1
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2025; 72:229-263. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
2
|
Bronze-Uhle ES, Melo CCDSBD, da Silva ISP, Stuani VDT, Bueno VH, Rinaldo D, de Souza Costa CA, Lisboa Filho PN, Soares DG. Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering. J Biomed Mater Res B Appl Biomater 2025; 113:e35536. [PMID: 39888107 DOI: 10.1002/jbm.b.35536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV-visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%-10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.
Collapse
Affiliation(s)
- Erika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | | | - Isabela Sanches Pompeo da Silva
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Victor Hugo Bueno
- Department of Chemistry, School of Science, São Paulo State University-UNESP, Bauru, Brazil
| | - Daniel Rinaldo
- Department of Chemistry, School of Science, São Paulo State University-UNESP, Bauru, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, University Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, Brazil
| | | | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics, and Dental Materials, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| |
Collapse
|
3
|
Wang Z, Zhang J, Sun X, Yu J, Liu B, Peng B, Wang L, Yang J, Zhu L. Nanoparticulate bioceramic putty suppresses osteoclastogenesis and inflammatory bone loss in mice via inhibition of TRAF6-mediated signalling pathways: A laboratory investigation. Int Endod J 2024; 57:682-699. [PMID: 38403990 DOI: 10.1111/iej.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
AIM This study aimed to determine the effects of iRoot BP Plus on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and inflammation-mediated bone resorption in vivo and investigated the underlying molecular mechanisms. METHODOLOGY CCK-8 was performed to test cell viability in RANKL-induced RAW 264.7 cells and BMDMs in response to iRoot BP Plus. The effect of iRoot BP Plus on osteoclastogenesis was determined using TRAP staining and phalloidin staining, respectively. Pit formation assay was conducted to measure osteoclast resorptive capacity. Western blot and qPCR were performed to examine osteoclast-related proteins and gene expression, respectively. Western blot was also used to investigate the signalling pathways involved. For in vivo experiments, an LPS-induced mouse calvarial bone resorption model was established to analyse the effect of iRoot BP Plus on bone resorption (n = 6 per group). At 7 days, mouse calvaria were collected and prepared for histological analysis. RESULTS We identified that iRoot BP Plus extracts significantly attenuated RANKL-induced osteoclastogenesis, reduced sealing zone formation, restrained osteolytic capacity and decreased osteoclast-specific gene expression (p < .01). Mechanistically, iRoot BP Plus extracts reduced TRAF6 via proteasomal degradation, then suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), blocked the nuclear translocation of c-Fos and diminished nuclear factor-κB (NF-κB) p65 and NFATc1 accumulation. Consistent with the in vitro results, iRoot BP Plus extracts attenuated osteoclast activity thus protecting against inflammatory bone resorption in vivo (p < .05), which was accompanied by a suppression of TRAF6, c-Fos, NFATc1 and cathepsin K expression. CONCLUSION These findings provide valuable insights into the signalling mechanisms underlying nanoparticulate bioceramic putty-mediated bone homeostasis.
Collapse
Affiliation(s)
- Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyue Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bingqian Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomater Sci 2023; 11:6711-6747. [PMID: 37656064 DOI: 10.1039/d3bm00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dental tissue infections have been affecting millions of patients globally leading to pain, severe tissue damage, or even tooth loss. Commercial sterilizers may not be adequate to prevent frequent dental infections. Antimicrobial hydrogels have been introduced as an effective therapeutic strategy for endodontics and periodontics since they have the capability of imitating the native extracellular matrix of soft tissues. Hydrogel networks are considered excellent drug delivery platforms due to their high-water retention capacity. In this regard, drugs or nanoparticles can be incorporated into the hydrogels to endow antimicrobial properties as well as to improve their regenerative potential, once biocompatibility criteria are met avoiding high dosages. Herein, novel antimicrobial hydrogel formulations were discussed for the first time in the scope of endodontics and periodontics. Such hydrogels seem outstanding candidates especially when designed not only as simple volume fillers but also as smart biomaterials with condition-specific adaptability within the dynamic microenvironment of the defect site. Multifunctional hydrogels play a pivotal role against infections, inflammation, oxidative stress, etc. along the way of dental regeneration. Modern techniques (e.g., 3D and 4D-printing) hold promise to develop the next generation of antimicrobial hydrogels together with their limitations such as infeasibility of implantation.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
5
|
Abstract
Novel technologies and platforms have allowed significant breakthroughs in dental pulp tissue engineering. The development of injectable scaffolds that can be combined with stem cells, growth factors, or other bioactive compounds has enabled the regeneration of functional dental pulps able to secrete dentin in preclinical and clinical studies. Similarly, cell-homing technologies and scaffold-free strategies aim to modulate dental pulp self-regeneration mediated by resident stem cells and can evade some of the technical challenges related to cell-based tissue engineering strategies. This article will discuss emerging technologies and platforms for the clinical applications of dental pulp tissue engineering.
Collapse
Affiliation(s)
- Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University - USP, Bauru School of Dentistry, Dr. Octavio Pinheiro Brizola, 9-75, Bauru, Sao Paulo 17012-901, Brazil.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Level 10, Singapore 119085, Singapore.
| |
Collapse
|
6
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
7
|
Moghanian A, Cecen B, Nafisi N, Miri Z, Rosenzweig DH, Miri AK. Review of Current Literature for Vascularized Biomaterials in Dental Repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Ren H, Wu L, Tan L, Bao Y, Ma Y, Jin Y, Zou Q. Self-assembly of amino acids toward functional biomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1140-1150. [PMID: 34760429 PMCID: PMC8551877 DOI: 10.3762/bjnano.12.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Biomolecules, such as proteins and peptides, can be self-assembled. They are widely distributed, easy to obtain, and biocompatible. However, the self-assembly of proteins and peptides has disadvantages, such as difficulty in obtaining high quantities of materials, high cost, polydispersity, and purification limitations. The difficulties in using proteins and peptides as functional materials make it more complicate to arrange assembled nanostructures at both microscopic and macroscopic scales. Amino acids, as the smallest constituent of proteins and the smallest constituent in the bottom-up approach, are the smallest building blocks that can be self-assembled. The self-assembly of single amino acids has the advantages of low synthesis cost, simple modeling, excellent biocompatibility and biodegradability in vivo. In addition, amino acids can be assembled with other components to meet multiple scientific needs. However, using these simple building blocks to design attractive materials remains a challenge due to the simplicity of the amino acids. Most of the review articles about self-assembly focus on large molecules, such as peptides and proteins. The preparation of complicated materials by self-assembly of amino acids has not yet been evaluated. Therefore, it is of great significance to systematically summarize the literature of amino acid self-assembly. This article reviews the recent advances in amino acid self-assembly regarding amino acid self-assembly, functional amino acid self-assembly, amino acid coordination self-assembly, and amino acid regulatory functional molecule self-assembly.
Collapse
Affiliation(s)
- Huan Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lifang Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lina Tan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yanni Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuchen Ma
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies. Clin Oral Investig 2021; 25:4749-4779. [PMID: 34181097 DOI: 10.1007/s00784-021-04013-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this review is to highlight recent progress in the field of biomaterials-mediated dental pulp tissue engineering. Specifically, we aim to underscore the critical design criteria of biomaterial platforms that are advantageous for pulp tissue engineering, discuss models for preclinical evaluation, and present new and innovative multifunctional strategies that hold promise for clinical translation. MATERIALS AND METHODS The current article is a comprehensive overview of recent progress over the last 5 years. In detail, we surveyed the literature in regenerative pulp biology, including novel biologic and biomaterials approaches, and those that combined multiple strategies, towards more clinically relevant models. PubMed searches were performed using the keywords: "regenerative dentistry," "dental pulp regeneration," "regenerative endodontics," and "dental pulp therapy." RESULTS Significant contributions to the field of regenerative dentistry have been made in the last 5 years, as evidenced by a significant body of publications. We chose exemplary studies that we believe are progressive towards clinically translatable solutions. We close this review with an outlook towards the future of pulp regeneration strategies and their clinical translation. CONCLUSIONS Current clinical treatments lack functional and predictable pulp regeneration and are more focused on the treatment of the consequences of pulp exposure, rather than the restoration of healthy dental pulp. CLINICAL RELEVANCE Clinically, there is great demand for bioinspired biomaterial strategies that are safe, efficacious, and easy to use, and clinicians are eager for their clinical translation. In particular, we place emphasis on strategies that combine favorable angiogenesis, mineralization, and functional tissue formation, while limiting immune reaction, risk of microbial infection, and pulp necrosis.
Collapse
|
10
|
Leite ML, Soares DG, Anovazzi G, Anselmi C, Hebling J, de Souza Costa CA. Fibronectin-loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. J Endod 2021; 47:1110-1117. [PMID: 33887309 DOI: 10.1016/j.joen.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Guided tissue regeneration has been considered a promising biological strategy to replace conventional endodontic therapies of teeth with incomplete root formation. Therefore, in the present study, a collagen/gelatin hydrogel either containing dosages of fibronectin (FN), or not, was developed and assessed concerning their bioactive and chemotactic potential on human apical papilla cells (hAPCs). METHODS Hydrogels were prepared by varying the ratio of collagen and gelatin (Col/Gel; v/v), and used to establish the following groups: Collagen (positive control); Col/Gel 4:6; Col/Gel 6:4; Col/Gel 8:2. The viability, adhesion, and spreading of cells seeded on the hydrogels were evaluated. Different concentrations of FN (0, 5, or 10 μg/mL) were incorporated into the best formulation of the collagen/gelatin hydrogel selected. Then, the hAPCs seeded on the biomaterials were assessed concerning the cell migration, viability, adhesion and spreading, and gene expression of ITGA5, ITGAV, COL1A1, and COL3A1. RESULTS The Col/Gel 8:2 group exhibited better cell viability, adhesion and spreading in comparison with Control. Higher values of hAPC migration, viability, adhesion, spreading and gene expression of pulp regeneration markers were found, the higher the concentration was of FN incorporated into the collagen/gelatin hydrogel. CONCLUSION Collagen/gelatin hydrogel with 10 μg/mL of FN had potent bioactive and chemotactic effects on cultured hAPCs.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Giovana Anovazzi
- Departament of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Caroline Anselmi
- Departament of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Josimeri Hebling
- Departament of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, SP, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (Unesp), Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Wei X, Peng P, Peng F, Dong J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3797-3821. [PMID: 33761246 DOI: 10.1021/acs.jafc.0c07560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the second natural rubber resource, Eucommia ulmoides rubber (EUR) from Eucommia ulmoides Oliver is mainly composed of trans-1,4-polyisoprene, which is the isomer of natural rubber cis-1,4-polyisoprene from Hevea brasiliensis. In the past few years, the great potential application of EUR has received increasing attention, and there is a growing awareness that the natural polymer EUR could become an emerging research topic in field of the novel materials due to its unique and excellent duality of both rubber and plastic. To gain insight into its further development, in this review, the extraction, structure, physicochemical properties, and modification of EUR are discussed in detail. More emphasis on the potential applications in the fields of the environment, agriculture, engineering, and biomedical engineering is summarized. Finally, some insights into the challenges and perspectives of EUR are also suggested.
Collapse
Affiliation(s)
- Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
13
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
14
|
What is the best long-term treatment modality for immature permanent teeth with pulp necrosis and apical periodontitis? Eur Arch Paediatr Dent 2021; 22:311-340. [PMID: 33420674 PMCID: PMC8213569 DOI: 10.1007/s40368-020-00575-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate and assess the current knowledge about apexification and regenerative techniques as a meaningful treatment modality and to map the scientific evidence for the efficacy of both methods for the management of traumatised immature teeth with pulp necrosis and apical periodontitis. METHODS This systematic review searched five databases: PubMed, Web of Science, Cochrane Library, Ovid (Medline), and Embase. Published articles written in English were considered for inclusion. The following keywords were used: Regenerative endodontic treatment OR regenerat* OR revital* OR endodontic regeneration OR regenerative endodontics OR pulp revascularization OR revasculari* OR 'traumatized immature teeth'. Only peer-reviewed studies with a study size of at least 20 cases followed up for 24 months were included. Eligibility assessment was performed independently in a blinded manner by three reviewers and disagreements were resolved by consensus. Subgroup analyses were performed on three clinical outcomes: survival, success, and continued root development. RESULTS Seven full texts out of 1359 citations were included and conventional content analysis was performed. Most of the identified citations were case reports and case series. CONCLUSIONS In the present systematic review, the qualitative analysis revealed that both regenerative and apexification techniques had equal rates of success and survival and proved to be effective in the treatment of immature necrotic permanent teeth. Endodontic regenerative techniques appear to be superior to apexification techniques in terms of stimulation of root maturation, i.e. root wall thickening and root lengthening. Knowledge gaps were identified regarding the treatment and follow-up protocols for both techniques.
Collapse
|
15
|
Yang DL, Cui YN, Sun Q, Liu M, Niu H, Wang JX. Antibacterial activity and reinforcing effect of SiO2–ZnO complex cluster fillers for dental resin composites. Biomater Sci 2021; 9:1795-1804. [DOI: 10.1039/d0bm01834a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The regular-shaped SiO2-ZnO complex clusters constructed by spray-draying technology can enhance antibacterial activity while maintaining the mechanical and aesthetic properties of dental resin composites.
Collapse
Affiliation(s)
- Dan-Lei Yang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
| | - Ya-Nan Cui
- Department of Prosthodontics
- Affiliated Stomatological Hospital of Anhui Medical University
- Anhui
- PR China
| | - Qian Sun
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
| | - Mei Liu
- Jiangsu Key laboratory of Oral Disease
- Department of Prosthodontics
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
| | - Hao Niu
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology
| |
Collapse
|
16
|
Abstract
INTRODUCTION Bioactive molecule carrier systems (BACS) are biomaterial-based substrates that facilitate the delivery of active signaling molecules for different biologically based therapeutic applications, which include regenerative endodontic procedures. Tissue regeneration or organized repair in regenerative endodontic procedures is governed by the dynamic orchestration of interactions between stem/progenitor cells, bioactive molecules, and extracellular matrix. BACS aid in mimicking some of the complex physiological processes, overcoming some of the challenges faced in the clinical translation of regenerative endodontic procedures. AREAS COVERED This narrative review addresses the role of BACS in stem/progenitor cell proliferation, migration, and differentiation with the application for dentin-pulp tissue engineering both in vitro and in vivo. BACS shield the bioactivity of the immobilized molecules against environmental factors, while its design allows the pre-programmed release of bioactive molecules in a spatial and temporal-controlled manner. The polymeric and non-polymeric materials used to synthesize micro and nanoscale-based BACS are reviewed. EXPERT OPINION Comprehensive characterization of well-designed and customized BACS is necessary to be able to deliver multiple bioactive molecules in spatiotemporally controlled manner and to address the release kinetics required for potential in vivo application. This warrants further laboratory-based experiments and rigorous clinical investigations to enable their clinical translation for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto , Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto , Toronto, ON, Canada.,School of Graduate Studies, University of Toronto , Toronto, ON, Canada.,Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital , Toronto, ON, Canada
| | - Hebatullah Hussein
- The Kishen Lab, Dental Research Institute, University of Toronto , Toronto, ON, Canada.,Faculty of Dentistry, University of Toronto , Toronto, ON, Canada
| |
Collapse
|
17
|
Zhang D, Xu X, Long X, Cheng K, Li J. Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomater Sci 2020; 7:3984-3999. [PMID: 31429424 DOI: 10.1039/c9bm00746f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the development of surface modification technology, interface properties have great effects on the interaction between biomedical materials and cells and biomolecules, which significantly affects the biocompatibility and functionality of materials. As an orderly and perfect system, biological organisms in nature effectively integrate all kinds of bio-interfaces with physiological functions, which shed light on the importance of biomolecules in organisms. It gives birth to a bio-inspiration strategy to design and fabricate smart materials with specific functionalities, e.g. osteogenic and chondrocytic induced materials inspired by bone sialoprotein and chondroitin sulfate. Through this mimicking approach, various functional materials were utilized to decorate the interfaces and further optimize the performance of biomedical materials, which would widely expand their applications. In this review, followed by a summary and brief introduction of surface modification methods, we highlight recent advances in the fabrication of functional polymeric materials inspired by a range of biomolecules for decorating interfaces. Then, the other applications of biomolecule inspired materials including tissue engineering, diagnosis and treatment of diseases and physiological function regulation are presented and the future outlook is discussed as well.
Collapse
Affiliation(s)
- Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Hasani-Sadrabadi MM, Sarrion P, Nakatsuka N, Young TD, Taghdiri N, Ansari S, Aghaloo T, Li S, Khademhosseini A, Weiss PS, Moshaverinia A. Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS NANO 2019; 13:3830-3838. [PMID: 30895772 DOI: 10.1021/acsnano.8b09623] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Periodontitis is a common chronic inflammatory disease that affects tooth-supporting tissues. We engineer a multifunctional periodontal membrane for the guided tissue regeneration of lost periodontal tissues. The major drawback of current periodontal membranes is the lack of tissue regeneration properties. Here, a series of nanofibrous membranes based on poly(ε-caprolactone) with tunable biochemical and biophysical properties were developed for periodontal tissue regeneration. The engineered membranes were surface coated using biomimetic polydopamine to promote the adhesion of therapeutic proteins and cells. We demonstrate successful cellular localization on the surface of the engineered membrane by morphological patterning. Polydopamine accelerates osteogenic differentiation of dental-derived stem cells by promoting hydroxyapatite mineralization. Such multiscale designs can mimic the complex extracellular environment of periodontal tissue and serve as functional tissue constructs for periodontal regeneration. In a periodontal defect model in rats, our engineered periodontal membrane successfully promoted the regeneration of periodontal tissue and bone repair. Altogether, our data demonstrate that our biomimetic membranes have potential as protein/cell delivery platforms for periodontal tissue engineering.
Collapse
Affiliation(s)
- Mohammad Mahdi Hasani-Sadrabadi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
- Department of Bioengineering , University of California, Los Angeles , 420 Westwood Plaza, 5121 Engineering V , Los Angeles , California 90095-1600 , United States
| | - Patricia Sarrion
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Nako Nakatsuka
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
| | - Thomas D Young
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
| | - Nika Taghdiri
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , 420 Westwood Plaza, 5121 Engineering V , Los Angeles , California 90095-1600 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| | - Ali Khademhosseini
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Bioengineering , University of California, Los Angeles , 420 Westwood Plaza, 5121 Engineering V , Los Angeles , California 90095-1600 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095-1592 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095-1595 , United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| |
Collapse
|