1
|
Jiang F, Meng Y, Mo M, Li Y, Liu Q, Wang P, Li Y, Wei Q. A sensitive electrochemical immunosensor based on high-efficiency catalytic cycle amplification strategy for detection of cardiac troponin I. Bioelectrochemistry 2024; 159:108730. [PMID: 38762950 DOI: 10.1016/j.bioelechem.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
An electrochemical immunosensor based on the novel high efficiency catalytic cycle amplification strategy for the sensitive detection of cardiac troponin I (cTnI). With its variable valence metal elements and spiny yolk structure, the Cu2O/CuO@CeO2 nanohybrid exhibits high speed charge mobility and exceptional electrochemical performance. Notably, fluorite-like cubic crystal CeO2 shell would undergo redox reaction with Cu2O core, which successfully ensures the continuous recycling occurrence of "fresh" Cu (II)/Cu (I) and Ce (Ⅳ)/Ce (Ⅲ) pairs at the electrode interface. The "fresh" active sites continue to emerge constantly, resulting in a significant increase in the current signal. In light of the electrochemical characterization, the electron transfer pathway and catalytic cycle mechanism among CeO2, Cu2O and CuO were further discussed. The developed electrochemical immunosensor detected cTnI from 100 fg/mL to 100 ng/mL with a LOD of 15.85 fg/mL under optimal conditions. The analysis results indicate that the immunosensor would hold promise for broad application prospects in the biological detection for other biomarkers.
Collapse
Affiliation(s)
- Feng Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yaoyao Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Mengxiao Mo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, the Republic of Korea.
| |
Collapse
|
2
|
Li G, Feng H, Li X, Li S, Liang J, Zhou Z. A dual-signal output electrochemical aptasensor for glypican-3 ultrasensitive detection based on reduced graphene oxide-cuprous oxide nanozyme catalytic amplification strategy. Bioelectrochemistry 2024; 158:108709. [PMID: 38621313 DOI: 10.1016/j.bioelechem.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Glypican-3 (GPC3) is an essential reference target for hepatocellular carcinoma detection, follow-up and prediction. Herein, a dual-signal electrochemical aptasensor based on reduced graphene oxide-cuprous oxide (RGO-Cu2O) nanozyme was developed for GPC3 detection. The RGO-Cu2O nanoenzyme displayed excellent electron transport effect, large specific surface area and outstanding peroxidase-like ability. The differential pulse voltammetry (DPV) signal of Cu2O oxidation fraction and the chronoamperometry (i-t) signal of H2O2 decomposition catalyzed by RGO-Cu2O nanozyme were used as dual-signal detection. Under optimal conditions, the log-linear response ranges were 0.1 to 500.0 ng/mL with the limit of detection 0.064 ng/mL for DPV technique, and 0.1-50.0 ng/mL for i-t technique (detection limit of 0.0177 ng/mL). The electrochemical aptasensor has remarkably analytical performance with wide response range, low detection limit, excellent repeatability and specificity, good recovery in human serum samples. The two output signals of one sample achieve self-calibration of the results, effectively avoiding the occurrence of possible leakage and misdiagnosis of a single detection signal, suggesting that it will be a promising method in the early biomarker detection.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China
| | - Huafu Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xinhao Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Shengnan Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| |
Collapse
|
3
|
Saeed AA, Abbas MN, El-Hawary WF, Issa YM, Singh B. A Core–Shell Au@TiO2 and Multi-Walled Carbon Nanotube-Based Sensor for the Electroanalytical Determination of H2O2 in Human Blood Serum and Saliva. BIOSENSORS 2022; 12:bios12100778. [PMID: 36290916 PMCID: PMC9599508 DOI: 10.3390/bios12100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
A hydrogen peroxide (H2O2) sensor was developed based on core–shell gold@titanium dioxide nanoparticles and multi-walled carbon nanotubes modified glassy carbon electrode (Au@TiO2/MWCNTs/GCE). Core–shell Au@TiO2 material was prepared and characterized using a scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD) and Zeta-potential analyzer. The proposed sensor (Au@TiO2/MWCNTs/GCE) was investigated electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The analytical performance of the sensor was evaluated towards H2O2 using differential pulse voltammetry (DPV). The proposed sensor exhibited excellent stability and sensitivity with a linear concentration range from 5 to 200 µM (R2 = 0.9973) and 200 to 6000 µM (R2 = 0.9994), and a limit of detection (LOD) of 1.4 µM achieved under physiological pH conditions. The practicality of the proposed sensor was further tested by measuring H2O2 in human serum and saliva samples. The observed response and recovery results demonstrate its potential for real-world H2O2 monitoring. Additionally, the proposed sensor and detection strategy can offer potential prospects in electrochemical sensors development, indicative oxidative stress monitoring, clinical diagnostics, general cancer biomarker measurements, paper bleaching, etc.
Collapse
Affiliation(s)
- Ayman Ali Saeed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Mohammed Nooredeen Abbas
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | | | | | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin 24, Ireland
- Correspondence: ; Tel.: +353-12-207-863
| |
Collapse
|
4
|
Fu C, Wang Y, Tian X, Wu Y, Cao H, Li Y, Jung YM. Horseradish peroxidase-repeat assay based on tyramine signal amplification for highly sensitive H 2O 2 detection by surface-enhanced Raman scattering. Analyst 2021; 146:7320-7326. [PMID: 34762076 DOI: 10.1039/d1an01705e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new and simple surface-enhanced Raman scattering (SERS) biosensor based on the tyramine signal amplification (TSA)-triggered formation of horseradish peroxidase (HRP) repeats on a gold sensing chip was designed for the highly sensitive detection of hydrogen peroxide (H2O2). Initially, gold wafers were functionalized with HRP as sensing chips. Then, the HRP immobilized on the chips triggers the TSA reaction to transform the tyramine-HRP conjugate into a tyramine-HRP repeat array. With the aid of the target H2O2, the HRP repeats catalyze the oxidation of o-phenylenediamine (OPD) and produce an enzyme catalytic product with a different chemical structure, thus altering the fingerprint of the SERS spectra from that of OPD. H2O2 can be quantitatively analyzed according to the change in SERS signal intensity. On the basis of the TSA strategy, the proposed method allows the detection of H2O2 with a limit of detection (LOD) of 0.8 × 10-8 M. The as-prepared SERS sensor can achieve high-sensitivity H2O2 detection with a small amount of sample for each analysis. Therefore, this sensor exhibits significant potential for application in bioanalysis.
Collapse
Affiliation(s)
- Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yuqiu Wang
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Xue Tian
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Haiyan Cao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yangyang Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|
5
|
Yan B, Gu S, Shen Y. Cobalt and nitrogen co-doped mesoporous carbon for electrochemical hydrogen peroxide sensing: the effect of graphitization. Analyst 2021; 146:2313-2320. [PMID: 33620343 DOI: 10.1039/d0an02473b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a facile strategy for the scalable synthesis of cobalt and nitrogen co-doped mesoporous carbon (Co-N/C) is reported. Structural characterization demonstrated that Co and N were successfully co-doped in the highly porous carbon. Graphitization of porous carbon was achieved by the introduction of cobalt species. The degree of graphitization of Co-N/C could be further promoted by increasing the calcination temperature. By taking advantage of the excellent mass and electron transfer kinetics attributed to the high specific surface area, high porosity and high graphitization, the obtained Co-N/C exhibited good electrochemical activity towards H2O2 reduction and excellent sensing performance for the electrochemical detection of H2O2. The Co-N/C-950 catalyst obtained at 950 °C showed good electrochemical sensing performance with a detection limit of 2 μM and a wide linear response over the concentration range from 0.03 mM to 13 mM. Meanwhile, Co-N/C exhibited high selectivity toward the detection of H2O2 in the presence of possible interferences during the applications such as NaCl, glucose, ascorbic acid and so on. The results confirm that Co-N/C could be used as an efficient electrocatalyst to fabricate electrochemical sensing devices.
Collapse
Affiliation(s)
- Bin Yan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | | | | |
Collapse
|
6
|
Tang L, Huan K, Deng D, Han L, Zeng Z, Luo L. Glucose sensor based on Pd nanosheets deposited on Cu/Cu2O nanocomposites by galvanic replacement. Colloids Surf B Biointerfaces 2020; 188:110797. [DOI: 10.1016/j.colsurfb.2020.110797] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
|
7
|
Aggregation-induced emission of copper nanoclusters triggered by synergistic effect of dual metal ions and the application in the detection of H 2O 2 and related biomolecules. Talanta 2019; 207:120289. [PMID: 31594584 DOI: 10.1016/j.talanta.2019.120289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023]
Abstract
Recently, the aggregation-induced emission (AIE) of nanoclusters triggered by metal ions has been received great attentions. However, the good AIE efficiency usually requires excessive metal ions, which may result in an undesired competition between metal ions and targets. In this work, by the synergistic effect of Pb2+ and Zr4+, a fewer amounts of metal ions can induce more aggregates of glutathione-capped Cu nanoclusters (CSH-CuNCs), resulting in a higher AIE efficiency. Next, by virtue of the oxidative property of H2O2, the AIE of GSH-CuNCs-Pb2+-Zr4+ system quenches linearly with the concentration of H2O2 from 1 to 60 μmol/L. Moreover, many biological substrates, such as glucose and cholesterol, can generate H2O2 in the presence of their specific oxidases and O2. Therefore, the detection of glucose or cholesterol can also be achieved by the proposed method, and the limits of detection of glucose and cholesterol are 0.37 and 2.7 μmol/L, respectively. Finally, this method has been validated to be sensitive and selective for glucose or cholesterol detection in human serum samples.
Collapse
|
8
|
A Facile One-Step Synthesis of Cuprous Oxide/Silver Nanocomposites as Efficient Electrode-Modifying Materials for Nonenzyme Hydrogen Peroxide Sensor. NANOMATERIALS 2019; 9:nano9040523. [PMID: 30987101 PMCID: PMC6523812 DOI: 10.3390/nano9040523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Cuprous oxide/silver (Cu2O/Ag) nanocomposites were prepared via a facile one-step method and used to construct an electrochemical sensor for hydrogen peroxide (H2O2) detection. In this method, AgNO3 and Cu(NO3)2 were reduced to Cu2O/Ag nanocomposites by glucose in the presence of hexadecyl trimethyl ammonium bromide (CTAB) at a low temperature. The optimum condition was the molar ratio of silver nitrate and copper nitrate of 1:10, the temperature of 50 °C. Under this condition, Cu2O/Ag nanocomposites were obtained with uniformly distributed and tightly combined Cu2O and Ag nanoparticles. The size of Cu2O particles was less than 100 nm and that of Ag particles was less than 20 nm. Electrochemical experiments indicate that the Cu2O/Ag nanocomposites-based sensor possesses an excellent performance toward H2O2, showing a linear range of 0.2 to 4000 μM, a high sensitivity of 87.0 μA mM−1 cm−2, and a low detection limit of 0.2 μM. The anti-interference capability experiments indicate this sensor has good selectivity toward H2O2. Additionally, the H2O2 recovery tests of the sensor in diluted milk solution signify its potential application in routine H2O2 analysis.
Collapse
|