1
|
Zhong W, Xu Y, Wang Z, Wang X, Li Y, Liu J, Zhao C, Shi X, He Z, Sun B, Tian C. Dual role of triglyceride structures facilitates anti-tumor drug delivery: Both as a self-assembling module and a responsive module. J Colloid Interface Sci 2025; 678:24-34. [PMID: 39277950 DOI: 10.1016/j.jcis.2024.09.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Small molecule prodrugs self-assembled nano-delivery systems with tumor responsive linkages are emerging as an effective platform. However, the heterogeneity of tumor microenvironment may limit the anti-tumor effect of prodrug nanomedicines with a single response module. Here, we chose disulfide bond as the response module and branched chain alcohol as the self-assembly modification module to construct a single-responsive prodrug. We also constructed a double-responsive paclitaxel prodrug combining triglyceride and disulfide bond, taking into account of the highly expressed lipase and glutathione levels in tumor cells. The results showed that the anti-tumor effect of single-responsive branched chain alcohol modified prodrug nanoparticles was inferior to triglyceride prodrug nanoparticles with dual response modules. The triglyceride structure can not only serve as a self-assembly modification module, but also serve as a response module for intelligent drug release in tumor. Such dual roles will facilitate the efficient delivery of small molecule self-assembled prodrugs to tumor sites.
Collapse
Affiliation(s)
- Wenxin Zhong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Yalin Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zixuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiyan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqi Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinrui Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Can Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Zhou W, Liu YC, Liu GJ, Zhang Y, Feng GL, Xing GW. Glycosylated AIE-active Red Light-triggered Photocage with Precisely Tumor Targeting Capability for Synergistic Type I Photodynamic Therapy and CPT Chemotherapy. Angew Chem Int Ed Engl 2025; 64:e202413350. [PMID: 39266462 DOI: 10.1002/anie.202413350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2 -⋅)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2 -⋅ through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yi-Chen Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Kanungo A, Mohanty C, Acharya S. Smart Cancer Nanomedicine for Synergetic Therapy. Curr Med Chem 2025; 32:286-300. [PMID: 38860907 DOI: 10.2174/0109298673300897240602130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Cancer is the second leading cause of death. Notwithstanding endeavors to comprehend tumor causes and therapeutic modalities, no noteworthy advancements in cancer therapy have been identified. Nanomedicine has drawn interest for its diagnostic potential because of its ability to deliver therapeutic agents specifically to tumors with little adverse effects. Nanomedicines have become prevalent in the treatment of cancer. Here, we present four strategic suggestions for improvement in the functionality and use of nanomedicine. (1) Smart drug selection is a prerequisite for both medicinal and commercial achievement. Allocating resources to the advancement of modular (pro)drugs and nanocarrier design ought to consider the role of opportunistic decisions depending on drug availability. (2) Stimuli-responsive nanomedicine for cancer therapy is being designed to release medications at particular locations precisely. (3) The cornerstone of clinical cancer treatment is combination therapy. Nanomedicines should be included more frequently in multimodal combination therapy regimens since they complement pharmacological and physical co-treatments. (4) Regulation by the immune system is transforming cancer therapy. Nanomedicines can improve the effectiveness of the immune system and control the behavior of anticancer immunity. These four approaches, both separately and particularly in combination, will accelerate and promote the creation of effective cancer nanomedicine treatments.
Collapse
Affiliation(s)
- Anwesha Kanungo
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Chandana Mohanty
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Sarbari Acharya
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
4
|
Jiang S, Gurram B, Zhu J, Lei S, Zhang Y, He T, Tagit O, Fang H, Huang P, Lin J. Self-Boosting Programmable Release of Multiple Therapeutic Agents by Activatable Heterodimeric Prodrug-Enzyme Assembly for Antitumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409960. [PMID: 39569709 PMCID: PMC11727268 DOI: 10.1002/advs.202409960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Endogenous stimuli-responsive prodrugs, due to their disease lesion specificity and reduced systemic toxicity, have been widely explored for antitumor therapy. However, reactive oxygen species (ROS) as classical endogenous stimuli in the tumor microenvironment (TME) are not enough to achieve the expected drug release. Herein, a ROS-activatable heterodimeric prodrug-loaded enzyme assembly is developed for self-boosting programmable release of multiple therapeutic agents. The heterodimeric prodrug NBS-TK-PTX (namely NTP) is composed of 5-(ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride analog (NBS), paclitaxel (PTX) and ROS-responsive thioketal (TK) linker, which shows a strong binding affinity with glucose oxidase (GOx), thus obtaining NTP@GOx assembly. Notably, the enzymatic activity of GOx in NTP@GOx is inhibited by NTP. The programmable release is achieved by following steps: i) NTP@GOx is partially dissociated in acidic TME, thus releasing a small segment of NTP and GOx. Thereupon, the enzymatic activity of GOx is recovered; ii) GOx-triggered pH reduction further facilitates the dissociation of NTP@GOx, thus accelerating a large amount of NTP and GOx release; iii) The TK linker of prodrug NTP is cleaved by hydrogen peroxide generated by GOx catalysis, thus expediting the release of NBS for Type-I photodynamic therapy and PTX for chemotherapy, respectively. The NTP@GOx shows great potential for multimodal synergistic cancer therapy.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Bhaskar Gurram
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
- Department of BioInterfacesInstitute for Chemistry and BioanalyticsSchool of Life SciencesFHNW University of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Junfei Zhu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Shan Lei
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Ting He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Oya Tagit
- Department of BioInterfacesInstitute for Chemistry and BioanalyticsSchool of Life SciencesFHNW University of Applied Sciences and Arts Northwestern SwitzerlandMuttenz4132Switzerland
| | - Hui Fang
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518055China
| |
Collapse
|
5
|
Yang C, Zhao Y, Jiao Y, Yang L, He B, Dai W, Zhang H, Zhang Q, Wang X. Organelle-Level Trafficking and Metabolism Kinetics for Redox-Responsive Paclitaxel Prodrug Nanoparticles Characterized by Experimental and Modeling Analysis. ACS NANO 2024. [PMID: 39688493 DOI: 10.1021/acsnano.4c09704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Redox-responsive self-assembled prodrug nanoparticles have received extensive attention for their high loading efficiency and environmentally responsive properties. However, the intracellular metabolism and transportation kinetics were poorly understood, which limited the rational design and development of this delivery system. Herein, tetraphenylporphyrin-paclitaxel (TxP) prodrugs with thioether, disulfide, and dicarbon linkers (TsP, TssP, and TccP) were synthesized and self-assembled as nanoparticles. The redox responsiveness was investigated both in the simulated medium and in tumor cells via mass spectrometry. TxP NP and PTX concentrations in 4T1 whole cells, endosomal systems, and cytoplasm over time were quantified by UPLC-MS/MS and modeled using the nonlinear mixed effect (NLME) approach. Cytotoxicity was studied in 4T1 and MCF-7 cell lines, and antitumor efficacy was analyzed in 4T1 tumor-bearing mice. Mass spectrometry identified both oxidative and reductive metabolites in redox simulants for TssP NPs and TsP NPs. In 4T1 cells, only reductive metabolites for TssP NPs were detected, while both oxidative and reductive metabolites for TsP NPs were detected. The developed subcellular pharmacokinetic model suggested that the estimated metabolism rates of TxP NPs in endosomal systems were 10 to 27 times of the rates in cytoplasm, indicating that endosomal systems were the dominant place for intracellular metabolism. These rates were numerically higher for TsP NPs than TssP NPs in endosomal systems (1.7-fold) and the cytoplasm (2.5-fold). The internalization of nanoparticles was identified to be slow (kmax,int, 0.015 h-1) and saturable. The transportation rate constant across the endosomal membranes was fast for PTX (27.1 h-1) and slow for TxP NPs (0.098 h-1). TsP and TssP NPs had comparable in vivo antitumor efficacy, which was higher than that of TccP NPs. This study quantified the organelle-level transportation and metabolism kinetics for three prodrug nanoparticles with redox-responsive or inert linkers using a combined experimental and modeling approach. These findings and the modeling framework might inform future studies for redox-responsive prodrug design and drug delivery systems.
Collapse
Affiliation(s)
- Canyu Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Jiao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pharmacy, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Long Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 PMCID: PMC10933493 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Li H, Yuan Y, Zhang L, Xu C, Xu H, Chen Z. Reprogramming Macrophage Polarization, Depleting ROS by Astaxanthin and Thioketal-Containing Polymers Delivering Rapamycin for Osteoarthritis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305363. [PMID: 38093659 PMCID: PMC10916582 DOI: 10.1002/advs.202305363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/22/2023] [Indexed: 03/07/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by synovitis and joint cartilage destruction. The severity of OA is highly associated with the imbalance between M1 and M2 synovial macrophages. In this study, a novel strategy is designed to modulate macrophage polarization by reducing intracellular reactive oxygen species (ROS) levels and regulating mitochondrial function. A ROS-responsive polymer is synthesized to self-assemble with astaxanthin and autophagy activator rapamycin to form nanoparticles (NP@PolyRHAPM ). In vitro experiments show that NP@PolyRHAPM significantly reduced intracellular ROS levels. Furthermore, NP@PolyRHAPM restored mitochondrial membrane potential, increased glutathione (GSH) levels, and promoted intracellular autophagy, hence successfully repolarizing M1 macrophages into the M2 phenotype. This repolarization enhanced chondrocyte proliferation and vitality while inhibiting apoptosis. In vivo experiments utilizing an anterior cruciate ligament transection (ACLT)-induced OA mouse model revealed the anti-inflammatory and cartilage-protective effects of NP@PolyRHAPM , effectively mitigating OA progression. Consequently, the findings suggest that intra-articular delivery of ROS-responsive nanocarrier systems holds significant promise as a potential and effective therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Huiyun Li
- Department of Orthopedic SurgeryThe First Affiliated Hospital of University of South ChinaHengyangHunan421001China
| | - Yusong Yuan
- Department of Orthopaedic SurgeryChina‐Japan Friendship HospitalNo.2 Yinghuayuan East StreetBeijing100029China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular ScienceState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of ScienceBeijing100190China
| | - Chun Xu
- School of DentistryThe University of QueenslandBrisbane4006Australia
| | - Hailin Xu
- Department of Trauma and OrthopedicsPeking University People's Hospital Diabetic Foot Treatment CenterPeking University People's Hospital11th XizhimenSouth StreetBeijing100044China
| | - Zhiwei Chen
- Department of Orthopedic SurgeryThe First Affiliated Hospital of University of South ChinaHengyangHunan421001China
| |
Collapse
|
8
|
Ding C, Shi Z, Ou M, Li Y, Huang L, Wang W, Huang Q, Li M, Chen C, Zeng X, Chen H, Mei L. Dextran-based micelles for combinational chemo-photodynamic therapy of tumors via in vivo chemiluminescence. Carbohydr Polym 2023; 319:121192. [PMID: 37567697 DOI: 10.1016/j.carbpol.2023.121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Natural polysaccharides, represented by dextran, chitosan, and hyaluronic acid, are widely approved for use as pharmaceutical excipients and are important carrier materials for the design of advanced drug delivery systems, particularly in the field of anticancer drug delivery. The combination of stimuli-activable prodrug based chemotherapy and photodynamic therapy (PDT) has attracted increasing attention. Recent studies have verified the effectiveness of this strategy in the treatment of multiple aggressive cancers. However, in such combination, the stimuli-responsive chemotherapy and PDT have their own problems that need to be overcome. The uneven distribution of endogenous stimuli within tumor tissues makes it difficult for prodrug to be completely activated. And the inadequate tissue penetration depth of external light results in low efficiency of PDT. Aiming at these two bottlenecks, we designed a biocompatible dextran based - multi-component nanomedicine (PCL-NPs) that integrate a chemiluminescence agent luminol, a photosensitizer chlorine e6 (Ce6), and a reactive oxygen species (ROS)-activable thioketal-based paclitaxel (PTX) prodrug. The presence of overexpressed hydrogen peroxide (H2O2) inside tumor oxidizes the luminol moiety to generate in-situ light for PDT through chemiluminescence resonance energy transfer (CRET). The singlet oxygen (1O2) produced in this process not only directly kills tumor cells but also amplifies oxidative stress to accelerate the activation of PTX prodrug. We propose that the PCL-NPs have great therapeutic potential by simultaneously enhancing chemotherapy and PDT in a combination therapy.
Collapse
Affiliation(s)
- Chendi Ding
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yingbang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China
| | - Li Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meihang Li
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China; School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunbo Chen
- Department of Oncology and Clinical Research Center, Maoming People's Hospital, Maoming 525000, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
9
|
Pavlíčková VS, Škubník J, Ruml T, Rimpelová S. A Trojan horse approach for efficient drug delivery in photodynamic therapy: focus on taxanes. J Mater Chem B 2023; 11:8622-8638. [PMID: 37615658 DOI: 10.1039/d2tb02147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photodynamic therapy is an effective method for the treatment of several types of cancerous and noncancerous diseases. The key to the success of this treatment method is effective drug delivery to the site of action, for instance, a tumor. This ensures not only the high effectiveness of the therapy but also the suppression of side effects. But how to achieve effective targeted delivery? Lately, much attention has been paid to systems based on the so-called Trojan horse model, which is gaining increasing popularity. The principle of this model is that the effective drug is hidden in the internal structure of a nanoparticle, liposome, or nanoemulsion and is released only at the site of action. In this review article, we focus on drugs from the group of mitotic poisons, taxanes, and their use with photosensitizers in combined therapy. Here, we discuss the possibilities of how to improve the paclitaxel and docetaxel bioavailability, as well as their specific targeting for use in combined photo- and chemotherapy. Moreover, we also present the state of the art multifunctional drugs based on cabazitaxel which, owing to a suitable combination with photosensitizers, can be used besides photodynamic therapy and also in photoacoustic imaging or sonodynamic therapy.
Collapse
Affiliation(s)
- Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
10
|
Han W, Liu F, Liu G, Li H, Xu Y, Sun S. Research progress of physical transdermal enhancement techniques in tumor therapy. Chem Commun (Camb) 2023; 59:3339-3359. [PMID: 36815500 DOI: 10.1039/d2cc06219d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, P. R. China.
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Sun Y, Zhang Y, Guo X, Wang Y, He P, Xiao C. Oxidation Responsive PEGylated Polyamino Acid Bearing Thioether Pendants for Enhanced Anticancer Drug Delivery. Macromol Biosci 2023; 23:e2200498. [PMID: 36610012 DOI: 10.1002/mabi.202200498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS) in biological tissues are in a state of dynamic balance. However, many diseases such as cancer and inflammation, are accompanied by a long-term increase in ROS. This situation inspires researchers to use ROS-sensitive nanocarriers for a site-specific release of cargo in pathological areas. Polyamino acid materials with good biodegradability, biocompatibility, and regular secondary structure are widely used in the biomedical field. Herein, a new oxidation responsive PEGylated polyamino acid is synthesised for anticancer drug delivery by ring-opening polymerisation of N-carboxyanhydrides bearing thioether pendants. The obtained block copolymer mPEG-b-PMLG self-assembles into spherical nanoparticles (NPs) in water with diameter ≈68.3 nm. NMR measurement demonstrated that the hydrophobic thioether pendants in the NPs can be selectively oxidised to hydrophilic sulfoxide groups by H2 O2 , which will lead to the disassociation of NPs. In vitro drug release results indicated that the encapsulated Nile red is selectively released in the trigger of 10 mM H2 O2 in PBS. Finally, anticancer drug doxorubicin (DOX) is encapsulated to the NPs, and the obtained NPs/DOX exhibits an improved antitumor efficacy in 4T1 tumour-bearing mice and lower cardiotoxicity than free DOX. These results indicates that the mPEG-b-PMLG NPs are promising for anticancer drug delivery.
Collapse
Affiliation(s)
- Yitao Sun
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xin Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Yanping Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
12
|
Ding Y, Pan Q, Gao W, Pu Y, Luo K, He B. Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomater Sci 2023; 11:1182-1214. [PMID: 36606593 DOI: 10.1039/d2bm01833k] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.
Collapse
Affiliation(s)
- Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
13
|
Wang B, Qin Y, Liu J, Zhang Z, Li W, Pu G, Yuanhe Z, Gui X, Chu M. Magnetotactic Bacteria-Based Drug-Loaded Micromotors for Highly Efficient Magnetic and Biological Double-Targeted Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2747-2759. [PMID: 36607241 DOI: 10.1021/acsami.2c19960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacteria-mediated cancer therapy has attracted much attention in recent years. However, using magnetotactic bacteria as both a drug carrier and a drug for cancer therapy has never been reported. Herein, we incorporated a photosensitizer chlorin e6 (Ce6) into the M. magneticum strain AMB-1 through a chemical bond or physical blending. A chemical reaction was finally selected for fabricating AMB-1/Ce6 micromotors, as such micromotors exhibited high drug payload and normal bacterial activities. An interesting finding is that AMB-1 is not only an excellent drug carrier but also a unique drug that could inhibit mouse tumor growth. We also, for the first time, demonstrated that AMB-1 is a photosensitizer. Under laser irradiation, micromotors killed cancer cells with high efficiency due to the high-level reactive oxygen species generated by the micromotors. Micromotors could target the hypoxic and normoxic regions in vitro via both the active swimming of AMB-1 and external magnetic field guidance. Micromotors showed high tumor-homing ability owing to the above double targeting mechanisms. After injection with the micromotors followed by magnetic field guidance and laser irradiation, the growth of mouse tumors was significantly inhibited owing to the AMB-1-based biotherapy and phototoxicity of AMB-1 and Ce6. This micromotor-mediated tumor-targeted therapy strategy may be a great platform for treating many types of solid tumors.
Collapse
Affiliation(s)
- Bo Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Youwan Qin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Jie Liu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P. R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zefei Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Wenhao Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Guangjin Pu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Zhuoran Yuanhe
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Xin Gui
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Maoquan Chu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
14
|
Jiang Q, Lu S, Xu X, Bai C, Yan Q, Fang M, Huang L, Jin C, Zhang Y, Sun J, He Z, Zhao C, Qin F, Wang Y, Zhang T. Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between V-9302 and photosensitizer. J Colloid Interface Sci 2023; 629:773-784. [PMID: 36195017 DOI: 10.1016/j.jcis.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
The efficiency of reactive oxygen species (ROS)-based photodynamic therapy (PDT) is far from satisfactory, because cancer cells can adapt to PDT by upregulating glutathione (GSH) levels. The GSH levels in tumor cells are determined based on glutamine availability via alanine-serine-cysteine transporter 2 (ASCT2)-mediated entry into cells. Herein, we develop co-assembled nanoparticles (PPa/V-9302 NPs) of the photosensitizer pyropheophorbide a (PPa) and V-9302 (a known inhibitor of ASCT2) in a 1:1 M ratio using a one-step precipitation method to auto-enhance photodynamic therapy. The computational simulations revealed that PPa and V-9302 could self-assemble through different driving forces, such as π-π stacking, hydrophobic interactions, and ionic bonds. Such PPa/V-9302 NPs could disrupt the intracellular redox homeostasis due to enhanced ROS production via PPa-induced PDT and reduced GSH synthesis via inhibition of the ASCT2-mediated glutamine flux by V-9302. The in vivo assays reveal that PPa/V-9302 NPs could increase the drug accumulation in tumor sites and suppress tumor growth in BALB/c mice bearing mouse breast carcinoma (4 T1) tumor. Our findings provide a new paradigm for the rational design of the PDT-based combinational cancer therapy.
Collapse
Affiliation(s)
- Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sirun Lu
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenxia Bai
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Yan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengna Fang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Yunran Zhang
- Shanghai Institute of Pharmacists, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 315615, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunyang Zhao
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110002, China.
| | - Feng Qin
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Tailoring carrier-free nanocombo of small-molecule prodrug for combinational cancer therapy. J Control Release 2022; 352:256-275. [PMID: 36272660 DOI: 10.1016/j.jconrel.2022.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The outcomes of monotherapy could not satisfy clinical cancer treatment owing to the challenges of tumor heterogeneity, multi-drug resistance, tumor metastasis and relapse. In response, the significance of combinational cancer therapy has been highlighted. Traditional combinational schemes usually utilize "free" drug for multi drug administration, independently. The diverse pharmacokinetics and biodistribution greatly hinder the antitumor effects and cause systematic toxicity. To tackle the hinderance, various nanoparticulate drug delivery systems (Nano-DDSs) have been developed. However, conventional Nano-DDSs encapsulate drugs into carrier materials through noncovalent interactions, resulting in low drug loading, fixed multi drug encapsulation ratio, chemical instability and carrier-associated toxicity. Recently, carrier-free nanocombos based on self-assembling small-molecule prodrugs (SPNCs) have emerged as a versatile Nano-DDSs for multiple drug delivery. Benefited by the self-assembly capability, SPNCs could be facilely fabricated with distinct merits of ultra-high drug loading, adjustable drug ratio and negligible carrier-associated toxicity. Herein, we summarize the latest trends of SPNCs. First, a basic review on self-assembling small-molecule prodrugs is presented. Additionally, facile techniques to prepare SPNCs are introduced. Furthermore, advanced combinational therapies based on SPNCs are spotlighted with special emphasis on synergistic mechanisms. Finally, future prospects and challenges are discussed.
Collapse
|
16
|
Ling P, Yang P, Gao X, Sun X, Gao F. ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. J Mater Chem B 2022; 10:9607-9612. [PMID: 36112113 DOI: 10.1039/d2tb01639g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reactive oxygen species (ROS) play an important role in physiology and have been applied in tumor therapy. However, insufficient endogenous H2O2 and hypoxia in cancer cells can lead to limited ROS production and poor therapeutic efficacy. Herein, we develop a biomimetic nanosheet material based on the self-assembly of nanozymes that could supply H2O2 under acidic conditions and catalyze a cascade of intracellular biochemical reactions to produce ROS under both normoxic and hypoxic conditions without any external stimuli. In this system, the copper peroxide nanosheets (CPNS), which are pH-responsive, were prepared through coordination of H2O2 to Cu2+ and then modified using ultrafine Pt NPs to form CPNS@Pt. The CPNS could decompose under acidic conditions, allowing the simultaneous release of Fenton catalytic Cu2+ and H2O2 accompanied by a Fenton-type reaction between them. On the other hand, Pt NPs were also released. The released Pt NPs behave as an oxidase mimic and catalase mimic. In this way, the well-defined CPNS@Pt can not only relieve hypoxic conditions but also generate ROS to induce cell apoptosis, thereby paving the way for the development of a nanozyme with multienzyme activity as a therapeutic strategy.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
17
|
Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022; 14:2346. [PMID: 36365164 PMCID: PMC9694300 DOI: 10.3390/pharmaceutics14112346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.
Collapse
Affiliation(s)
- Weixin Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Song W, Liu H, Wang S, Zhi X, Shen Z. Photodynamically inactive prodrug based-on leuco-BODIPY: in vivo tumor targeting and microenvironment activated photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zhu H, Zhou W, Wan Y, Lu J, Ge K, Jia C. Light-activatable multifunctional paclitaxel nanoprodrug for synergistic chemo-photodynamic therapy in liver cancer. Biofactors 2022; 48:918-925. [PMID: 35254679 DOI: 10.1002/biof.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Paclitaxel (Ptx) is widely utilized to treat liver cancer, and the treatment benefit of reactive oxygen species (ROS)-responsive Ptx nanoprodrug is investigated in this study. The one-step nano-precipitation method was utilized to self-assembly DSPE-PEG2000 -thioketal linker (TK)-Ptx with pyropheophorbide acid nanoparticles (PPa NPs) to form PPa/Ptx NPs. Dynamic light scattering and transmission electron microscopy were used for characterization, and 2'-7'dichlorofluorescin diacetate staining was utilized for intracellular ROS detection. HepG2 cells viability and tumor growth rate of HepG2 bearing mice were assayed. Hematoxylin and eosin staining, proliferating cell nuclear antigen detection, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay were utilized for histology assessment. PPa/Ptx NPs incubation with light irradiation showed superior cytotoxicity to HepG2 cells with increased intracellular ROS production than PPa/Ptx NPs incubation without light irradiation or PPa NPs incubation with light irradiation. At the same time, PPa/Ptx NPs with light irradiation could significantly decrease the tumor growth in vivo as indicated by diminished tumor volume with the largest necrotic area, the highest rate of apoptotic cells, and the least proliferating cells. PPa/Ptx NPs show synergistic chemo-photodynamic characteristics, which could be considered as a promising treatment option for liver cancer.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Weijiang Zhou
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yafeng Wan
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, The Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| |
Collapse
|
20
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
21
|
Jian C, Wang Y, Liu H, Yin Z. A biotin-modified and H 2O 2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy. Eur J Pharm Biopharm 2022; 177:24-38. [PMID: 35667614 DOI: 10.1016/j.ejpb.2022.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Although synergistic effects of photothermal therapy (PTT) and chemotherapy for cancer have been extensively investigated in previous studies, more potential strategies need to be exploited to alleviate severe adverse effects. In this study, a biotin-modified and activatable nanotheranostic system is developed. This system (BPSP/DOX-CyBA) composed of H2O2-sensitive thioketal (TK) linker, hydrophilic biotin-decorated polyethylene glycol (PEG) segment, hydrophobic polycaprolactone (PCL) segment, could self-assemble into (99±1.3) nm nanoparticles and co-deliver H2O2-triggered photosensitizer CyBA and cytotoxic drugs DOX to tumor site. In vitro, DOX and CyBA could release rapidly from nanoparticles, CyBA accumulation in the mitochondria causes mitochondrial damage, leading to mitochondrial dysfunctions,while rising the level of ROS in B16F10 cells, and further to promote the micells to trigger release. CyBA could be activated into CyOH and the photothermal therapy was turn "off" into "on". In BPSP/DOX-CyBA group, the local temperature within tumor reached 50℃ and cell apoptosis rate reached 68.6% under Laser irradiation(650 nm, 1W/cm2). Fluorescence microscopy and flow cytometry analysis further demonstrated the better uptake efficiency on B16F10 cells with biotin decoration. In a mice B16F10 tumor model, the group with co-delivery CyBA and DOX had the best tumor retention effect, the maximal local temperature increasement and the minimum tumor growth with negligible side effects, suggesting the potential of BPSP/DOX-CyBA nanopalteform that synergistic photothermal therapy and chemotherapy and mitochondria damage as an effective melanoma treatment strategy.
Collapse
Affiliation(s)
- Chuanjiang Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huijun Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Sun M, Jiang H, Liu T, Tan X, Jiang Q, Sun B, Zheng Y, Wang G, Wang Y, Cheng M, He Z, Sun J. Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors. Acta Pharm Sin B 2022; 12:952-966. [PMID: 35256957 PMCID: PMC8897200 DOI: 10.1016/j.apsb.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Substantial progress in the use of chemo-photodynamic nano-drug delivery systems (nano-DDS) for the treatment of the malignant breast cancer has been achieved. The inability to customize precise nanostructures, however, has limited the therapeutic efficacy of the prepared nano-DDS to date. Here, we report a structurally defined tandem-responsive chemo-photosensitive co-nanoassembly to eliminate primary breast tumor and prevent lung metastasis. This both-in-one co-nanoassembly is prepared by assembling a biocompatible photosensitive derivative (pheophorbide-diphenylalanine peptide, PPA-DA) with a hypoxia-activated camptothecin (CPT) prodrug [(4-nitrophenyl) formate camptothecin, N-CPT]. According to computational simulations, the co-assembly nanostructure is not the classical core-shell type, but consists of many small microphase regions. Upon exposure to a 660 nm laser, PPA-DA induce high levels of ROS production to effectively achieve the apoptosis of normoxic cancer cells. Subsequently, the hypoxia-activated N-CPT and CPT spatially penetrate deep into the hypoxic region of the tumor and suppress hypoxia-induced tumor metastasis. Benefiting from the rational design of the chemo-photodynamic both-in-one nano-DDS, these nanomedicines exhibit a promising potential in the inhibition of difficult-to-treat breast tumor metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Tan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Yulong Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gang Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986321.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986321.
| |
Collapse
|
23
|
Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022; 342:280-294. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/31/2022]
Abstract
Malignant tumor is still a leading threat to human health. Despite the rapid development of targeted therapeutic strategies, any treatment specifically acting on single target would inevitably suffer from tumor resistance, largely due to the genetic instability and variability of tumor cells. Thus, traditional therapies such as broad-spectrum chemotherapy would certainly occupy an important position in clinical cancer therapy. Nevertheless, most chemotherapeutic drugs have long been criticized for unsatisfactory therapeutic efficacy with severe off-target toxicity. Although several chemotherapeutic nanomedicines with improved therapeutic safety have been applied in clinics, the therapeutic outcomes still do not fulfill expectation. To address this challenge, enormous efforts have been devoted to developing novel nano-formulations for efficient delivery of chemotherapeutic drugs. Herein, we aim to outline the latest progression in the emerging nanomedicines of paclitaxel (PTX), with special attention to the functional nanocarriers, self-delivering prodrug-nanoassemblies and combination nanotherapeutics of PTX. Finally, the challenges and opportunities of these functional PTX nanomedicines in clinical translation are spotlighted.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China.
| | - Shu Xu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Shuo Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Yue Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, PR China
| |
Collapse
|
24
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
25
|
Huang Z, Gao LX, Guo F, Li D, Tang Y, Hu H, Luo Y, Tang D, Wang B, zhang Y. Novel Prodrug Supramolecular Nanoparticles Capable of Rapid Mitochondrial-Targeted and ROS-Responsive for Pancreatic Cancer Therapy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01157c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is a feature of cancer cells and targeting cancer mitochondria has emerged as a promising anticancer therapy. In this study, a novel mitochondria-targeted and ROS-responsive drug delivery nanoplatform...
Collapse
|
26
|
Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022; 12:434-458. [PMID: 34987658 PMCID: PMC8690913 DOI: 10.7150/thno.67300] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has made tremendous clinical progress in advanced-stage malignancies. However, patients with various tumors exhibit a low response rate to immunotherapy because of a powerful immunosuppressive tumor microenvironment (TME) and insufficient immunogenicity of tumors. Photodynamic therapy (PDT) can not only directly kill tumor cells, but also elicit immunogenic cell death (ICD), providing antitumor immunity. Unfortunately, limitations from the inherent nature and complex TME significantly reduce the efficiency of PDT. Recently, smart nanomedicine-based strategies could subtly modulate the pharmacokinetics of therapeutic compounds and the TME to optimize both PDT and immunotherapy, resulting in an improved antitumor effect. Here, the emerging nanomedicines for PDT-driven cancer immunotherapy are reviewed, including hypoxia-reversed nanomedicines, nanosized metal-organic frameworks, and subcellular targeted nanoparticles (NPs). Moreover, we highlight the synergistic nanotherapeutics used to amplify immune responses combined with immunotherapy against tumors. Lastly, the challenges and future expectations in the field of PDT-driven cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Bin Ji
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Yang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
27
|
Su Y, Lu H, Li Q, Shao Z, Wang S, Quan Y, Zeng Y, Zheng Y. Driving co-precipitation of hydrophobic drugs in water by conjugating alkyl chains. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
29
|
Shen C, Gao M, Chen H, Zhan Y, Lan Q, Li Z, Xiong W, Qin Z, Zheng L, Zhao J. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnology 2021; 19:395. [PMID: 34838028 PMCID: PMC8627084 DOI: 10.1186/s12951-021-01136-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/14/2021] [Indexed: 12/27/2022] Open
Abstract
Stimulus-responsive therapy that allows precise imaging-guided therapy is limited for osteoarthritis (OA) therapy due to the selection of proper physiological markers as stimulus. Based on that the over-production of Reactive Oxygen Species (ROS) is associated with the progression in OA, we selected ROS as markers and designed a cartilage targeting and ROS-responsive theranostic nanoprobe that can be used for effective bioimaging and therapy of OA. This nanoprobe was fabricated by using PEG micelles modified with ROS-sensitive thioketal linkers (TK) and cartilage-targeting peptide, termed TKCP, which was then encapsulated with Dexamethasone (DEX) to form TKCP@DEX nanoparticles. Results showed that the nanoprobe can smartly “turn on” in response to excessive ROS and “turn off” in the normal joint. By applying different doses of ROS inducer and ROS inhibitor, this nanoprobe can emit ROS-dependent fluorescence according to the degree of OA severity, helpful to precise disease classification in clinic. Specifically targeting cartilage, TKCP@DEX could effectively respond to ROS and sustained release DEX to remarkably reduce cartilage damage in the OA joints. This smart, sensitive and endogenously activated ROS-responsive nanoprobe is promising for OA theranostics. ![]()
Collapse
Affiliation(s)
- Chong Shen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopedics, The Affiliated Hospital of Guilin Medical University, No. 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Haimin Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory On Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
30
|
Smart Design of Mitochondria-Targeted and ROS-Responsive CPI-613 Delivery Nanoplatform for Bioenergetic Pancreatic Cancer Therapy. NANOMATERIALS 2021; 11:nano11112875. [PMID: 34835640 PMCID: PMC8617807 DOI: 10.3390/nano11112875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Mitochondria, as the powerhouse of most cells, are not only responsible for the generation of adenosine triphosphate (ATP) but also play a decisive role in the regulation of apoptotic cell death, especially of cancer cells. Safe potential delivery systems which can achieve organelle-targeted therapy are urgently required. In this study, for effective pancreatic cancer therapy, a novel mitochondria-targeted and ROS-triggered drug delivery nanoplatform was developed from the TPP-TK-CPI-613 (TTCI) prodrug, in which the ROS-cleave thioketal functions as a linker connecting mitochondrial targeting ligand TPP and anti-mitochondrial metabolism agent CPI-613. DSPE-PEG2000 was added as an assistant component to increase accumulation in the tumor via the EPR effect. This new nanoplatform showed effective mitochondrial targeting, ROS-cleaving capability, and robust therapeutic performances. With active mitochondrial targeting, the formulated nanoparticles (TTCI NPs) demonstrate much higher accumulation in mitochondria, facilitating the targeted delivery of CPI-613 to its acting site. The results of in vitro antitumor activity and cell apoptosis revealed that the IC50 values of TTCI NPs in three types of pancreatic cancer cells were around 20~30 µM, which was far lower than those of CPI-613 (200 µM); 50 µM TTCI NPs showed an increase in apoptosis of up to 97.3% in BxPC3 cells. Therefore, this mitochondria-targeted prodrug nanoparticle platform provides a potential strategy for developing safe, targeting and efficient drug delivery systems for pancreatic cancer therapy.
Collapse
|
31
|
Xu X, Zeng Z, Ding X, Shan T, Liu Q, Chen M, Chen J, Xia M, He Y, Huang Z, Huang Y, Zhao C. Reactive oxygen species-activatable self-amplifying Watson-Crick base pairing-inspired supramolecular nanoprodrug for tumor-specific therapy. Biomaterials 2021; 277:121128. [PMID: 34537502 DOI: 10.1016/j.biomaterials.2021.121128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022]
Abstract
Intratumoral upregulated reactive oxygen species (ROS) has been extensively exploited as exclusive stimulus to activate drug release for tumor-specific therapy. However, insufficient endogenous ROS and tumor heterogeneity severely restrict clinical translation of current ROS-responsive drug delivery systems. Herein, a tailored ROS-activatable self-amplifying supramolecular nanoprodrug was developed for reinforced ROS-responsiveness and highly selective antitumor therapy. A novel ROS-cleavable CA-based thioacetal linker CASOH was synthesized with ROS generator cinnamaldehyde (CA) incorporated into its molecular structure, to skillfully realize self-amplifying positive feedback loop of "ROS-activated CA release with CA-induced ROS regeneration". CASOH was modified with a cytosine analogue gemcitabine (GEM) to obtain ROS-activatable self-immolative prodrug CAG, which could be selectively activated in tumor cells and further achieve self-boosting "snowballing" activation via ROS compensation, while keep inactive in normal cells. Through Watson-Crick nucleobase pairing (G≡C)-like hydrogen bonds, CAG efficiently crosslinked with a matched guanine-rich acyclovir-modified hyaluronic acid conjugate HA-ACV, to self-assemble into pH/ROS dual-responsive supramolecular nanoprodrug HCAG. With high stability, beneficial tumor targeting capacity and pH/ROS-responsiveness, HCAG nanoformulation exhibited remarkable in vivo antitumor efficacy with minimal systemic toxicity. Based on unique tumor-specific self-amplifying prodrug activation and Watson-Crick base pairing-inspired supramolecular self-assembly, this study provides an inspirational strategy of exploiting novel ROS-responsive nanoplatform with reinforced responsiveness and specificity for future clinical translation.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xin Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ting Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yuanfeng He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
32
|
Qu Z, Ren Y, Shen H, Wang H, Shi L, Tong D. Combination Therapy of Metastatic Castration-Recurrent Prostate Cancer: Hyaluronic Acid Decorated, Cabazitaxel-Prodrug and Orlistat Co-Loaded Nano-System. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3605-3616. [PMID: 34447241 PMCID: PMC8384126 DOI: 10.2147/dddt.s306684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022]
Abstract
Purpose Prostate cancer (PCa) is the second leading cause of cancer-related death among men in developed countries. Cabazitaxel (CBZ) is recommended as one of the most active chemotherapy agents for PCa. This study aimed to develop a hyaluronic acid (HA) decorated, cabazitaxel-prodrug (HA-CBZ) and orlistat (ORL) co-loaded nano-system against the prostate cancer in vitro and in vivo. Methods Cabazitaxel-prodrug was firstly synthesized by conjugating HA with CBZ through the formation of ester bonds. HA contained ORL and CBZ prodrug co-loaded lipid-polymer hybrid nanoparticles (ORL/HA-CBZ/LPNs) were constructed and characterized in terms of particle size, zeta potential, drug loading capacity and stability. The antitumor efficiency and systemic toxicity of LPNs were evaluated in vitro and in vivo. Results The resulting ORL/HA-CBZ/LPNs were 150.9 nm in particle size with narrow distribution and high entrapment efficiency. The minimum combination index of 0.57 was found at a drug ratio of 1:2 (ORL:HA-CBZ, w/w) in the drug co-loaded formulations, indicating the strongest synergism effect. ORL/HA-CBZ/LPNs demonstrated an enhanced in vitro and in vivo antitumor effect compared with single drug loaded LPNs and free drug formulations. Conclusion ORL/HA-CBZ/LPNs showed remarkable synergism cytotoxicity and the best tumor inhibition efficiency in mice with negligible systemic toxicity. ORL/HA-CBZ/LPNs can be highly useful for targeted prostate cancer therapy.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Yuning Ren
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Hongyu Shen
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Huihui Wang
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Lijie Shi
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Deyong Tong
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| |
Collapse
|
33
|
Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, Onesto V, Vecchione R, Lee J, Tay FR, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Stimuli-responsive transdermal microneedle patches. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 47:206-222. [PMID: 36338772 PMCID: PMC9635273 DOI: 10.1016/j.mattod.2021.03.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zahra Baghbantaraghdari
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | | | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Jesse Lee
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Franklin R. Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Paolo Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhen Gu
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Mani S, Swargiary G, Tyagi S, Singh M, Jha NK, Singh KK. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci 2021; 281:119773. [PMID: 34192595 DOI: 10.1016/j.lfs.2021.119773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Treatment of cancer cells exemplifies a difficult test in the light of challenges associated with the nature of cancer cells and the severe side effects too. After making a large number of trials using both traditional and advanced therapies (immunotherapy and hormone therapy), approaches to design new therapies have reached a saturation level. However, nanotechnology-based approaches exhibit higher efficacy and great potential to bypass many of such therapeutic limitations. Because of their higher target specificity, the use of nanoparticles offers incredible potential in cancer therapeutics. Mitochondria, acting as a factory of energy production in cells, reveal an important role in the death as well as the survival of cells. Because of its significant involvement in the proliferation of cancer cells, it is being regarded as an important target for cancer therapeutics. Numerous studies reveal that nanotechnology-based approaches to directly target the mitochondria may help in improving the survival rate of cancer patients. In the current study, we have detailed the significance of mitochondria in the development of cancer phenotype, as well as indicated it as the potential targets for cancer therapy. Our study further highlights the importance of different nanoparticle-based approaches to target mitochondria of cancer cells and the associated outcomes of different studies. Though, nanotechnology-based approaches to target mitochondria of cancer cells demonstrate a potential and efficient way in cancer therapeutics. Yet, further study is needed to overcome the linked limitations.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP 201301, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Luo R, Zhang Z, Han L, Xue Z, Zhang K, Liu F, Feng F, Xue J, Liu W, Qu W. An albumin-binding dimeric prodrug nanoparticle with long blood circulation and light-triggered drug release for chemo-photodynamic combination therapy against hypoxia-induced metastasis of lung cancer. Biomater Sci 2021; 9:3718-3736. [PMID: 34008617 DOI: 10.1039/d1bm00284h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) has been widely used in cancer therapy, but its therapeutic effect is reduced by the aggravating hypoxic microenvironment via upregulating hypoxia-associated proteins and promoting tumor metastasis. To mitigate these issues, we designed an albumin-binding and light-triggered core-shell dimeric prodrug nanoparticle to inhibit hypoxia-induced tumor metastasis and enhance the PDT efficacy. The prodrug nanoparticles, Ce6&DHA-S-DHA@CMN NPs (CDC NPs), were prepared using a single thioether-linked dihydroartemisinin (DHA) dimer co-encapsulated with Chlorin e6 (Ce6) and stabilized by albumin-capturing maleimide- and hypoxia-sensitive 2-nitroimidazole-modified carboxymethyl chitosan (CMCTS-MAL&NI, CMN for short). Upon laser irradiation, Ce6 could generate reactive oxygen species (ROS), which not only exerted the effect of the PDT but also broke the ROS-sensitive single thioether bridge in the dimeric prodrug DHA-S-DHA, thus accelerating the disassembly of the nanoparticles. DHA-S-DHA served as both an ROS-responsive carrier for Ce6 and a chemotherapeutic drug, synergizing with PDT and inhibiting tumor metastasis by downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF). Polyethylene glycol (PEG) modification has been widely used to stabilize hydrophobic prodrug nanoparticles and prolong the circulation time, but the PEGylated nanoparticles always suffer from accelerated blood clearance (ABC), a phenomenon which restricts their application severely. In this study, PEG was replaced by an amphipathic micelle, CMN, which could specifically capture albumin in the blood, conferring the nanoparticles long circulation and no ABC phenomenon. Under the aggravating hypoxic condition during PDT, the conversion of 2-nitroimidazole groups to 2-aminoimidazole groups in CMN could destabilize the structure of the shell and accelerate drug release. Results showed that the novel CDC NPs exhibited unique advantages in chemo-photodynamic combination therapy, such as long systemic circulation, high tumor accumulation, light-triggered drug release, HIF-1α/VEGF downregulation, and anti-metastasis efficacy, which provided a new route to overcome the ABC phenomenon of the PEGylated prodrug nanoparticles and reverse the hypoxia-induced metastasis simultaneously.
Collapse
Affiliation(s)
- Renjie Luo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhen Xue
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fulei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, Taian City Central Hospital, Taian, 271000, China. and Pharmaceutical Department, Taian City Central Hospital, Taian, 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China. and Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, Taian City Central Hospital, Taian, 271000, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
36
|
Shin Y, Husni P, Kang K, Lee D, Lee S, Lee E, Youn Y, Oh K. Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics 2021; 13:725. [PMID: 34069233 PMCID: PMC8157172 DOI: 10.3390/pharmaceutics13050725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Kioh Kang
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Dayoon Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Sehwa Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Eunseong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Yuseok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kyungtaek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| |
Collapse
|
37
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
38
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
39
|
Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021; 13:670. [PMID: 33562376 PMCID: PMC7914759 DOI: 10.3390/cancers13040670] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
Collapse
Affiliation(s)
- Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan;
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville 3631, Durban 4000, South Africa
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health and Office of VP for Research and Graduate Studies, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Heather C Aziz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Khyber Pakhtunkhwa, Pakistan;
| | - Mirazam Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Hnin Ei Thu
- Research and Innovation Department, Lincolon University College, Petaling Jaya 47301, Selangor, Malaysia;
- Innoscience Research Institute, Skypark, Subang Jaya 47650, Selangor, Malaysia
| |
Collapse
|
40
|
Hak A, Ravasaheb Shinde V, Rengan AK. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis Photodyn Ther 2021; 33:102205. [PMID: 33561574 DOI: 10.1016/j.pdpdt.2021.102205] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Phototherapy has the potential to play a greater role in oncology. Phototherapy converts light energy into either chemical energy or thermal energy, which eventually destroys cancer cells after a series of biological reactions. With nanotechnology applications in cancer therapeutics, it has become possible to prepare smart drug carriers with multifunctional properties at the nanoscale level. These nanocarriers may be able to deliver the drug molecules to the target site more efficiently in the form of nanoparticles. Several intrinsic and extrinsic properties of these nanocarriers help target the tumor cells exclusively, and by utilizing these features, drug molecules can be delivered to the tumor cells specifically, which results in high tumor uptake and better therapeutic effects ultimately. Nanocarriers can also be designed to carry different drugs together to provide a platform for combination therapy like chemo-photodynamic therapy and chemo-photodynamic-photothermal therapy. In combination therapy, co-delivery of all different drugs is crucial to obtain their synergistic effects, and with the help of nanocarriers, it is possible to co-deliver these drugs by loading them together onto the nanocarriers.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
41
|
Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111536. [PMID: 33255089 DOI: 10.1016/j.msec.2020.111536] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Poor water solubility, off-target toxicity, and small therapeutic window are among major obstacles for the development of drug products. Redox-responsive drug delivery nanoplatforms not only overcome the delivery and pharmacokinetic pitfalls observed in conventional drug delivery, but also leverage the site-specific delivery properties. Cleavable diselenide and disulfide bonds in the presence of elevated reactive oxygen species (ROS) and glutathione concentration are among widely used stimuli-responsive bonds to design nanocarriers. This review covers a wide range of redox-responsive chemical structures and their properties for designing nanoparticles aiming controlled loading, delivery, and release of hydrophobic anticancer drugs at tumor site.
Collapse
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Poland
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
43
|
Yang B, Gao J, Pei Q, Xu H, Yu H. Engineering Prodrug Nanomedicine for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002365. [PMID: 33304763 PMCID: PMC7709995 DOI: 10.1002/advs.202002365] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has shifted the clinical paradigm of cancer management. However, despite promising initial progress, immunotherapeutic approaches to cancer still suffer from relatively low response rates and the possibility of severe side effects, likely due to the low inherent immunogenicity of tumor cells, the immunosuppressive tumor microenvironment, and significant inter- and intratumoral heterogeneity. Recently, nanoformulations of prodrugs have been explored as a means to enhance cancer immunotherapy by simultaneously eliciting antitumor immune responses and reversing local immunosuppression. Prodrug nanomedicines, which integrate engineering advances in chemistry, oncoimmunology, and material science, are rationally designed through chemically modifying small molecule drugs, peptides, or antibodies to yield increased bioavailability and spatiotemporal control of drug release and activation at the target sites. Such strategies can help reduce adverse effects and enable codelivery of multiple immune modulators to yield synergistic cancer immunotherapy. In this review article, recent advances and translational challenges facing prodrug nanomedicines for cancer immunotherapy are overviewed. Last, key considerations are outlined for future efforts to advance prodrug nanomedicines aimed to improve antitumor immune responses and combat immune tolerogenic microenvironments.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Qing Pei
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
44
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
45
|
Yang B, Wei L, Wang Y, Li N, Ji B, Wang K, Zhang X, Zhang S, Zhou S, Yao X, Song H, Wu Y, Zhang H, Kan Q, Jin T, Sun J. Oxidation-strengthened disulfide-bridged prodrug nanoplatforms with cascade facilitated drug release for synergetic photochemotherapy. Asian J Pharm Sci 2020; 15:637-645. [PMID: 33193865 PMCID: PMC7610204 DOI: 10.1016/j.ajps.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023] Open
Abstract
One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors. Tumor cells generally display the higher oxidative level than normal cells, and also displayed the heterogeneity in terms of redox homeostasis level. We previously found that the disulfide bond-linkage demonstrates surprising oxidation-sensitivity to form the hydrophilic sulfoxide and sulphone groups. Herein, we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a (PPa) to achieve light-activatable cascade drug release and enhance therapeutic efficacy. The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor, but also respond to the exogenous oxidant (singlet oxygen) elicited by photosensitizers. Once the prodrug nanoparticles (NPs) are activated under irradiation, they would undergo an oxidative self-strengthened process, resulting in a facilitated drug cascade release. The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation. In vivo, the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site. The PPa@PTX-S-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4T1 tumors. Therefore, this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy.
Collapse
Affiliation(s)
- Bin Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Lin Wei
- Ministry of Education, Heilongjiang University, Harbin 150500, China
- Sino-Russian Joint Graduate School, Heilongjiang University, Harbin 150080, China
| | - Yuequan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Ji
- Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Kaiyuan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuanbo Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenwu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yusheng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiming Kan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Jin
- Ministry of Education, Heilongjiang University, Harbin 150500, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
46
|
Zuo W, Chen D, Fan Z, Chen L, Zhu Z, Zhu Q, Zhu X. Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy. Acta Biomater 2020; 111:327-340. [PMID: 32434075 DOI: 10.1016/j.actbio.2020.04.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
Carrier-free nanotheranostics with high drug loading and no carrier-related toxicity are highly promising cancer therapy agents. However, the limited tumor accumulation and poorly controlled drug release of these nanotheranostics continue to be major challenges that restrict clinical applications. In this study, we develop a tumor-recognizing carrier-free nanotheranostic with light/reactive oxygen species (ROS) cascade-responsiveness for spatiotemporally selective photo-chemotherapy. The nanotheranostic is constructed by co-assembly of the indocyanine green (ICG) photosensitizer and the mannose-thioketal-doxorubicin conjugate (MAN-TK-DOX) (abbreviated as IMTD), efficiently preventing premature DOX leakage during blood circulation while reducing nonspecific damage to normal tissues/cells. Once accumulated in tumor tissues, IMTD rapidly diffuses into cancer cells via lectin receptors-mediated endocytosis. Photoacoustic/fluorescence-imaging-guided laser irradiation induces local hyperthermia and ROS generation in tumor cells, thereby promoting apoptosis. Together, the ICG-generated ROS and the endogenous ROS in cancer cells synergistically enhance DOX release, resulting in more efficient chemotherapeutic effects. The in vitro and in vivo results consistently demonstrate that IMTD achieves superior tumor accumulation, highly controllable drug release, and synergetic photo-chemotherapy. Therefore, the co-assembly of an ROS-sensitive targeting ligand-chemodrug conjugate and a photosensitizer could be used to develop spatiotemporally light-activatable nanotheranostics for precision cancer therapy. STATEMENT OF SIGNIFICANCE: Synergistic phototherapy and chemotherapy have been considered as a promising cancer treatment modality to maximize the therapeutic efficacy. Unfortunately, most nanodrugs consisting of chemotherapeutic drug and photosensitizer suffer from suboptimal tumor accumulation and poorly controlled drug release, which results in reduced therapeutic outcome. In this study, Mannose (MAN) was conjugated to the anticancer drug doxorubicin (DOX) by a ROS-sensitive thioketal linker (TK), the obtained amphiphilic MAN-TK-DOX could serve as an ideal self-carrier material to deliver photosensitizer, thus to achieve high-efficient tumor-targeting, spatiotemporal controlled drug release, and superior antitumor effect. We believe that the ROS-sensitive amphiphilic targeting ligand-chemodrug conjugate could be developed as a universal approach for designing tumor-targeted nanodrugs with precisely controlled drug release.
Collapse
Affiliation(s)
- Wenbao Zuo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Luping Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zhaoyuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qixin Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
47
|
He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15:416-448. [PMID: 32952667 PMCID: PMC7486519 DOI: 10.1016/j.ajps.2019.08.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional tumor-targeted drug delivery systems (DDSs) face challenges, such as unsatisfied systemic circulation, low targeting efficiency, poor tumoral penetration, and uncontrolled drug release. Recently, tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas. With the introduction of several additional functionalities, the properties of these smart DDSs including size, surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting, and eventually achieve desired drug release for an optimized therapeutic efficiency. This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery. Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli, including pH, glutathione, adenosine-triphosphate, reactive oxygen species, enzyme and inflammatory factors are summarized. Special emphasis of this review is placed on their responsive mechanisms, drug loading models, drawbacks and merits. Several typical multi-stimuli responsive DDSs are listed. And the main challenges and potential future development are discussed.
Collapse
Affiliation(s)
- Qunye He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
48
|
Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, Qi B, Patel D, Shi B, Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020; 56:102821. [PMID: 32505922 PMCID: PMC7280365 DOI: 10.1016/j.ebiom.2020.102821] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The rapid development of nanotechnology results in the emergence of nanomedicines, but the effective delivery of drugs to tumor sites remains a great challenge. Prodrug-based cancer nanomedicines thus emerged due to their unique advantages, including high drug load efficiency, reduced side effects, efficient targeting, and real-time controllability. A distinctive characteristic of prodrug-based nanomedicines is that they need to be activated by a stimulus or multi-stimulus to produce an anti-tumor effect. A better understanding of various responsive approaches could allow researchers to perceive the mechanism of prodrug-based nanomedicines effectively and further optimize their design strategy. In this review, we highlight the stimuli-responsive pathway of prodrug-based nanomedicines and their anticancer applications. Furthermore, various types of prodrug-based nanomedicines, recent progress and prospects of stimuli-responsive prodrug-based nanomedicines and patient data in the clinical application are also summarized. Additionally, the current development and future challenges of prodrug-based nanomedicines are discussed. We expect that this review will be valuable for readers to gain a deeper understanding of the structure and development of prodrug-based cancer nanomedicines to design rational and effective drugs for clinical use.
Collapse
Affiliation(s)
- Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Singapore American School, Singapore, 738547
| | - Sumaira Hanif
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Yoon Kim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Patel
- Jericho High School, New York, NY 11753, USA
| | - Bingyang Shi
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Wang Q, Sun M, Li C, Li D, Yang Z, Jiang Q, He Z, Ding H, Sun J. A computer-aided chem-photodynamic drugs self-delivery system for synergistically enhanced cancer therapy. Asian J Pharm Sci 2020; 16:203-212. [PMID: 33995614 PMCID: PMC8105418 DOI: 10.1016/j.ajps.2020.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
The therapeutic strategy that gives consideration to the combination of photodynamic therapy and chemotherapy, has emerged as a potential development of effective anti-cancer medicine. Nevertheless, co-delivery of photosensitizers (PSs) and chemotherapeutic drugs in traditional carriers still remains great limitations due to low drug loadings and poor biocompatibility. Herein, we have utilized a computer-aided strategy to achieve a desired carrier-free self-delivery of pyropheophorbide a (PPa, a common PS) and podophyllotoxin (PPT, a classical chemotherapeutic drug) for synergistic cancer therapy. First, the computational simulation method identified the similar molecular sizes and rigid molecular structures between two drugs molecules. Based on the molecular docking, the intermolecular interactions were found to include π-π stackings, hydrophobic interactions and hydrogen bonds. Next, both drugs could co-assemble into nanoparticles (NPs) via one-step nanoprecipitation method. The various spectral experiments (UV, IR and FL) were conducted to evaluate the formation mechanism of spherical NPs. Moreover, in vitro and in vivo experiments systematically demonstrated that PPT/PPa NPs not only showed better cellular uptake efficiency, stronger cytotoxicity and higher accumulation in tumor sites, but also exhibited synergistic antitumor effect in female BALB/C bearing-4T1 tumor mice. Such a computer-aided design strategy of chem-photodynamic drugs self-delivery systems pave the way for efficient synergistic cancer therapy.
Collapse
Affiliation(s)
- Qiu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zimeng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
50
|
Cho H, Cho YY, Shim MS, Lee JY, Lee HS, Kang HC. Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165808. [PMID: 32333953 DOI: 10.1016/j.bbadis.2020.165808] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are considered one of the most important subcellular organelles for targeting and delivering drugs because mitochondria are the main location for various cellular functions and energy (i.e., ATP) production, and mitochondrial dysfunctions and malfunctions cause diverse diseases such as neurodegenerative disorders, cardiovascular disorders, metabolic disorders, and cancers. In particular, unique mitochondrial characteristics (e.g., negatively polarized membrane potential, alkaline pH, high reactive oxygen species level, high glutathione level, high temperature, and paradoxical mitochondrial dynamics) in pathological cancers have been used as targets, signals, triggers, or driving forces for specific sensing/diagnosing/imaging of characteristic changes in mitochondria, targeted drug delivery on mitochondria, targeted drug delivery/accumulation into mitochondria, or stimuli-triggered drug release in mitochondria. In this review, we describe the distinctive structures, functions, and physiological properties of cancer mitochondria and discuss recent technologies of mitochondria-specific "key characteristic" sensing systems, mitochondria-targeted "drug delivery" systems, and mitochondrial stimuli-specific "drug release" systems as well as their strengths and weaknesses.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy and BK21PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|