colorimetric analysis exhibited wide linear range and low detection limit response to ClO-. The fluorescence changes of G-CQDs were identified via smartphone to realize mobile sensing of ClO-. Subsequently, G-CQDs was applied for visualization and quantitative detection of ClO- in drinking water samples with satisfactory recovery rate. More importantly, G-CQDs demonstrated good water solubility, optical stability and excellent biocompatibility, which offered a promising analysis approach in cell imaging and exogenous ClO- detection in living cells. G-CQDs illustrated bright prospect and great potential in practical application of ClO- associated disease prevention and early clinical diagnosis.
Collapse
Affiliation(s)
- Huajie Chen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Dai Li
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Yutao Zheng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Kui Wang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - He Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Zhipeng Feng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Bolin Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| |
Collapse
|
8
|
Zhou N, Long S, Song D, Hui B, Cui X, An C, Zhang M. Fabrication of carbon dots-embedded luminescent transparent wood with ultraviolet blocking and thermal insulating capacities towards smart window application. Int J Biol Macromol 2024; 259:129358. [PMID: 38218267 DOI: 10.1016/j.ijbiomac.2024.129358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
To expand functions of transparent wood (TW) including fluorescence, ultraviolet blocking, heat preservation and insulation, we adopted carbon quantum dots (CQDs) to prepare luminescent transparent wood. CQDs with yellow/red fluorescence (YCD/RCD) were prepared by chitosan and o-phenylenediamine. Afterwards, Balsa woods were pretreated to obtain wood frameworks (DW/LW), which were further combined with epoxy resin for achieving transparent woods (DW-TW/LW-TW). Results showed LW retained more lignin, the LW-TW blocked more ultraviolet light, displaying the better visible transmission and mechanical strength than DW-TW. After adding YCD and RCD to LW-TW, the yellow and red fluorescence transparent woods with outstanding mechanical and ultraviolet blocking properties were prepared, especially the red fluorescence transparent wood (RTW). Specifically, the tensile strength and elongation at break of RTW reached up to 19.39 MPa and 5.35 %, respectively. Moreover, RTW could block 78.8 % of UV-B light and 78 % of UV-A light, respectively. Besides, RTW possessed excellent visible transmission (70.3 %) and UV blocking (88.87 %). Significantly, both RTW and YTW displayed outstanding water repellency, excellent durability, good thermal stability and insulation. Predictably, luminescent transparent woods certainly will enhance the adaptability of wood, and broaden its applications in green decoration, lighting setup, sensor and other fields.
Collapse
Affiliation(s)
- Ningyu Zhou
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Shoufu Long
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Dongsheng Song
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Bin Hui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials School of Materials Science and Engineering, Qingdao University, Qingdao 266000, China
| | - Xinjie Cui
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Congcong An
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Ming Zhang
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China.
| |
Collapse
|
9
|
Yin X, Wei S, Zhai C, Wang B, Zhang H, Wang C, Song X, Sun G, Jiang C. Chiral CDs-based fluorescence sensor for rapid and specific sensing K 4[Fe(CN) 6] in table salt and salted food. Food Chem 2024; 432:137207. [PMID: 37657345 DOI: 10.1016/j.foodchem.2023.137207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Potassium ferricyanide (K4[Fe(CN)6]) as anti-caking agent plays an important role in avoiding the formation of chunks for fine particulate solids. However, inappropriate and excessive addition and decomposition of K4[Fe(CN)6] are detrimental to physical health. At present, appropriate strategies for convenient and accurate analysis of K4[Fe(CN)6] in table salt and pickled food are desirable. Herein, an efficient "ON-OFF-ON" fluorescent sensor based on chiral carbon dots was prepared by a simple one-step hydrothermal method. The chiral CDs with L-Tryptophan and D-Tryptophan as chiral source were named as L-CDs and D-CDs. Notably, the bright fluorescence of L/D-CDs could be effectively quenched by K4[Fe(CN)6] through dynamic quenching mechanism. This fluorescent sensor achieved excellent sensitive and selective detection of K4[Fe(CN)6] with a limit of detection (LOD) of 25.0 ng·mL-1. In addition, the L/D-CDs could be applied not only for selective fluorescent recognition of K4[Fe(CN)6] by the methods of portable filter paper and hydrogels, but also as fluorescent dye for repeated message encryption and decryption.
Collapse
Affiliation(s)
- Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Changyu Zhai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Bin Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xuewei Song
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Chunzhu Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
10
|
Cui S, Wang B, Zhai C, Wei S, Zhang H, Sun G. A double rare earth doped CD nanoplatform for nanocatalytic/starving-like synergistic therapy with GSH-depletion and enhanced reactive oxygen species generation. J Mater Chem B 2023; 11:7986-7997. [PMID: 37523206 DOI: 10.1039/d3tb00959a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cancer has been one of the principal diseases threatening human health in the world. Traditional chemotherapy, radiotherapy and surgery in clinical applications have some disadvantages, such as inefficiency, low specificity, and serious side effects. Therefore, some emerging synergistic therapies have been developed for more accurate diagnosis and more efficient treatment of cancer. Herein, novel Ce-Gd@CDs-GOx nanozymes were obtained by combining magnetic resonance/fluorescence (MR/FL) imaging and nanocatalytic/starving-like synergistic therapy for tumor tissue imaging and efficient cancer treatment. The as-prepared Ce-Gd@CDs-GOx nanozymes with a diameter of 25.0 ± 0.8 nm exhibited favorable physiological stability, negligible toxicity, bright fluorescence and strong T1-weighted MR imaging (MRI) performance (10.97 mM-1 s-1). Moreover, the nanozymes could not only cut off the nutrient supply of tumor cells, but also generate ROS to synergistically enhance antitumor efficacy. The coexistence of Ce3+/Ce4+ in Ce-Gd@CDs-GOx endowed them with attractive capacity for alleviating hypoxia and enhancing GSH consumption to induce the apoptosis of tumor cells. Furthermore, most of the 4T1 cells treated with Ce-Gd@CDs-GOx nanozymes were damaged in the CCK-8 and Calcein-AM/PI staining assays, indicating the excellent efficiency of intracellular synergistic therapy. In summary, this study offered a promising strategy to design a nanoplatform for MR/FL imaging-guided nanocatalytic and starvation-like synergistic therapy of cancer.
Collapse
Affiliation(s)
- Shufeng Cui
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Bin Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Changyu Zhai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| |
Collapse
|
11
|
Zhang H, Wang J, Wei S, Wang C, Yin X, Song X, Jiang C, Sun G. Nitrogen-doped graphene quantum dot-based portable fluorescent sensors for the sensitive detection of Fe 3+ and ATP with logic gate operation. J Mater Chem B 2023. [PMID: 37334649 DOI: 10.1039/d3tb00327b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Adenosine triphosphate (ATP) and Fe3+ are important "signaling molecules" in living organisms, and their abnormal concentrations can be used for the early diagnosis of degenerative diseases. Therefore, the development of a sensitive and accurate fluorescent sensor is essential for detecting these signaling molecules in biological matrices. Herein, nitrogen-doped graphene quantum dots (N-GQDs) with cyan fluorescence emission were prepared by thermal cleavage of graphene oxide (GO) with N,N-dimethylformamide (DMF) as a solvent. The synergistic effect of static quenching and internal filtration enabled the selective quenching of N-GQD fluorescence by Fe3+. With the introduction of ATP, Fe3+ in the N-GQDs-Fe3+ system formed a more stable complex with ATP via the Fe-O-P bond, thus restoring the fluorescence of the N-GQDs. Fe3+ and ATP were detected in the linear ranges of 0-34 μM and 0-10 μM with the limits of detection (LOD) of 2.38 nM and 1.16 nM, respectively. In addition to monitoring Fe3+ and ATP in mouse serum and urine, the proposed method was also successfully applied for cytoplasmic imaging of 4T1 cells and in vivo imaging of freshwater shrimps. Moreover, the fluorescence and solution color change-based "AND" logic gate was successfully demonstrated in the biological matrix. Importantly, a complete sensing system was constructed by combining the N-GQDs with hydrogel kits and fluorescent flexible films. Thus, the prepared N-GQDs can be expected to serve as a valuable analytical tool for monitoring Fe3+ and ATP concentrations in biological matrices.
Collapse
Affiliation(s)
- Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Jieqiong Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xuewei Song
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Chunzhu Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| |
Collapse
|
12
|
Wang Q, Sun Y, Ge J, Li L, Lu J, Zhang D, Jin L, Li H, Zhang S. Ratiometric fluorescent nanoprobes based on coumarin dye-functionalized carbon dots for bisulfite detection in living cells and food samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
13
|
Long T, Hu Z, Gao Z, Luo H, Li H, Chen Y, Liu L, Xu D. Carbon dots electrochemically prepared from dopamine and epigallocatechin gallate for hypochlorite detection with high selectivity via a dynamic quenching mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122947. [PMID: 37295382 DOI: 10.1016/j.saa.2023.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Monitoring hypochlorite levels in water is of great importance because of its high toxicity and wide applications as water disinfectants. In this manuscript, carbon dot (CD) was electrochemically prepared by using dopamine and epigallocatechin gallate (molar ratio 1:1) as the carbon source for efficient hypochlorite determination. By electrolyzing the solution at 10 V for 12 min with PBS as an electrolyte, dopamine would react with epigallocatechin at the anode, and through polymerization, dehydration, and carbonization, strong blue-fluorescent CDs were obtained. CDs were characterized by UV-Vis spectroscopy, fluorescence spectroscopy, high-resolution transmission electron microscopy, FT-IR, etc. These CDs have an excitation wavelength at 372 nm and an emission wavelength at 462 nm, owing an average particle size of 5.5 nm. The presence of hypochlorites can quench the fluorescence of CDs, and its reduction in intensity is linear with hypochlorite concentration over the range of 0.5-50 μM, ΔF/F0 = 0.0056 + 0.0194CClO-, R2=0.997. The detection limit achieved 0.23 μM (S/N = 3). The mechanism for fluorescence quenching is via a dynamic process. Different from many other fluorescence methods based on the strong oxidizing ability of hypochlorites, our method shows strong selectivity toward hypochlorites over other oxidizing agents such as H2O2. The assay was validated by the detection of hypochlorites in water samples, with recoveries between 98.2% and 104.3%.
Collapse
Affiliation(s)
- Tiantian Long
- The Health Management Department of the Third Xiangya Hospital, Central South University, Changsha 410013, China; National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China; College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843100, China
| | - Zhongyang Hu
- The Neurology Department of the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ziyun Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hongmei Luo
- The Health Management Department of the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hongchen Li
- The Health Management Department of the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yi Chen
- Hunan Intellijoy Biotechnology Co., Ltd., Changsha, Hunan 410125, China
| | - Lei Liu
- The Health Management Department of the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
14
|
Wang C, Wang X, Zhang Y, Tang Y, Yang Y, Wang B, Wei S, Wang Z, Sun G. Ionic liquid-based carbon dots as highly biocompatible and sensitive fluorescent probe for the determination of vitamin P in fruit samples. Food Chem 2023; 406:134898. [PMID: 36462360 DOI: 10.1016/j.foodchem.2022.134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Vitamin P (VP) known as rutin is one of the common flavonoids, which widely exists in fruits and vegetables and often used as a dietary additive. The rapid and accurate detection of VP in food matrices is critical for evaluating food quality and guiding diet. Herein, a rapid, accurate, and selective detection scheme for VP in fruit samples was proposed for the first time using ionic liquid-based carbon dots (IL-CDs). The synthesized IL-CDs exhibited great biocompatibility and excellent optical properties including high fluorescence intensity, high quantum yield, and good fluorescence stability. Through an internal filtering effect (IFE), VP could greatly reduce the fluorescence of these CDs. In the present study, this probe demonstrated good sensitivity and excellent selectivity toward VP with a low detection limit of 60.0 nmol/L. Moreover, this approach was effectively applied to detect VP in food samples with a recovery range of 97 % to 119 %. More interestingly, the results of cell imaging suggested that IL-CDs were expected to be promising material for bioimaging.
Collapse
Affiliation(s)
- Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xiujuan Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Yupu Zhang
- Jilin State Tobacco Monopoly Administration, Changchun 130012, PR China
| | - Yihuan Tang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Yi Yang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Bin Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Zhibing Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
15
|
Wei S, Shi X, Wang C, Zhang H, Jiang C, Sun G, Jiang C. Facile synthesis of nitrogen-doped carbon dots as sensitive fluorescence probes for selective recognition of cinnamaldehyde and l-Arginine/l-Lysine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122039. [PMID: 36410179 DOI: 10.1016/j.saa.2022.122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The disorder of amino acid metabolism and the abuse of small molecule drugs pose serious threats to public health. However, due to the limitations of existing detection technologies in sensing cinnamaldehyde (CAL) and l-Arginine/l-Lysine (l-Arg/l-Lys), there is an urgent need to develop new sensing strategies to meet the severe challenges currently facing. Herein, nitrogen-doped carbon dots (N-CDs) were developed using a simple one-pot hydrothermal carbonization method. These N-CDs exhibited numerous distinctive characteristics such as excellent photoluminescence, high water dispersibility, favorable biocompatibility, and superior chemical inertness. Strikingly, the as-prepared CDs as a highly efficient fluorescent probe possessed significant sensitivity and selectivity toward CAL and l-Arg/l-Lys over other analytes with a low detection limit of 58 nM and 16 nM/18 nM, respectively. The fluorescence of N-CDs could be quenched by CAL through an electron transfer process. Then, the strong electrostatic interaction between l-Arg/l-Lys and N-CDs induced the efficient fluorescence recovery. More importantly, the outstanding biosafety and excellent analyte-responsive fluorescence characteristics of N-CDs have also been verified in living cells as well as in serum and urine. Overall, the N-CDs had a wide application prospect in the diagnosis of amino acid metabolic diseases and small molecule drug sensing.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xinyuan Shi
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chunzhu Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
16
|
Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Ratiometric upconversion nanoprobes for turn-on fluorescent detection of hypochlorous acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
17
|
Nitrogen-doped Carbon dots for sequential ‘ON-OFF-ON’ fluorescence probe for the sensitive detection of Fe3+ and L-alanine/L-histidine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Lu P, Liu B, Duan J, Wei S, Zhang H, Wang J, Guo H, Guo Y, Jiang C, Sun G. Surface state dominated and carbon core coordinated red-emitting carbon dots for the detection of Cr 2O 72- and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121656. [PMID: 35952586 DOI: 10.1016/j.saa.2022.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Cr(VI) as a toxic heavy metal ion can easily enter into the body through drinking or eating and cause liver and kidney diseases as well as cancer. Considering its high biological toxicity and adverse effects on human body, it is desirable to develop a probe to monitor its level in the environment. Herein, a high-efficiency fluorescent nanoprobe based on red emissive carbon dots (R-CDs) was established through a convenient solvothermal strategy. The as-prepared CDs with excitation-independency had the fixed emission wavelength at 627 nm when the excitation wavelength was 560 nm. Further study manifested that the new surface state formed by nitrogen and sulfur doping and the increased conjugated system established through dehydration and carbonization were the main reasons for the fluorescence redshift. In this system, these R-CDs as a fluorescent probe exhibited high specificity and sensitivity to Cr2O72- with the linear range of 4-40 μΜ and the limit of detection could reach 80.00 nM. The quenching of these CDs by Cr2O72- was efficiently induced through a static quenching process. Meanwhile, the obtained CDs could enter into HeLa cells through endocytosis and exhibit bright red fluorescence in cells under a confocal laser scanning microscope. Thus, this work provided a promising probe not only for detecting Cr(VI) in natural environment but also for imaging in cells.
Collapse
Affiliation(s)
- Pengju Lu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012. PR China
| | - Jinjing Duan
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012. PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012. PR China
| | - Jiali Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hui Guo
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012. PR China
| | - Yidan Guo
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012. PR China
| | - Chunzhu Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012. PR China.
| |
Collapse
|
19
|
Li T, Chen X, Wang K, Hu Z. Small-Molecule Fluorescent Probe for Detection of Sulfite. Pharmaceuticals (Basel) 2022; 15:1326. [PMID: 36355496 PMCID: PMC9699022 DOI: 10.3390/ph15111326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 04/20/2024] Open
Abstract
Sulfite is widely used as an antioxidant additive and preservative in food and beverages. Abnormal levels of sulfite in the body is related to a variety of diseases. There are strict rules for sulfite intake. Therefore, to monitor the sulfite level in physiological and pathological events, there is in urgent need to develop a rapid, accurate, sensitive, and non-invasive approach, which can also be of great significance for the improvement of the corresponding clinical diagnosis. With the development of fluorescent probes, many advantages of fluorescent probes for sulfite detection, such as real time imaging, simple operation, economy, fast response, non-invasive, and so on, have been gradually highlighted. In this review, we enumerated almost all the sulfite fluorescent probes over nearly a decade and summarized their respective characteristics, in order to provide a unified platform for their standardized evaluation. Meanwhile, we tried to systematically review the research progress of sulfite small-molecule fluorescent probes. Logically, we focused on the structures, reaction mechanisms, and applications of sulfite fluorescent probes. We hope that this review will be helpful for the investigators who are interested in sulfite-associated biological procedures.
Collapse
Affiliation(s)
| | | | - Kai Wang
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| | - Zhigang Hu
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| |
Collapse
|
20
|
Porubský M, Řezníčková E, Křupková S, Kryštof V, Hlaváč J. Development of fluorescent dual-FRET probe for simultaneous detection of caspase-8 and caspase-9 activities and their relative quantification. Bioorg Chem 2022; 129:106151. [DOI: 10.1016/j.bioorg.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
|
21
|
Wei S, Liu B, Shi X, Cui S, Zhang H, Lu P, Guo H, Wang B, Sun G, Jiang C. Gadolinium (III) doped carbon dots as dual-mode sensor for the recognition of dopamine hydrochloride and glutamate enantiomers with logic gate operation. Talanta 2022; 252:123865. [DOI: 10.1016/j.talanta.2022.123865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
|
22
|
Yang Z, Xu T, Zhang X, Li H, Jia X, Zhao S, Yang Z, Liu X. Nitrogen-doped carbon quantum dots as fluorescent nanosensor for selective determination and cellular imaging of ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120941. [PMID: 35114635 DOI: 10.1016/j.saa.2022.120941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 05/28/2023]
Abstract
The carbon nanomaterial based fluorescent probes have been widely applied in biological imaging. In the current research, we propose an interesting strategy for selective sensing of hypochlorite (ClO-) by a water-soluble and highly fluorescent nanosensor based on the N-doped carbon quantum dots (CDs) which was fabricated by a facile and environmental friendly hydrothermal approach from polyvinyl pyrrolidone, L-arginine and tryptophan. The structural characteristics of the probe were measured by multitudinous methods which proved the nanometer spherical structure of the probe and the successfully N-doping. Fluorescent investigation demonstrated that the probe is not only highly stable under interferences of pH, ionic strength, and irradiation, but also significantly selective toward ClO- amongst a variety of attractive bioactive species through the fluorescent quenching process which was correlative with the concentration of ClO- and linearly in the range of 0.1-50 μmol·L-1 with the sensitivity of 0.03 μmol·L-1. The probe can also be further illustrated in a prospective application for determination of ClO- in environmental water through both solution response and filer paper sensing. Moreover, the positive biocompatibility and ignorable cytotoxicity made the probe a promising effective agent for detection and visualizing ClO- in living cells which can facilitate the understanding the oxidative stress from the overexpressing ClO-.
Collapse
Affiliation(s)
- Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China.
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xu Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| |
Collapse
|
23
|
Liu B, Wei S, Liu E, Zhang H, Lu P, Wang J, Sun G. Nitrogen-doped carbon dots as a fluorescent probe for folic acid detection and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120661. [PMID: 34896678 DOI: 10.1016/j.saa.2021.120661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The folic acid (FA) level in human body can be used as an indicator for body's normal physiological activities and offer insight into the growth and reproduction of the body's cells. But the abnormal level of FA can cause some diseases. Herein, we designed a simple and convenient approach to prepare fluorescent N-doped carbon dots (N-CDs) for the FA detection. These N-CDs have excellent hydrophilicity, high photostability, and outstanding biocompatibility, as well as excitation-independent emission behavior with typical excitation/emission peaks at 295 nm/412 nm. Upon the existence of FA, the fluorescence emission spectrum of N-CDs was significantly quenched through the synergy of static quenching mechanism and internal filtering effect (IFE). Under optimal conditions, the limit of detection was 28.0 nM (S/N = 3) within the FA concentration range of 0-200.0 μM. In addition, N-CDs were successfully employed to detect FA in real samples such as urine and fetal bovine serum (FBS), with a recovery rate of 99.6%-100.7% for quantitative addition. Furthermore, cell experiments confirmed the low toxicity and the cell imaging performance of these N-CDs, indicating that the obtained N-CDs could be served as a credible quantitative probe for FA analysis in the field of biosensing.
Collapse
Affiliation(s)
- Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Enqi Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Pengju Lu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Jiali Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
24
|
Meng Y, Zhang Z, Zhao H, Jiao Y, Li J, Shuang S, Dong C. Facile synthesis of multifunctional carbon dots with 54.4% orange emission for label-free detection of morin and endogenous/exogenous hypochlorite. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127289. [PMID: 34879505 DOI: 10.1016/j.jhazmat.2021.127289] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Carbon dots with long-wavelength emission (orange to red), high quantum yield (QY) and good biocompatibility are of great significance for biomedical applications, but achieving this is still a highly challenging task. In this work, multifunctional carbon dots with 54.4% orange emission (O-CDs) were prepared through one-pot solvothermal treatment of nileblueasulphate and citric acid as precursor for label-free recognition of morin and endogenous/exogenous hypochlorite (ClO-) and bioimaging in cellular and zebrafish. Morin can quench the luminescence of O-CDs by static quenching (SQ). The linear range is 5-125 μM and LOD is 0.84 μM. ClO- reduce the photoluminescence intensity of O-CDs via SQ. The linear range is 2.5-90 μM and LOD was 0.46 μM. In addition, The obtained O-CDs have successfully realized the monitoring of morin and endogenous/ exogenous ClO- in living cells and zebrafish owing to its superior biocompatibility, exceptional photostability and lower toxicity. This work opens up a novel opportunity for the development of long-wavelength emission multifunctional nanomaterial with high quantum yield based on CDs for biosensing, biolabeling and biomedical optical imaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhuqing Zhang
- Integrated Center for Inspection and Testing of Changzhi City, Changzhi 046000, China
| | - Hongxia Zhao
- Integrated Center for Inspection and Testing of Changzhi City, Changzhi 046000, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jun Li
- National University of Singapore Natl Univ Singapore, Fac Engn, Dept Biomed Engn, 7 Engn Dr 1, Singapore 117574, Singapore
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
25
|
Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite. Anal Bioanal Chem 2022; 414:2651-2660. [PMID: 35165778 DOI: 10.1007/s00216-022-03901-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
In this work, green-emitting carbon quantum dots were successfully prepared through a facile one-step solid-state reaction method. The obtained green-emitting carbon dots (G-CDs) showed good fluorescence stability in NaCl aqueous solution and different pH values. Moreover, the G-CDs showed high sensitivity and selectivity for detecting hypochlorite by both fluorometry and colorimetry. Under the optimized condition, a highly sensitive detection of hypochlorite was established in the range of 0.2-100 μM and 10-150 μM for fluorescent and colorimetric methods, respectively. The corresponding limits of detection (LOD) were 0.0781 μM and 1.82 μM, respectively. Therefore, the G-CDs were successfully applied to determinate hypochlorite in actual water samples. In addition, a paper-based sensor loading with the G-CDs was also developed for rapid visual detection of hypochlorite. The results suggested that the G-CDs could be a promising candidate to detect hypochlorite.
Collapse
|
26
|
Double emission fluorescence probes based on unconventional fluorescent molecules and fluorescein isothiocyanate for ClO− and Cu2+ detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Xu ZC, Ge YF, Chen KY, Liu MH. A ratiometric water-soluble fluorescent probe for the detection of sulfur dioxide derivative in sinusitis mice model. Talanta 2022; 237:122972. [PMID: 34736695 DOI: 10.1016/j.talanta.2021.122972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Sulfur dioxide (SO2) plays an extremely important role in the basic processes of physiology and pathology. As an antioxidant, SO2 can maintain the redox homeostasis in the cell. Excessive inhalation of SO2 would lead to irreparable respiratory damage, resulting in respiratory diseases, neurological disorders, and even cardiovascular disease. Thus, it is urgent to exploit an excellent way to monitor SO2 derivatives in biological system. Herein, we design a water-soluble ratiometric fluorescent probe to fast detect the level of SO2 derivatives in living cells in vivo. The probe displays obvious fluorescence signal at long wavelength, which is helpful for imaging of biological system. After respond to SO2 derivatives, the fluorescence signal at 465 nm increases rapidly due to the Michael addition reaction is triggered, further causing the disruption of large conjugated system. The probe exhibits high selectivity and fast respond to SO2 derivatives, which can be able to sensitive and real-time monitoring of SO2 derivatives level in living cells. Moreover, the probe reveals a low detection limit and a great linear relationship to SO2 derivatives. Based on the negligible cytotoxicity and good biocompatibility of the probe, which is employed to detect exogenous and endogenous SO2 derivatives in living cells. In addition, it is also served as a potential chemical tool to detect SO2 derivatives in mice model of sinusitis.
Collapse
Affiliation(s)
- Zhen-Cai Xu
- Guanyun People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Yu-Feng Ge
- Department of Emergent Trauma Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kai-Yong Chen
- Guanyun People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Min-Hua Liu
- Guanyun People's Hospital, Lianyungang, Jiangsu, 222000, China.
| |
Collapse
|
28
|
Wang K, Ru Z, Shi J, Zhu Y, Yang L, Wei M, Xiao M, Liu N, Wang F. N-doped carbon dots as robust fluorescent probes for the rapid detection of hypochlorite. RSC Adv 2022; 12:27170-27178. [PMID: 36276019 PMCID: PMC9511229 DOI: 10.1039/d2ra04477c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
N-doped carbon dots (NCDs) with high quantum yield (67%), which could act as robust fluorescent probes for the detection of free chlorine in local tap water with rapid response and accurate measurement, were efficiently prepared.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zongling Ru
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Jiwei Shi
- Shanghai Morimatsu Pharmaceutical Equipment Engineering Co. Ltd., No. 29 Jinwen Road, Pudong Area, Shanghai, 201323, China
| | - Yuezhao Zhu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Liguo Yang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Mengxue Wei
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Mengli Xiao
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Nana Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Fang Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| |
Collapse
|
29
|
Gao Y, Liu Y, Zhang H, Lu W, Jiao Y, Shuang S, Dong C. One-pot synthesis of efficient multifunctional nitrogen-doped carbon dots with efficient yellow fluorescence emission for detection of hypochlorite and thiosulfate. J Mater Chem B 2022; 10:8910-8917. [DOI: 10.1039/d2tb01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CD-based ratiometric fluorescence probes are of great significance for visual detection, but accomplishing this goal is still a particularly challenging task.
Collapse
Affiliation(s)
- Yifang Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Huilin Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
30
|
Wang P, Zhang Y, Liu Y, Pang X, Liu P, Dong WF, Mei Q, Qian Q, Li L, Yan R. Starch-Based Carbon Dots for Nitrite and Sulfite Detection. Front Chem 2021; 9:782238. [PMID: 34805100 PMCID: PMC8602874 DOI: 10.3389/fchem.2021.782238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
Nitrite and sulfite play important roles in human health and environmental science, so it is desired to develop a facile and efficient method to evaluate NO2 - and SO3 2- concentrations. In this article, the use of green alternatives with the potential of multi-functionality has been synthesized to detect nitrite and sulfite based on fluorescent probe. The carbon dots (CDs) with starch as only raw materials show fluorescence turn "on-off-on" response towards NO2 - and SO3 2- with the limits of detection of 0.425 and 0.243 μМ, respectively. Once nitrite was present in the solution, the fluorescence of CDs was quenched rapidly due to the charge transfer. When sulfite was introduced, the quenching fluorescence of CDs was effectively recovered because of the redox reaction between NO2 - and SO3 2-, and thus providing a new way for NO2 - and SO3 2- detection. Owing to their excellent analytical characteristics and low cytotoxicity, the "on-off-on" sensor was successfully employed for intracellular bioimaging of NO2 - and SO3 2-.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Zhang
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Xinpei Pang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Pai Liu
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, China
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, China
| | - Qing Qian
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China
| | - Ruhong Yan
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
31
|
Liu S, Quan T, Yang L, Deng L, Kang X, Gao M, Xia Z, Li X, Gao D. N,Cl-Codoped Carbon Dots from Impatiens balsamina L. Stems and a Deep Eutectic Solvent and Their Applications for Gram-Positive Bacteria Identification, Antibacterial Activity, Cell Imaging, and ClO - Sensing. ACS OMEGA 2021; 6:29022-29036. [PMID: 34746591 PMCID: PMC8567351 DOI: 10.1021/acsomega.1c04078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 05/08/2023]
Abstract
In this study, we first synthesized metal-free N,Cl-doped carbon dots (N,Cl-CDs) using Impatiens balsamina L. stems as green precursors in a deep eutectic solvent (DES). The obtained N,Cl-CDs were characterized through transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, fluorescence (FL) spectroscopy, and ultraviolet (UV) spectroscopy. In addition to the common features of carbon dots (CDs), such as high light stability, small size, low toxicity, good aqueous solubility, and favorable biocompatibility, these N,Cl-CDs exhibited excellent recognition and selectivity for Gram-positive bacteria by doping with N and Cl elements using DES. The N,Cl-CDs with positive charge cannot only differentiate Gram-positive bacteria by selective fluorescence imaging but also have antibacterial effects on Gram-positive bacteria. Through potential, ROS, and morphological analyses of bacteria before and after treatment with N,Cl-CDs, the antibacterial mechanisms of bacteriostasis, Enterococcus faecium, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Salmonella were explored. In addition, N,Cl-CDs demonstrated low cytotoxicity and good cell imaging ability in cancer and normal cells. Moreover, they can be used as a fluorescence sensor for the detection of ClO- with a detection range from 100 nM to 40 μM and a limit of detection (LOD) of 30 nM. In summary, the prepared N,Cl-CDs could be applied as environmentally friendly Gram-positive bacterial identification and antibacterial agents. Additionally, their cell imaging and ClO- detection abilities were outstanding.
Collapse
Affiliation(s)
- Shaochi Liu
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tian Quan
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lijuan Yang
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Linlin Deng
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xun Kang
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Manjie Gao
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Li
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School
of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
32
|
Nandi N, Gaurav S, Sarkar P, Kumar S, Sahu K. Hit Multiple Targets with One Arrow: Pb 2+ and ClO - Detection by Edge Functionalized Graphene Quantum Dots and Their Applications in Living Cells. ACS APPLIED BIO MATERIALS 2021; 4:7605-7614. [PMID: 35006709 DOI: 10.1021/acsabm.1c00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, multimodal detection of analytes through a single nanoprobe has become an eminent approach for researchers. Herein a fluorescent nanoprobe, functionalized-GQD (F-GQD), has been designed through edge functionalization of graphene quantum dots (GQDs) by 2,6-diaminopyridine molecules. The fluorescence of F-GQD is quite sensitive to medium pH, making it a suitable pH sensor within the pH range 2-6. Interestingly, F-GQD shows dual sensing of Pb2+ and ClO- by entirely different pathways; Pb2+ exhibits fluorescence turn-on performance while ClO- triggers turn-off fluorescence quenching. The fluorescence enhancement may originate from the Pb2+-induced aggregation of the nanodots. The limit of detection (LOD) was also impressive, 1.2 μM and 12.6 nM for Pb2+ and ClO-, respectively. The detailed mechanistic investigations reveal that both dynamic and static quenching effects operate together in the F-GQD-ClO- system. The dynamic quenching was attributed to the energy migration from F-GQD to ClO- through hydrogen bonding interaction (static quenching) between the amine group at the F-GQD surface and ClO-. The F-GQD nanodot reveals excellent sensitivity toward the detection of ClO- in real samples. Moreover, the F-GQDs also serve as multicolor fluorescent probes for cell imaging; the probe can easily penetrate the cell membrane and successfully detect intracellular ClO-.
Collapse
Affiliation(s)
- Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shubham Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Guwahati, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
33
|
One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochim Acta 2021; 188:330. [PMID: 34498123 DOI: 10.1007/s00604-021-04973-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Tunable multicolor carbon dots (CDs) with a quantum yield reach up to 35% were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. Transmission electron microscopy images reveal that the as-prepared CDs possess a small size distribution below 10 nm with bright blue, green, and yellow color emission, designated as b-CDs, g-CDs, and y-CDs, respectively. The in-depth investigations reveal that the multicolor emission CDs with different fraction displays fluorescence emission wavelength ranges from 398 nm (b-CDs), 525 nm (g-CDs), to 553 nm (y-CDs) which could be well modulated by controlling the amount of heteroatom nitrogen especially amino nitrogen onto their surface structures. Further experiments verify the important role of nitrogen content by using rhodamine solely or substituting urea with sulfur containing compounds as precursors to produce corresponding CDs since the performance is lower than that of urea incorporation. Theoretical calculation results also reveal that the increasing amount of amino nitrogen into their surface structures of b-CDs, g-CDs to y-CDs is responsible for reduced band gaps energy, which result in the redshifted wavelength. Benefiting from the excellent photoluminescence properties, wide pH variation range, high photo stability, and low toxicity, these CDs were employed for HClO sensing at 553 nm within the range 5 to 140 μM with a limit of detection (LOD) of 0.27 ± 0.025 μM (n = 3) and multicolor cellular imaging in HeLa cells. Tunable multicolor carbon dots (CDs) were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. The as-prepared CDs exhibit bright blue, green, and yellow color emission which could be well modulated by controlling the increasing incorporation of heteroatom nitrogen especially amino nitrogen into their surface structures. These CDs were employed for HClO sensing and demonstrated to multicolor cellular imaging in HeLa cells.
Collapse
|
34
|
Liu W, Yang C, Zhang H, Li Z, Yu M. Colorimetric and Ratiometric Fluorescence Detection of HSO 3- With a NIR Fluorescent Dye. J Fluoresc 2021; 31:1567-1574. [PMID: 34338969 DOI: 10.1007/s10895-021-02794-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Bisulfite (HSO3-) has been widely used in food and industry, which has brought convenience to human life, but also seriously endangered human health. In this work, the probe PBI was designed and synthesized to detect bisulfite (HSO3-) through nucleophilic addition reaction. The probe PBI showed a selective reaction to HSO3- and can quantitatively detect HSO3-. At the same time, the color of the probe PBI changed significantly, which provided a simple method for the naked eye to identify HSO3-. Finally, it was successfully applied to the fluorescence imaging of HSO3- in living cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenchen Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Beijing Institute of Fashion Technology, NanofiberBeijing, 100029, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
35
|
Zhao X, Shen Q, Sun Y, Han X, Guan Y. A Ratio Fluorescent Probe for the Detection of Bisulfite and Its Application in Living Cells. ChemistrySelect 2021. [DOI: 10.1002/slct.202100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuejun Zhao
- Lunan Hope Pharmaceutical Co., Ltd State Key Laboratory of generic technology of traditional Chinese medicine of Lunan Pharmaceutical Group Linyi Shandong 276006 China
| | - Qingguo Shen
- Lunan Hope Pharmaceutical Co., Ltd State Key Laboratory of generic technology of traditional Chinese medicine of Lunan Pharmaceutical Group Linyi Shandong 276006 China
| | - Yan Sun
- Lunan Hope Pharmaceutical Co., Ltd State Key Laboratory of generic technology of traditional Chinese medicine of Lunan Pharmaceutical Group Linyi Shandong 276006 China
| | - Xueshun Han
- Lunan Hope Pharmaceutical Co., Ltd State Key Laboratory of generic technology of traditional Chinese medicine of Lunan Pharmaceutical Group Linyi Shandong 276006 China
| | - Yongxia Guan
- Lunan Hope Pharmaceutical Co., Ltd State Key Laboratory of generic technology of traditional Chinese medicine of Lunan Pharmaceutical Group Linyi Shandong 276006 China
| |
Collapse
|
36
|
Ansari L, Hallaj S, Hallaj T, Amjadi M. Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids Surf B Biointerfaces 2021; 203:111743. [PMID: 33872828 DOI: 10.1016/j.colsurfb.2021.111743] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
As a fascinating class of fluorescent carbon dots (CDs), doped-CDs are now sparked intense research interest, particularly in the diverse fields of biomedical applications due to their unique advantages, including low toxicity, physicochemical, photostability, excellent biocompatibility, and so on. In this review, we have summarized the most recent developments in the literature regarding the employment of doped-CDs for pharmaceutical and medical applications, which are published over approximately the past five years. Accordingly, we discuss the toxicity and optical properties of these nanomaterials. Beyond the presentation of successful examples of the application of these multifunctional nanoparticles in photothermal therapy, photodynamic therapy, and antibacterial activity, we further highlight their application in the cellular labeling, dual imaging, and in vitro and in vivo bioimaging by use of fluorescent-, photoacoustic-, magnetic-, and computed tomography (CT)-imaging. The potency of doped-CDs was also described in the biosensing of ions, small molecules, and drugs in biological samples or inside the cells. Finally, the advantages, disadvantages, and common limitations of doped-CD technologies are reviewed, along with the future prospects in biomedical research. Therefore, this review provides a concise insight into the current developments and challenges in the field of doped-CDs, especially for biological and biomedical researchers.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Shahin Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
37
|
Meng Y, Zhang H, Li M, Lu W, Liu Y, Gong X, Shuang S, Dong C. A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomater Sci 2021; 9:2255-2261. [PMID: 33533378 DOI: 10.1039/d0bm02047h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular pH and hypochlorite (ClO-) concentration play an important role in life activities, so there is an urgent need to develop a valid strategy to monitor pH and ClO- in biological systems with high sensitivity and specificity. In this study, we report long-wavelength emission nitrogen-doped carbon dots (N-CDs) and their potential applications in intracellular pH variation, ClO- sensing and cell imaging. The N-CDs were prepared via a facile one-pot hydrothermal method of neutral red (NR) and glutamine (Gln). N-CDs exhibited a pH-sensitive response in the range of 4.0-9.0 and a good linear relationship in the range of 5.6-7.4, which indicated that N-CDs are an ideal agent for monitoring pH fluctuations in living cells. In addition, ClO- was capable of reducing the photoluminescence of N-CDs based on static quenching. The linear range is 1.5-112.5 μM and 112.5-187.5 μM, and the LOD is 0.27 μM. Besides, the as-fabricated N-CDs have been smoothly achieved to monitor pH and ClO- in PC-12 living cells due to their great biocompatibility and lower cytotoxicity, demonstrating their promising applications in the biomedical field. Compared with other CD-based methods, the as-proposed N-CDs have a longer fluorescence emission, which makes them potentially valuable in biological systems. The results pave a way towards the construction of long-wavelength carbon-based nanomaterials for fluorescence sensing and cell imaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, No. 92 Wucheng rd., Taiyuan 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang Q, Song H, Yu M, Zhang H, Li Z. Preparation of Yellow Fluorescent N,O-CDs and its Application in Detection of ClO . J Fluoresc 2021; 31:659-666. [PMID: 33534115 DOI: 10.1007/s10895-021-02686-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Accurate and efficient detection of ClO- was extremely important due to the harm of ROS in the environment and organism. In this paper, yellow fluorescent N,O-CDs were successfully prepared by the solvothermal method. The microscopic size of the N,O-CDs was approximately spherical with an average particle size of 4.8 ± 0.8 nm. The fluorescence quantum yield in ethanol solution was calculated as 10.5 % using fluorescein as the standard reference. The as-fabricated N,O-CDs had high sensitivity and low detection limit (7.5 µM) for quantitatively detecting ClO- with a linear range from 0.07 mM to 0.16 mM. The probe not only shows good selectivity and anti-interference to metal ions, anions and amino acids but also has excellent light stability and thermal stability. Also, a wide selection range for pH was demonstrated.
Collapse
Affiliation(s)
- Qiang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Huanhuan Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Nanofiber, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Zhanxian Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
39
|
Zhao D, Zhang Z, Liu X, Zhang R, Xiao X. Rapid and low-temperature synthesis of N, P co-doped yellow emitting carbon dots and their applications as antibacterial agent and detection probe to Sudan Red I. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111468. [DOI: 10.1016/j.msec.2020.111468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 11/24/2022]
|
40
|
Chung YJ, Lee CH, Lim J, Jang J, Kang H, Park CB. Photomodulating Carbon Dots for Spatiotemporal Suppression of Alzheimer's β-Amyloid Aggregation. ACS NANO 2020; 14:16973-16983. [PMID: 33236883 DOI: 10.1021/acsnano.0c06078] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Extracellular deposition of β-amyloid (Aβ) peptide aggregates is a major characteristic of Alzheimer's disease (AD) brain. Because Aβ peptide aggregates aggravate neuropathy and cognitive impairment for AD patients, numerous efforts have been devoted to suppressing Aβ self-assembly as a prospective AD treatment option. Here, we report Aβ-targeting, red-light-responsive carbon dots (CDs), and their therapeutic functions as a light-powered nanomodulator to spatiotemporally suppress toxic Aβ aggregation both in vitro and in vivo. Our aptamer-functionalized carbon dots (Apta@CDs) showed strong targeting ability toward Aβ42 species. Moreover, red LED irradiation induced Apta@CDs to irreversibly denature Aβ peptides, impeding the formation of β-sheet-rich Aβ aggregates and attenuating Aβ-associated cytotoxicity. Consequently, Apta@CDs-mediated photomodualtion modality achieved effective suppression of Aβ aggregation in vivo, which significantly reduced the Aβ burden at the targeted sites in the brain of 5xFAD mice by ∼40% and ∼25% according to imaging and ELISA analyses, respectively. Our work demonstrates the therapeutic potential of photomodulating CDs for light-driven suppression against Aβ self-assembly and related neurotoxicity.
Collapse
Affiliation(s)
- You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chang Heon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyeong Lim
- Gwangju Center, Korea Basic Science Institute (KBSI), 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyuno Kang
- Division of Analytical Science, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
41
|
Liu R, Zhao Y, Cui X, Sun X, Fei Q, Feng G, Shan H, Huan Y. A turn‐on fluorescent probe based on quinoline and coumarin for rapid, selective and sensitive detection of hypochlorite in water samples. LUMINESCENCE 2020; 35:1231-1237. [DOI: 10.1002/bio.3882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Ruxin Liu
- College of Chemistry Jilin University Changchun People's Republic of China
| | - Yuqi Zhao
- College of Chemistry Jilin University Changchun People's Republic of China
| | - Xiaoqian Cui
- The Second Hospital of Jilin University Changchun People's Republic of China
| | - Xiaoxiao Sun
- College of Chemistry Jilin University Changchun People's Republic of China
| | - Qiang Fei
- College of Chemistry Jilin University Changchun People's Republic of China
| | - Guodong Feng
- College of Chemistry Jilin University Changchun People's Republic of China
| | - Hongyan Shan
- College of Chemistry Jilin University Changchun People's Republic of China
| | - Yanfu Huan
- College of Chemistry Jilin University Changchun People's Republic of China
| |
Collapse
|
42
|
Wei S, Li T, Zhang X, Zhang H, Jiang C, Sun G. An "on-off-on" selective fluorescent probe based on nitrogen and sulfur co-doped carbon dots for detecting Cu 2+ and GSH in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5110-5119. [PMID: 33057477 DOI: 10.1039/d0ay01662d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal level of Cu2+ or GSH can cause variety of neurodegenerative diseases in humans. Thus, the selective and sensitive detection of Cu2+ and GSH has inspired intensive research efforts in biological sample analysis fields. Herein, an "on-off-on" fluorescent probe based on nitrogen and sulfur co-doped carbon dots (N,S-CDs) has been successfully prepared for the detection of Cu2+ and GSH. The "turn-off" process of fluorescence in the presence of Cu2+ ions was induced by forming a non-luminescent ground state complex due to the interaction between surface groups of the probe and Cu2+ ions. Moreover, the strong coordination between GSH and Cu2+ could destroy the structure of the complex and restore the fluorescence to "turn-on". This fluorescent probe had excellent selectivity and high sensitivity toward Cu2+ and GSH with the limits of detection (LODs) of 38 nM and 41 nM. More importantly, the as-prepared N,S-CDs served as an efficient fluorescent probe for not only detecting Cu2+ ions in lake water and tap water, and GSH in BSA solution, but also sensing Cu2+ and GSH in living cells. Therefore, these N,S-CDs could be considered as a promising fluorescence probe candidate for environmental monitoring and biological imaging.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | | | | | | | | | | |
Collapse
|
43
|
Jiao Y, Meng Y, Lu W, Gao Y, Liu Y, Gong X, Liu Y, Shuang S, Dong C. Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 2020; 219:121170. [PMID: 32887093 DOI: 10.1016/j.talanta.2020.121170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
A facile strategy for the preparation of nitrogen and phosphorus co-doped carbon dots (N, P-CDs) with long-wavelength emission is attractively proposed in one-pot hydrothermal strategy. The resulting N, P-CDs hold exceptional optical features and display excitation wavelength-independent properties with the emission wavelength at 590 nm, which enable it with the satisfactory relative quantum yield (QY) of 15.6% in long-wavelength region. In addition, the proposed N, P-CDs demonstrates specific selectivity towards ClO- over other competitive reactive oxygen species and exhibits rapid fluorescence response time to ClO-. Moreover, the N, P-CDs exhibits low-cytotoxicity and excellent cell membrane permeability for recognizing ClO- in SMMC-7721 cells, which demonstrates their enormous potential in biological system.
Collapse
Affiliation(s)
- Yuan Jiao
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yating Meng
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yifang Gao
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yang Liu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Shaomin Shuang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
44
|
Zhang H, Gao Y, Jiao Y, Lu W, Shuang S, Dong C. Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO−. Analyst 2020; 145:2212-2218. [DOI: 10.1039/c9an02570g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric fluorescent N,S co-doped carbon dots (N,S-CD) probe for ClO− has been facilely obtained via a one-step hydrothermal method.
Collapse
Affiliation(s)
- Huilin Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yifang Gao
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yuan Jiao
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
45
|
Wei S, Tan L, Yin X, Wang R, Shan X, Chen Q, Li T, Zhang X, Jiang C, Sun G. A sensitive “ON–OFF” fluorescent probe based on carbon dots for Fe2+ detection and cell imaging. Analyst 2020; 145:2357-2366. [DOI: 10.1039/c9an02309g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A sensitive fluorescent probe based on carbon dots has been synthesized by a one-pot hydrothermal method for the rapid detection of intracellular Fe2+.
Collapse
Affiliation(s)
- Shanshan Wei
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
- Advanced Institute of Materials Science
| | - Lihong Tan
- School of Life Sciences
- Changchun University of Science and Technology
- Changchun 130022
- P. R. China
| | - Xiangyu Yin
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Ruoming Wang
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Qian Chen
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Tinghua Li
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
- Advanced Institute of Materials Science
| | - Xinyu Zhang
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
- Advanced Institute of Materials Science
| | - Chunzhu Jiang
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
- Advanced Institute of Materials Science
| |
Collapse
|
46
|
Shen R, Qian Y. A novel ratiometric fluorescent probe for specific detection of HSO3- at nanomolar level through 1, 4-Michael addition. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Zhang F, Liu Y, Ma P, Tao S, Sun Y, Wang X, Song D. A Mn-doped ZnS quantum dots-based ratiometric fluorescence probe for lead ion detection and “off-on” strategy for methyl parathion detection. Talanta 2019; 204:13-19. [DOI: 10.1016/j.talanta.2019.05.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 11/15/2022]
|
48
|
Taheri M, Mansour N. Functionalized silicon nanoparticles as fluorescent probe for detection of hypochlorite in water. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Porubský M, Gurská S, Stanková J, Hajdúch M, Džubák P, Hlaváč J. Amino-BODIPY as the ratiometric fluorescent sensor for monitoring drug release or “power supply” selector for molecular electronics. RSC Adv 2019; 9:25075-25083. [PMID: 35528670 PMCID: PMC9069925 DOI: 10.1039/c9ra03472b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 01/06/2023] Open
Abstract
The glutathione cleavable conjugates of amino-BODIPY dye with model drugs have been tested for monitoring the drug release via ratiometric fluorescence based on two excitation and one emission wavelength. As a self-immolative linker was used for the construction of conjugates, free amino-BODIPY was released with the drug. Different excitation profiles of the dye before and after conjugate cleavage and similar emission wavelengths that enabled monitoring the release of the drug via the OFF–ON effect were successfully tested inside the cancer cells. UV/Vis spectrometry could be used in the quantification of the conjugate/drug in an analyte irrespective of the cleavage grade. As the system functionality was based only on the altered acylamino-BODIPY present in the conjugate to amino-BODIPY released during the cleavage, the method could be applied as a ratiometric fluorescence theranostic system to other non-fluorescent drugs. Moreover, the present conjugates demonstrated their potential application in molecular electronics as a “power supply” selector enabling the application of two power sources for one “bulb” to maintain its light intensity. Amino-BODIPY as the universal and highly fluorescent OFF–ON and ratiometric sensor for thiol-mediated drug release monitoring.![]()
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic Chemistry
- Faculty of Science
- Palacký University
- 771 46 Olomouc
- Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry
- Faculty of Science
- Palacký University
- 771 46 Olomouc
- Czech Republic
| |
Collapse
|