1
|
Sun L, Chen H, Xu D, Liu R, Zhao Y. Developing organs-on-chips for biomedical applications. SMART MEDICINE 2024; 3:e20240009. [PMID: 39188702 PMCID: PMC11236011 DOI: 10.1002/smmd.20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 08/28/2024]
Abstract
In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on. In this perspective, we present a review of organs-on-chips for biomedical applications. After introducing the key elements and manufacturing craft of organs-on-chips, we intend to review their cut-edging applications in biomedical fields, incorporating biological analysis, drug development, robotics and so on. Finally, the emphasis is focused on the perspectives of organs-on-chips.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
| | - Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
2
|
Xu D, Wang Y, Sun L, Luo Z, Luo Y, Wang Y, Zhao Y. Living Anisotropic Structural Color Hydrogels for Cardiotoxicity Screening. ACS NANO 2023; 17:15180-15188. [PMID: 37459507 DOI: 10.1021/acsnano.3c04817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Environmental toxins can result in serious and fatal damage in the human heart, while the development of a viable stratagem for assessing the effects of environmental toxins on human cardiac tissue is still a challenge. Herein, we present a heart-on-a-chip based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured living anisotropic structural color hydrogels for cardiotoxicity screening. Such anisotropic structural color hydrogels with a conductive parallel carbon nanotube (CNT) upper layer, gelatin methacryloyl (GelMA) interlayer, and inverse opal bottom layer were fabricated by a sandwich replicating approach. The inverse opal structure endowed the anisotropic hydrogels with stable structural color property, while the parallel and conductive CNTs could induce the hiPSC-CMs to grow in a directional manner with consistent autonomous beating. Notably, the resultant hiPSC-CM-cultured hydrogel exhibited synchronous shifts in structural color, responding to contraction and relaxation of hiPSC-CMs, offering a visual platform for monitoring cell activity. Given these features, the hiPSC-CM-cultured living anisotropic structural color hydrogels were integrated into a heart-on-a-chip, which provided a superior cardiotoxicity screening platform for environmental toxins.
Collapse
Affiliation(s)
- Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
3
|
Sun L, Wang Y, Bian F, Xu D, Zhao Y. Bioinspired optical and electrical dual-responsive heart-on-a-chip for hormone testing. Sci Bull (Beijing) 2023; 68:938-945. [PMID: 37062651 DOI: 10.1016/j.scib.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Heart-on-chips have emerged as a powerful tool to promote the paradigm innovation in cardiac pathological research and drug development. Attempts are focused on improving microphysiological visuals, enhancing bionic characteristics, as well as expanding their biomedical applications. Herein, inspired by the bright feathers of peacock, we present a novel optical and electrical dual-responsive heart-on-a-chip based on cardiomyocytes hybrid bright MXene structural color hydrogels for hormone toxicity evaluation. Such hydrogels with inverse opal nanostructure are generated by using pregel to replicate MXene-decorated colloidal photonic crystal (PhC) array templates. The attendant MXene in the hydrogels could not only enhance the saturation of structural color, but also ensure the composite hydrogel with excellent electroconductivity to facilitate the synergetic beating of their surface cultured cardiomyocytes. In this case, the hydrogels would undergo a synchronous deformation and generate shift in corresponding photonic band gap and structural color, which could be employed as visual signal for self-reporting of the cardiomyocyte mechanics. Based on these features, we demonstrated the practical value of the optical and electrical dual-responsive structural color MXene hydrogels constructed heart-on-a-chip in hormone toxicity testing. These results indicated that the proposed heart-on-a-chip might find broad prospects in drug screening, biological research, and so on.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China.
| |
Collapse
|
4
|
Liu MM, Zhong Y, Chen Y, Wu LN, Chen W, Lin XH, Lei Y, Liu AL. Electrochemical monitoring the effect of drug intervention on PC12 cell damage model cultured on paper-PLA 3D printed device. Anal Chim Acta 2022; 1194:339409. [DOI: 10.1016/j.aca.2021.339409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022]
|
5
|
Soto Veliz D, Kummala R, Abitbol T, Toivakka M. Influence of mineral coatings on fibroblast behaviour: The importance of coating formulation and experimental design. Colloids Surf B Biointerfaces 2021; 208:112059. [PMID: 34454364 DOI: 10.1016/j.colsurfb.2021.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Mineral coatings manipulate surface properties such as roughness, porosity, wettability and surface energy. Properties that are known to determine cell behaviour. Therefore, mineral coatings can potentially be used to manipulate cell fate. This paper studies mineral-cell interactions through coatings in a stacked cell culture platform. Minerals were chosen according to their influence on Human Dermal Fibroblasts (HDFs): calcium carbonate, calcium sulphates, and kaolin. Mineral coatings were formulated with the additives latex, sorbitol, polyvinyl alcohol (PVOH) and TEMPO-oxidised cellulose nanofibrils (CNF-T). The coatings were placed as a bottom or top of the device, for a direct or indirect interaction with HDFs, respectively. Cells were seeded, in various densities, to the bottom of the device; and cell density and confluency were monitored in time. Overall, results show that the coating interaction is influenced at first by the cell seeding density. Scarce cell seeding density limits adaptability to the new environment, while an abundant one encourages confluency in time. In between those densities, coating formulation plays the next major role. Calcium carbonate promoted HDFs growth the most as expected, but the response to the rest of minerals depended on the coating additive. CNF-T encouraged proliferation even for kaolin, a mineral with long-term toxicity to HDFs, while PVOH induced a detrimental effect on HDF growth regardless of the mineral. At last, the placement of the coated layer provided insights on the contact-dependency of each response. This study highlights the importance of the experimental design, including coating formulation, when investigating cellular response to biomaterials.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland.
| | - Ruut Kummala
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland; Bayer Oy, 20210 Turku, Finland
| | | | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
| |
Collapse
|
6
|
Kummala R, Soto Véliz D, Fang Z, Xu W, Abitbol T, Xu C, Toivakka M. Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics. Biomacromolecules 2020; 21:1560-1567. [PMID: 32150393 PMCID: PMC7157835 DOI: 10.1021/acs.biomac.0c00107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Biodegradable
and renewable materials, such as cellulose nanomaterials,
have been studied as a replacement material for traditional plastics
in the biomedical field. Furthermore, in chronic wound care, modern
wound dressings, hydrogels, and active synthetic extracellular matrices
promoting tissue regeneration are developed to guide cell growth and
differentiation. Cells are guided not only by chemical cues but also
through their interaction with the surrounding substrate and its physicochemical
properties. Hence, the current work investigated plant-based cellulose
nanomaterials and their surface characteristic effects on human dermal
fibroblast (HDF) behavior. Four thin cellulose nanomaterial-based
coatings produced from microfibrillar cellulose (MFC), cellulose nanocrystals
(CNC), and two TEMPO-oxidized cellulose nanofibers (CNF) with different
total surface charge were characterized, and HDF viability and adhesion
were evaluated. The highest viability and most stable adhesion were
on the anionic CNF coating with a surface charge of 1.14 mmol/g. On
MFC and CNC coated surfaces, HDFs sedimented but were unable to anchor
to the substrate, leading to low viability.
Collapse
Affiliation(s)
- Ruut Kummala
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20540 Turku, Finland
| | - Diosángeles Soto Véliz
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20540 Turku, Finland
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
| | - Wenyang Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20540 Turku, Finland
| | - Tiffany Abitbol
- RISE, Research Institute of Sweden, Drottning Kristinas väg 61, 11428 Stockholm, Sweden
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20540 Turku, Finland
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20540 Turku, Finland
| |
Collapse
|