1
|
DeRoo JB, Jones AA, Slaughter CK, Ahr TW, Stroup SM, Thompson GB, Snow CD. Automation of Protein Crystallization Scaleup via Opentrons-2 Liquid Handling. SLAS Technol 2025:100268. [PMID: 40101838 DOI: 10.1016/j.slast.2025.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
In this study we present an approach for optimizing protein crystallization trials at the multi-microliter scale utilizing the Opentrons-2 liquid handling robot. Our research demonstrates the robot's capability to automate 24-well sitting drop protein crystallization trials. Using Python scripts for precise control, the study explores the robot's application in mixing and setting up crystallization plates with a model protein (hen egg white lysozyme) and a periplasmic protein from Campylobacter jejuni, a crystal utilized in the Snow lab as a biomaterial for nanotechnology that requires large, consistent batches. In a head-to-head comparison with manual 24-well plate setup, crystal growth statistics indicate our approach can reduce manual labor and increase reliability in protein crystallization, and may also reduce variability, offering an economical and versatile tool for laboratories. This study shows facile adaption of the Opentrons interface and hardware for growth of two different crystal types. All developed liquid handling routines and relevant data files, in addition to demonstration videos are available at https://github.com/jbderoo/Opentrons2-Protein-Crystallization.
Collapse
Affiliation(s)
- Jacob B DeRoo
- School of Biomedical Engineering, Colorado State University
| | - Alec A Jones
- School of Biomedical Engineering, Colorado State University
| | | | - Tim W Ahr
- Department of Chemical Engineering, Colorado State University
| | - Sam M Stroup
- Department of Chemistry, Colorado State University
| | - Grace B Thompson
- School of Biomedical Engineering, Colorado State University; Department of Electrical Engineering, Colorado State University
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University; Department of Cellular and Molecular Biology, Colorado State University; Department of Chemical Engineering, Colorado State University; Department of Chemistry, Colorado State University
| |
Collapse
|
2
|
Chung JS, Hartman EM, Mertick-Sykes EJ, Pimentel EB, Martell JD. Hyper-Expandable Cross-Linked Protein Crystals as Scaffolds for Catalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:311-321. [PMID: 39701958 DOI: 10.1021/acsami.4c15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Scaffolding catalytic reactions within porous materials is a powerful strategy to enhance the reaction rates of multicatalytic systems. However, it remains challenging to develop materials with high porosity, high diversity of functional groups within the pores, and guest-adaptive tunability. Furthermore, it is challenging to capture large catalysts such as enzymes within porous materials. Protein-based materials are promising candidates to overcome these limitations, owing to their large pore sizes and potential for stimuli-responsive adaptability. In this work, hydrogel beads were generated from cross-linked lysozyme crystals. These swellable lysozyme cross-linked crystals (SLCCs) expand more than 10 mL per gram of crystal following a simple treatment in ethanol, followed by the addition of water. SLCCs are sensitive to the solution environment and change their extent of swelling from adjusting the concentration and identity of the ions in the solution, or by changing the flexibility of the protein backbone, such as adding dithiothreitol to reduce the protein disulfide bonds. SLCCs can adsorb a wide range of catalysts ranging from transition metal complexes to large biomacromolecules, such as the 160 kDa enzyme glucose oxidase (GOx). Transition metal catalysts and enzymes captured within SLCCs maintained their catalytic activity and exhibited minimal leaching. We performed a cascade reaction by adsorbing GOx and the transition metal catalyst Fe-TAML into SLCCs, resulting in enhanced activity compared to a free-floating reaction. SLCCs offer a promising combination of attributes as scaffolds for multicatalytic reactions, including gram-scale batch preparation, tunable expansion to greater than 20-fold in volume, guest-responsive adaptable behavior, and facile capture of a wide array of small molecule and enzyme-catalysts.
Collapse
Affiliation(s)
- Jedidiah S Chung
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Ethan M Hartman
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Eli J Mertick-Sykes
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Edward B Pimentel
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Caparco AA, Bommarius BR, Ducrot L, Champion JA, Vergne-Vaxelaire C, Bommarius AS. In situ characterization of amine-forming enzymes shows altered oligomeric state. Protein Sci 2025; 34:e5248. [PMID: 39720905 DOI: 10.1002/pro.5248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/26/2024]
Abstract
Enzyme stability can be measured in a number of ways, including melting temperature, activity retention, and size analysis. However, these measurements are often conducted in an idealized storage buffer and not in the relevant enzymatic reaction media. Particularly for reactions that occur in alkaline, volatile, and high ionic strength media, typical analyses using differential scanning calorimetry, light scattering, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis are not satisfactory to track the stability of these enzymes. In this work, we monitor the stability of engineered and native dehydrogenases that require a high amount of ammonia for their reaction to occur. We demonstrate the benefits of analyzing these enzymes in their reaction buffer, uncovering trends that were not observable in the typical phosphate storage buffer. This work provides a framework for analyzing the stability of many other enzymes whose reaction media is not suitable for traditional techniques. We introduce several strategies for measuring the melting temperature, oligomeric state, and activity of these enzymes in their reaction media. Further, we have identified opportunities for integration of computational tools into this workflow to engineer enzymes more effectively for solvent tolerance and improved stability.
Collapse
Affiliation(s)
- Adam A Caparco
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeasern University, Boston, Massachusetts, USA
| | - Bettina R Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Laurine Ducrot
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carine Vergne-Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Zhang R, Kang SY, Gaascht F, Peña EL, Schmidt-Dannert C. Design of a Genetically Programmable and Customizable Protein Scaffolding System for the Hierarchical Assembly of Robust, Functional Macroscale Materials. ACS Synth Biol 2024; 13:3724-3745. [PMID: 39480180 DOI: 10.1021/acssynbio.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications. By controlling the coexpression in Escherichia coli of self-assembling scaffold building blocks with and without modifications for covalent attachment of cross-linking cargo proteins, hybrid scaffolds with spatially organized conjugation sites are overproduced that can be readily isolated. Cargo proteins, including enzymes, are rapidly cross-linked onto scaffolds for the formation of functional materials. We show that these materials can be used for the in vitro operation of a coimmobilized two-enzyme reaction and that the protein material can be recovered and reused. We believe that this work will provide a versatile platform for the design and scalable production of functional materials with customizable properties and the robustness required for biotechnological applications.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Sun-Young Kang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - François Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Eliana L Peña
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
5
|
Orun A, Slaughter CK, Shields ET, Vajapayajula A, Jones S, Shrestha R, Snow CD. Tuning Chemical DNA Ligation within DNA Crystals and Protein-DNA Cocrystals. ACS NANOSCIENCE AU 2024; 4:338-348. [PMID: 39430379 PMCID: PMC11487669 DOI: 10.1021/acsnanoscienceau.4c00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/22/2024]
Abstract
Biomolecular crystals can serve as materials for a plethora of applications including precise guest entrapment. However, as grown, biomolecular crystals are fragile in solutions other than their growth conditions. For crystals to achieve their full potential as hosts for other molecules, crystals can be made stronger with bioconjugation. Building on our previous work using carbodiimide 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for chemical ligation, here, we investigate DNA junction architecture through sticky base overhang lengths and the role of scaffold proteins in cross-linking within two classes of biomolecular crystals: cocrystals of DNA-binding proteins and pure DNA crystals. Both crystal classes contain DNA junctions where DNA strands stack up end-to-end. Ligation yields were studied as a function of sticky base overhang length and terminal phosphorylation status. The best ligation performance for both crystal classes was achieved with longer sticky overhangs and terminal 3'phosphates. Notably, EDC chemical ligation was achieved in crystals with pore sizes too small for intracrystal transport of ligase enzyme. Postassembly cross-linking produced dramatic stability improvements for both DNA crystals and cocrystals in water and blood serum. The results presented may help crystals containing DNA achieve broader application utility, including as structural biology scaffolds.
Collapse
Affiliation(s)
- Abigail
R. Orun
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Caroline K. Slaughter
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Ethan T. Shields
- Department
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ananya Vajapayajula
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Sara Jones
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Rojina Shrestha
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Christopher D. Snow
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Cell and Molecular Biology, Colorado
State University, Fort Collins, Colorado 80523, United States
- Department
of Biomedical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Jones AA, Snow CD. Porous protein crystals: synthesis and applications. Chem Commun (Camb) 2024; 60:5790-5803. [PMID: 38756076 DOI: 10.1039/d4cc00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.
Collapse
Affiliation(s)
- Alec Arthur Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA
| |
Collapse
|
7
|
Liutkus M, Sasselli IR, Rojas AL, Cortajarena AL. Diverse crystalline protein scaffolds through metal-dependent polymorphism. Protein Sci 2024; 33:e4971. [PMID: 38591647 PMCID: PMC11002994 DOI: 10.1002/pro.4971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.
Collapse
Affiliation(s)
- Mantas Liutkus
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
| | - Ivan R. Sasselli
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
- Present address:
Centro de Física de Materiales (CFM)CSIC‐UPV/EHUSan SebastiánSpain
| | - Adriana L. Rojas
- Centre for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceBilbaoSpain
| | - Aitziber L. Cortajarena
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology AllianceSan SebastianSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
8
|
Pham TT, Abe S, Date K, Hirata K, Suzuki T, Ueno T. Displaying a Protein Cage on a Protein Crystal by In-Cell Crystal Engineering. NANO LETTERS 2023; 23:10118-10125. [PMID: 37955329 DOI: 10.1021/acs.nanolett.3c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The development of solid biomaterials has rapidly progressed in recent years in applications in bionanotechnology. The immobilization of proteins, such as enzymes, within protein crystals is being used to develop solid catalysts and functionalized materials. However, an efficient method for encapsulating protein assemblies has not yet been established. This work presents a novel approach to displaying protein cages onto a crystalline protein scaffold using in-cell protein crystal engineering. The polyhedra crystal (PhC) scaffold, which displays a ferritin cage, was produced by coexpression of polyhedrin monomer (PhM) and H1-ferritin (H1-Fr) monomer in Escherichia coli. The H1-tag is derived from the H1-helix of PhM. Our technique represents a unique strategy for immobilizing protein assemblies onto in-cell protein crystals and is expected to contribute to various applications in bionanotechnology.
Collapse
Affiliation(s)
- Thuc Toan Pham
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Koki Date
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun 679-5148, Hyogo, Japan
| | - Taiga Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
9
|
Han K, Zhang Z, Tezcan FA. Spatially Patterned, Porous Protein Crystals as Multifunctional Materials. J Am Chem Soc 2023; 145:19932-19944. [PMID: 37642457 DOI: 10.1021/jacs.3c06348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
While the primary use of protein crystals has historically been in crystallographic structure determination, they have recently emerged as promising materials with many advantageous properties such as high porosity, biocompatibility, stability, structural and functional versatility, and genetic/chemical tailorability. Here, we report that the utility of protein crystals as functional materials can be further augmented through their spatial patterning and control of their morphologies. To this end, we took advantage of the chemically and kinetically controllable nature of ferritin self-assembly and constructed core-shell crystals with chemically distinct domains, tunable structural patterns, and morphologies. The spatial organization within ferritin crystals enabled the generation of patterned, multi-enzyme frameworks with cooperative catalytic behavior. We further exploited the differential growth kinetics of ferritin crystal facets to assemble Janus-type architectures with an anisotropic arrangement of chemically distinct domains. These examples represent a step toward using protein crystals as reaction vessels for complex multi-step reactions and broadening their utility as functional, solid-state materials. Our results demonstrate that morphology control and spatial patterning, which are key concepts in materials science and nanotechnology, can also be applied for engineering protein crystals.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Stuart JD, Hartman DA, Gray LI, Jones AA, Wickenkamp NR, Hirt C, Safira A, Regas AR, Kondash TM, Yates ML, Driga S, Snow CD, Kading RC. Mosquito tagging using DNA-barcoded nanoporous protein microcrystals. PNAS NEXUS 2022; 1:pgac190. [PMID: 36714845 PMCID: PMC9802479 DOI: 10.1093/pnasnexus/pgac190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Conventional mosquito marking technology for mark-release-recapture (MRR) is quite limited in terms of information capacity and efficacy. To overcome both challenges, we have engineered, lab-tested, and field-evaluated a new class of marker particles, in which synthetic, short DNA oligonucleotides (DNA barcodes) are adsorbed and protected within tough, crosslinked porous protein microcrystals. Mosquitoes self-mark through ingestion of microcrystals in their larval habitat. Barcoded microcrystals persist trans-stadially through mosquito development if ingested by larvae, do not significantly affect adult mosquito survivorship, and individual barcoded mosquitoes are detectable in pools of up to at least 20 mosquitoes. We have also demonstrated crystal persistence following adult mosquito ingestion. Barcode sequences can be recovered by qPCR and next-generation sequencing (NGS) without detectable amplification of native mosquito DNA. These DNA-laden protein microcrystals have the potential to radically increase the amount of information obtained from future MRR studies compared to previous studies employing conventional mosquito marking materials.
Collapse
Affiliation(s)
| | | | - Lyndsey I Gray
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alec A Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Natalie R Wickenkamp
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Aya Safira
- Present address: Just-Evotec Biologics, Seattle, WA 98109, USA
| | - April R Regas
- College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Therese M Kondash
- Department of Environmental Health and Radiological Sciences, Colorado State University, Fort Collins, CO 80523, USA,H3 Environmental, Albuquerque, NM 87109 (current)
| | - Margaret L Yates
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sergei Driga
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA,School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Rebekah C Kading
- To whom correspondence should be addressed: 176 CVID, Colorado State University, Fort Collins, CO 80523, USA. Tel: (970) 491-7833;
| |
Collapse
|
11
|
Han K, Na Y, Zhang L, Tezcan FA. Dynamic, Polymer-Integrated Crystals for Efficient, Reversible Protein Encapsulation. J Am Chem Soc 2022; 144:10139-10144. [PMID: 35666988 DOI: 10.1021/jacs.2c02584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystalline materials are increasingly being used as platforms for encapsulating proteins to create stable, functional materials. However, the uptake efficiencies and stimuli-responsiveness of crystalline frameworks are limited by their rigidities. We have recently reported a new form of materials, polymer-integrated crystals (PIX), which combine the structural order of protein crystals with the dynamic, stimuli-responsive properties of synthetic polymers. Here we show that the crystallinity, flexibility, and chemical tunability of PIX can be exploited to encapsulate guest proteins with high loading efficiencies (up to 46% w/w). The electrostatic host-guest interactions enable reversible, pH-controlled uptake/release of guest proteins as well as the mutual stabilization of the host and the guest, thus creating a uniquely synergistic platform toward the development of functional biomaterials and the controlled delivery of biological macromolecules.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ling Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Maity B, Taher M, Mazumdar S, Ueno T. Artificial metalloenzymes based on protein assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Curtis RW, Scrudders KL, Ulcickas JRW, Simpson GJ, Low-Nam ST, Chmielewski J. Supramolecular Assembly of His-Tagged Fluorescent Protein Guests within Coiled-Coil Peptide Crystal Hosts: Three-Dimensional Ordering and Protein Thermal Stability. ACS Biomater Sci Eng 2022; 8:1860-1866. [PMID: 35377599 PMCID: PMC9840175 DOI: 10.1021/acsbiomaterials.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of biomaterials for the inclusion and stabilization of biopolymers is an ongoing challenge. Herein, we disclose three-dimensional (3D) coiled-coil peptide crystals with metal ions that include and overgrow His-tagged fluorescent proteins within the crystal. The protein guests are found within two symmetry-related growth sectors of the crystalline host that are associated with faces of the growing crystal that display ligands for metal ions. The fluorescent proteins are included within this "hourglass" region of the crystals at a notably high level, display order within the crystal hosts, and demonstrate sufficiently tight packing to enable energy transfer between a donor-acceptor pair. His-tagged fluorescent proteins display remarkable thermal stability to denaturation over extended periods of time (days) at high temperatures when within the crystals. Ultimately, this strategy may prove useful for the prolonged storage of thermally sensitive biopolymer guests within a 3D crystalline matrix.
Collapse
Affiliation(s)
- Ryan W. Curtis
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Kevin L. Scrudders
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - James R. W. Ulcickas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Shalini T. Low-Nam
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
14
|
Caparco AA, Dautel DR, Champion JA. Protein Mediated Enzyme Immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106425. [PMID: 35182030 DOI: 10.1002/smll.202106425] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Enzyme immobilization is an essential technology for commercializing biocatalysis. It imparts stability, recoverability, and other valuable features that improve the effectiveness of biocatalysts. While many avenues to join an enzyme to solid phases exist, protein-mediated immobilization is rapidly developing and has many advantages. Protein-mediated immobilization allows for the binding interaction to be genetically coded, can be used to create artificial multienzyme cascades, and enables modular designs that expand the variety of enzymes immobilized. By designing around binding interactions between protein domains, they can be integrated into functional materials for protein immobilization. These materials are framed within the context of biocatalytic performance, immobilization efficiency, and stability of the materials. In this review, supports composed entirely of protein are discussed first, with systems such as cellulosomes and protein cages being discussed alongside newer technologies like spore-based biocatalysts and forizymes. Protein-composite materials such as polymersomes and protein-inorganic supraparticles are then discussed to demonstrate how protein-mediated strategies are applied to many classes of solid materials. Critical analysis and future directions of protein-based immobilization are then discussed, with a particular focus on both computational and design strategies to advance this area of research and make it more broadly applicable to many classes of enzymes.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of Nanoengineering, University of California, San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
15
|
Kojima M, Abe S, Ueno T. Engineering of protein crystals for use as solid biomaterials. Biomater Sci 2021; 10:354-367. [PMID: 34928275 DOI: 10.1039/d1bm01752g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein crystals have attracted a great deal of attention as solid biomaterials because they have porous structures created by regular assemblies of proteins. The lattice structures of protein crystals are controlled by designing molecular interfacial interactions via covalent bonds and non-covalent bonds. Protein crystals have been functionalized as templates to immobilize foreign molecules such as metal nanoparticles, metal complexes, and proteins. These hybrid crystals are used as functional materials for catalytic reactions and structural analysis. Furthermore, in-cell protein crystals have been studied extensively, providing progress in rapid protein crystallization and crystallography. This review highlights recent advances in crystal engineering for protein crystallization and generation of solid functional materials both in vitro and within cells.
Collapse
Affiliation(s)
- Mariko Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B55, Midori-ku, Yokohama 226-8501, Japan.
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B55, Midori-ku, Yokohama 226-8501, Japan.
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259-B55, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
16
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
17
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
18
|
A lipase/poly (ionic liquid)-styrene microspheres/PVA composite hydrogel for esterification application. Enzyme Microb Technol 2021; 152:109935. [PMID: 34749020 DOI: 10.1016/j.enzmictec.2021.109935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023]
Abstract
Enzymes are particularly attractive as biocatalysts for the green synthesis of chemicals and pharmaceuticals. However, the traditional enzyme purification and separation process is complex and inefficient, which limits the wide application of enzyme catalysis. In this paper, an efficient strategy for enzyme purification and immobilization in one step is proposed. A novel poly (ionic liquid)-styrene microsphere is prepared by molecular design and synthesis for adsorbing and purifying high activity lipase from fermentation broth directly. By optimizing the surface morphologies and charge of the microspheres, the enzyme loading is significantly improved. In order to further stabilize the catalytic environment of lipase, the resulting lipase/poly (ionic liquid)-styrene microspheres are immobilized in physical crosslinking hydrogel to obtain a complex lipase catalytic system, which can be prepared into various shapes according to the requirements of catalytic environment. In the actual catalytic reaction process, this complex lipase catalytic system exhibits excellent catalytic activity (6314.69 ± 21.27 U mg-1) and good harsh environment tolerance compared with the lipase fermentation broth (1672.87 ± 36.68 U mg-1). Under the condition of cyclic catalysis, the complex lipase catalytic system shows the outstanding reusability (After 8 cycles the enzymatic activity is still higher than that of the lipase fermentation broth) and is easily separated from the products.
Collapse
|
19
|
Zhou R, Ohulchanskyy TY, Xu H, Ziniuk R, Qu J. Catalase Nanocrystals Loaded with Methylene Blue as Oxygen Self-Supplied, Imaging-Guided Platform for Photodynamic Therapy of Hypoxic Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103569. [PMID: 34532978 DOI: 10.1002/smll.202103569] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) is a well-known method for cancer therapy in the clinic. However, the inherent hypoxia microenvironment of solid tumors enormously restricts the PDT efficiency. Herein, catalase nanocrystals (CatCry) are introduced as in situ oxygen (O2 )-generating system to relieve tumor hypoxia and enhance PDT efficiency for solid tumors. After loading with photosensitizer methylene blue (MB), a PDT drug platform (CatCry-MB) emerges, allowing for significant increasing PDT efficiency instigated by three factors. First, the high stability and recyclable catalytic activity of CatCry enable a long-term endogenous H2 O2 decomposition for continuous O2 supply for sustained relief of tumor hypoxia. Second, both the produced O2 and loaded MB are confined within CatCry nanoporous structure, shortening the diffusion distance between O2 and MB to maximize the production of singlet oxygen (1 O2 ). Third, the MB molecules are uniformly dispersed within CatCry lattice, avoiding MB aggregation and causing more MB molecules be activated to produce more 1 O2 . With the three complementary mechanisms, tumor hypoxia is eradicated and the resulted enhancement in PDT efficiency is demonstrated in vitro and in vivo. The proposed approach opens up a new venue for the development of other O2 -dependent tumor treatments, such as chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Renbin Zhou
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Xu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Roman Ziniuk
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
20
|
Hormozi Jangi SR, Akhond M. High throughput urease immobilization onto a new metal-organic framework called nanosized electroactive quasi-coral-340 (NEQC-340) for water treatment and safe blood cleaning. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Abe S, Pham TT, Negishi H, Yamashita K, Hirata K, Ueno T. Design of an In‐Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Abe
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
| | - Thuc Toan Pham
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
| | - Hashiru Negishi
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit RIKEN/SPring-8 RIKEN/SPring-8 Center 1-1-1, Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit RIKEN/SPring-8 RIKEN/SPring-8 Center 1-1-1, Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Takafumi Ueno
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
- Tokyo Tech World Research Hub Initiative (WRHI) Tokyo Institute of Technology Japan
| |
Collapse
|
22
|
Abe S, Pham TT, Negishi H, Yamashita K, Hirata K, Ueno T. Design of an In‐Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament. Angew Chem Int Ed Engl 2021; 60:12341-12345. [DOI: 10.1002/anie.202102039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Satoshi Abe
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
| | - Thuc Toan Pham
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
| | - Hashiru Negishi
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit RIKEN/SPring-8 RIKEN/SPring-8 Center 1-1-1, Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit RIKEN/SPring-8 RIKEN/SPring-8 Center 1-1-1, Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Takafumi Ueno
- School of Life Science and Technology Tokyo Institute of Technology Nagatsuta 4259-B-55, Midori-ku Yokohama 226-8501 Japan
- Tokyo Tech World Research Hub Initiative (WRHI) Tokyo Institute of Technology Japan
| |
Collapse
|
23
|
Sarrou I, Feiler CG, Falke S, Peard N, Yefanov O, Chapman H. C-phycocyanin as a highly attractive model system in protein crystallography: unique crystallization properties and packing-diversity screening. Acta Crystallogr D Struct Biol 2021; 77:224-236. [PMID: 33559611 PMCID: PMC7869899 DOI: 10.1107/s2059798320016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
The unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology. More than 100 unique single-crystal X-ray diffraction data sets were collected from randomly selected crystals and analysed. The addition of small-molecule additives revealed three new crystal packings of C-PC, which are discussed in detail. The high propensity of this protein to crystallize, combined with its natural blue colour and its fluorescence characteristics, make it an excellent candidate as a superior and highly adaptable model system in crystallography. C-PC can be used in technical and methods development approaches for X-ray and neutron diffraction techniques, and as a system for comprehending the fundamental principles of protein crystallography.
Collapse
Affiliation(s)
- Iosifina Sarrou
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian G. Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Nolan Peard
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Oleksandr Yefanov
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry Chapman
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
24
|
Ren S, Jiang S, Yan X, Chen R, Cui H. Challenges and Opportunities: Porous Supports in Carbonic Anhydrase Immobilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Caparco AA, Bommarius BR, Bommarius AS, Champion JA. Protein-inorganic calcium-phosphate supraparticles as a robust platform for enzyme co-immobilization. Biotechnol Bioeng 2020; 117:1979-1989. [PMID: 32255509 DOI: 10.1002/bit.27348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023]
Abstract
Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.
Collapse
Affiliation(s)
- Adam A Caparco
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Bettina R Bommarius
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
26
|
Heater BS, Yang Z, Lee MM, Chan MK. In Vivo Enzyme Entrapment in a Protein Crystal. J Am Chem Soc 2020; 142:9879-9883. [DOI: 10.1021/jacs.9b13462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley S. Heater
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zaofeng Yang
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Marianne M. Lee
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Michael K. Chan
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
27
|
Zdarta J, Machałowski T, Degórska O, Bachosz K, Fursov A, Ehrlich H, Ivanenko VN, Jesionowski T. 3D Chitin Scaffolds from the Marine Demosponge Aplysina archeri as a Support for Laccase Immobilization and Its Use in the Removal of Pharmaceuticals. Biomolecules 2020; 10:biom10040646. [PMID: 32331371 PMCID: PMC7226420 DOI: 10.3390/biom10040646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
For the first time, 3D chitin scaffolds from the marine demosponge Aplysina archeri were used for adsorption and immobilization of laccase from Trametes versicolor. The resulting chitin-enzyme biocatalytic systems were applied in the removal of tetracycline. Effective enzyme immobilization was confirmed by scanning electron microscopy. Immobilization yield and kinetic parameters were investigated in detail, in addition to the activity of the enzyme after immobilization. The designed systems were further used for the removal of tetracycline under various process conditions. Optimum process conditions, enabling total removal of tetracycline from solutions at concentrations up to 1 mg/L, were found to be pH 5, temperature between 25 and 35 °C, and 1 h process duration. Due to the protective effect of the chitinous scaffolds and stabilization of the enzyme by multipoint attachment, the storage stability and thermal stability of the immobilized biomolecules were significantly improved as compared to the free enzyme. The produced biocatalytic systems also exhibited good reusability, as after 10 repeated uses they removed over 90% of tetracycline from solution. Finally, the immobilized laccase was used in a packed bed reactor for continuous removal of tetracycline, and enabled the removal of over 80% of the antibiotic after 24 h of continuous use.
Collapse
Affiliation(s)
- Jakub Zdarta
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
- Correspondence: (J.Z.); (T.J.)
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (A.F.); (H.E.)
| | - Oliwia Degórska
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
| | - Karolina Bachosz
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (A.F.); (H.E.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; (A.F.); (H.E.)
- Wielkopolska Center for Advanced Technologies (WCAT), Poznan University str. 10, 61614 Poznan, Poland
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (O.D.); (K.B.)
- Correspondence: (J.Z.); (T.J.)
| |
Collapse
|
28
|
Koesoema AA, Standley DM, Senda T, Matsuda T. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Appl Microbiol Biotechnol 2020; 104:2897-2909. [PMID: 32060695 DOI: 10.1007/s00253-020-10440-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
Alcohol dehydrogenases (ADHs) catalyze the reversible reduction of a carbonyl group to its corresponding alcohol. ADHs are widely employed for organic synthesis due to their lack of harm to the environment, broad substrate acceptance, and high enantioselectivity. This review focuses on the impact and relevance of ADH enantioselectivities on their biotechnological application. Stereoselective ADHs are beneficial to reduce challenging ketones such as ketones owning two bulky substituents or similar-sized substituents to the carbonyl carbon. Meanwhile, in cascade reactions, non-stereoselective ADHs can be utilized for the quantitative oxidation of racemic alcohol to ketone and dynamic kinetic resolution.
Collapse
Affiliation(s)
- Afifa Ayu Koesoema
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan
| | - Daron M Standley
- Department of Genome Informatics, Genome Information Research Center, Research Institute of Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tomoko Matsuda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
29
|
Tu C, Zhou J, Peng L, Man S, Ma L. Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability. Biomater Sci 2020; 8:648-656. [PMID: 31761913 DOI: 10.1039/c9bm00402e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three SAP (self-assembling peptide)-tagged fluorinases (FLAs), namely, FLA-ELK16, FLA-L6KD and FLA-18A (named after the SAP used for tagging FLA) were successfully engineered. All three SAP-tagged FLAs could be highly over-expressed using engineered E. coli host cells despite being in the form of aggregates (inclusion bodies). It was noted that all three SAP-tagged FLAs exhibited enzymatic activity. It was also observed that all three SAP-tagged FLAs were capable of self-assembly to form nano-sized particles with different dimensions in aqueous solutions. Strikingly, one of the SAP-tagged FLA (FLA-L6KD) displayed improved enzyme activity, thermostability and reusability, which is potentially ideal for bio-transformation. FLA is an exotic enzyme that is capable of catalysing the formation of C-F bonds using inorganic fluorine ions as substrates. This significant feature enables it to incorporate [18F]-fluoride into different small molecules to generate radiopharmaceuticals in PET (positron emission tomography) labeling. In addition, fluorinase is greatly valuable in synthetic biology for incorporating the fluorine element into building blocks to produce non-natural organofluorines or as a biocatalyst for transforming non-native substrates. Our method would be a further step in making FLA-based biocatalysis even 'greener' by enhancing the enzymatic activity, thermostability and reusability of FLA through the introduction of nano-sized aggregates. Enzymes are such nontrivial biomaterials, which can be manifested in different scenarios. Our research expands their reach and tunes their properties by tagging SAP partners. Thus, this methodology can be put into the 'toolbox' of enzymologists, which can be further explored and generalised for others.
Collapse
Affiliation(s)
- Chunhao Tu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
30
|
Porous crystals as scaffolds for structural biology. Curr Opin Struct Biol 2020; 60:85-92. [PMID: 31896427 DOI: 10.1016/j.sbi.2019.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Molecular scaffolds provide routes to otherwise inaccessible organized states of matter. Scaffolds that are crystalline can be observed in atomic detail using diffraction, along with any guest molecules that have adopted coherent structures therein. This approach, scaffold-assisted structure determination, is not yet routine. However, with varying degrees of guest immobilization, porous crystal scaffolds have recently been decorated with guest molecules. Herein we analyze recent milestones, compare the relative advantages and challenges of different types of scaffold crystals, and weigh the merits of diverse guest installation strategies.
Collapse
|
31
|
Cannon KA, Park RU, Boyken SE, Nattermann U, Yi S, Baker D, King NP, Yeates TO. Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Sci 2019; 29:919-929. [PMID: 31840320 DOI: 10.1002/pro.3802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
In recent years, new protein engineering methods have produced more than a dozen symmetric, self-assembling protein cages whose structures have been validated to match their design models with near-atomic accuracy. However, many protein cage designs that are tested in the lab do not form the desired assembly, and improving the success rate of design has been a point of recent emphasis. Here we present two protein structures solved by X-ray crystallography of designed protein oligomers that form two-component cages with tetrahedral symmetry. To improve on the past tendency toward poorly soluble protein, we used a computational protocol that favors the formation of hydrogen-bonding networks over exclusively hydrophobic interactions to stabilize the designed protein-protein interfaces. Preliminary characterization showed highly soluble expression, and solution studies indicated successful cage formation by both designed proteins. For one of the designs, a crystal structure confirmed at high resolution that the intended tetrahedral cage was formed, though several flipped amino acid side chain rotamers resulted in an interface that deviates from the precise hydrogen-bonding pattern that was intended. A structure of the other designed cage showed that, under the conditions where crystals were obtained, a noncage structure was formed wherein a porous 3D protein network in space group I21 3 is generated by an off-target twofold homomeric interface. These results illustrate some of the ongoing challenges of developing computational methods for polar interface design, and add two potentially valuable new entries to the growing list of engineered protein materials for downstream applications.
Collapse
Affiliation(s)
- Kevin A Cannon
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California.,UCLA Department of Chemistry and Biochemistry, Los Angeles, California
| | - Rachel U Park
- University of Washington Institute for Protein Design, Seattle, Washington
| | - Scott E Boyken
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington
| | - Una Nattermann
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington.,University of Washington Graduate Program in Biological Physics, Structure & Design, Seattle, Washington
| | - Sue Yi
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington
| | - David Baker
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington.,Howard Hughes Medical Institute, Seattle, Washington
| | - Neil P King
- University of Washington Institute for Protein Design, Seattle, Washington.,University of Washington Department of Biochemistry, Seattle, Washington
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California.,UCLA Department of Chemistry and Biochemistry, Los Angeles, California.,UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|