1
|
Chandra Mondal I, Anjum F, Salam A, Deka S, Mandal S, Karmakar A, Kanti Nandi C, Ghosh S. A Bright Red Molecular Marker for Super-Resolution Imaging of DNA Nanoscale Organization in Cells. Chem Asian J 2025; 20:e202401510. [PMID: 39921769 DOI: 10.1002/asia.202401510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Indexed: 02/10/2025]
Abstract
SEZ-NDEA, a long-range emissive molecular marker, can be used in fluorescence microscopy for super-resolution imaging (SRRF) of DNA nanoscale organization in cells. The developed probe stains the cell nucleus with minimum cytoplasmic leakage with good contrast. It showed good photostability in cellular medium.
Collapse
Affiliation(s)
- Iswar Chandra Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| | - Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| | - Snata Deka
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| | - Sayan Mandal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, H.P-175075, India
| |
Collapse
|
2
|
Duan DC, Pan G, Liu J, Chen H, Xie T, Long Y, Dai F, Zhang S, Zhou B. Cellular and Intravital Nucleus Imaging by a D-π-A Type of Red-Emitting Two-Photon Fluorescent Probe. Anal Chem 2024; 96:20425-20434. [PMID: 39686748 DOI: 10.1021/acs.analchem.4c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The advancement in fluorescent probe technology for visualizing nuclear morphology and nucleic acid distribution in live cells and in vivo has attracted considerable interest within the biomedical research community, as it offers invaluable insights into cellular dynamics across various physiological and pathological contexts. In this study, we present a novel two-photon nucleus-imaging fluorescent probe called Nu-red, which is a typical donor(D)-π-acceptor(A) rotor composed of the donor (dihydroquinoline) and acceptor (pyridiniumylpentadienitrile) parts linked by a single bond. This probe offers several advantages, including long-wavelength excitation and emission (λex/λem = 610/664 nm), favorable quantum yields (1.35-22.15%), excellent two-photon absorption cross-section (425.92 GM), high selectivity and sensitivity, high DNA-binding affinity (Ka = 3.7 × 107 M-1, comparable to that of the commercial nucleus stain Hoechst 33342), rapid entry into the nucleus (1 min), low cytotoxicity, membrane-permeability, good water solubility, applicability to various cell lines, and compatibility with other commercial probes. Leveraging these aforementioned advantages, Nu-red was successfully employed to visualize cell division in living cells, distinguish abnormal division cells from normal ones, and track morphological changes in the nucleus during cell apoptosis. More notably, Nu-red was utilized to visualize nuclear shrinkage and pyknosis in the brain of a living mouse model of ischemic stroke.
Collapse
Affiliation(s)
- De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Gaowei Pan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Tao Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Ying Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Bradford T, Summers PA, Majid A, Sherin PS, Lam JYL, Aggarwal S, Vannier JB, Vilar R, Kuimova MK. Imaging G-Quadruplex Nucleic Acids in Live Cells Using Thioflavin T and Fluorescence Lifetime Imaging Microscopy. Anal Chem 2024; 96:20223-20229. [PMID: 39660854 DOI: 10.1021/acs.analchem.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Visualization of guanine-rich oligonucleotides that fold into G-quadruplex (G4) helical structures is of great interest in cell biology. There is a large body of evidence that suggests that these noncanonical structures form in vivo and play important biological roles. A promising recent development highlighted fluorescence lifetime imaging microscopy (FLIM) as a robust technique for the direct and quantitative imaging of G4s in live cells. However, this method requires specialized, bespoke synthetic dyes that are not widely available. Herein, we demonstrate that the fluorescence lifetime of commercially available environmentally sensitive dyes Thioflavin T (ThT) and Thiazole Orange (TO) is strongly dependent on the type of DNA topology they bind to, with G4s showing long and distinctive decay times that should allow G4 detection in the biological environment. We applied this observation to visualize G4s in live U2OS cells using FLIM of ThT, upon alteration in G4 levels due to competitive binding or nuclease treatment of cells.
Collapse
Affiliation(s)
- Tigerlily Bradford
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Peter A Summers
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Aatikah Majid
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Petr S Sherin
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Jeff Yui Long Lam
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Savyasanchi Aggarwal
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London W12 0NN, U.K
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, U.K
| | - Ramon Vilar
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| | - Marina K Kuimova
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K
| |
Collapse
|
4
|
Fang H, Wang M, Wei P, Liu Q, Su Y, Liu H, Chen Y, Su Z, He W. Molecular probes for super-resolution imaging of drug dynamics. Adv Drug Deliv Rev 2024; 210:115330. [PMID: 38735627 DOI: 10.1016/j.addr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Super-resolution molecular probes (SRMPs) are essential tools for visualizing drug dynamics within cells, transcending the resolution limits of conventional microscopy. In this review, we provide an overview of the principles and design strategies of SRMPs, emphasizing their role in accurately tracking drug molecules. By illuminating the intricate processes of drug distribution, diffusion, uptake, and metabolism at a subcellular and molecular level, SRMPs offer crucial insights into therapeutic interventions. Additionally, we explore the practical applications of super-resolution imaging in disease treatment, highlighting the significance of SRMPs in advancing our understanding of drug action. Finally, we discuss future perspectives, envisioning potential advancements and innovations in this field. Overall, this review serves to inform and practitioners about the utility of SRMPs in driving innovation and progress in pharmacology, providing valuable insights for drug development and optimization.
Collapse
Affiliation(s)
- Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
| | - Pengfan Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qian Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, PR China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Faikhruea K, Supabowornsathit K, Angsujinda K, Aonbangkhen C, Chaikeeratisak V, Palaga T, Assavalapsakul W, Wagenknecht HA, Vilaivan T. Nucleic Acid-Templated Synthesis of Cationic Styryl Dyes in Vitro and in Living Cells. Chemistry 2024; 30:e202400913. [PMID: 38563862 DOI: 10.1002/chem.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
A novel method for synthesizing cationic styryl dyes through a nucleic acid-templated reaction has been developed. This approach overcomes issues associated with traditional synthesis methods, such as harsh conditions, low throughput, and wasteful chemicals. The presence of a nucleic acid template accelerated the styryl dye formation from quaternized heteroaromatic and cationic aldehyde substrates. These styryl dyes show remarkable optical properties change when bound to nucleic acids, hence the success of the synthesis could be readily monitored in situ by UV-Vis and fluorescence spectroscopy and the optical properties data were also observable at the same time. This method provides the desired products from a broad range of coupling partners. By employing different substrates and templates, it is possible to identify new dyes that can bind to a specific type of nucleic acid such as a G-quadruplex. The templated dye synthesis is also successfully demonstrated in live HeLa cells. This approach is a powerful tool for the rapid synthesis and screening of dyes specific for diverse types of nucleic acids or cellular organelles, facilitating new biological discoveries.
Collapse
Affiliation(s)
- Kriangsak Faikhruea
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit (OSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Li J, Ni Y, Wang J, Zhu Y, Wang A, Zhu X, Sun X, Wang S, Li D, Zhou H. Precisely modulating the chromatin tracker via substituent engineering: reporting pathological oxidative stress during mitosis. Chem Sci 2024; 15:3949-3956. [PMID: 38487223 PMCID: PMC10935666 DOI: 10.1039/d3sc06342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 03/17/2024] Open
Abstract
An in-depth understanding of cancer-cell mitosis presents unprecedented advantages for solving metastasis and proliferation of tumors, which has aroused great interest in visualizing the behavior via a luminescence tool. We developed a fluorescent molecule CBTZ-yne based on substituent engineering to acquire befitting lipophilicity and electrophilicity for anchoring lipid droplets and the nucleus, in which the low polarity environment and nucleic acids triggered a "weak-strong" fluorescence and "short-long" fluorescence-lifetime response. Meaningfully, CBTZ-yne visualized chromatin condensation, alignment, pull-push, and separation as well as lipid droplet dynamics, for the first time, precisely unveiling the asynchronous cellular mitosis processes affected by photo-generation reactive oxygen species according to the subtle change of fluorescence-lifetime. Our work suggested a new guideline for tracking the issue of the proliferation of malignant tumors in photodynamic therapy.
Collapse
Affiliation(s)
- Jinsong Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Aidong Wang
- Key Laboratory of Drug Design, Huangshan University Huangshan 245021 P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Dandan Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
7
|
Zhang X, Zhou C, Hou J, Feng G, Xu Z, Shao Y, Yang C, Xu G. Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification. BIOSENSORS 2024; 14:105. [PMID: 38392025 PMCID: PMC10887168 DOI: 10.3390/bios14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Precise DNA quantification and nuclear imaging are pivotal for clinical testing, pathological diagnosis, and drug development. The detection and localization of mitochondrial DNA serve as crucial indicators of cellular health. We introduce a novel conjugated oligoelectrolyte (COE) molecule, COE-S3, featuring a planar backbone composed of three benzene rings and terminal side chains. This unique amphiphilic structure endows COE-S3 with exceptional water solubility, a high quantum yield of 0.79, and a significant fluorescence Stokes shift (λex = 366 nm, λem = 476 nm), alongside a specific fluorescence response to DNA. The fluorescence intensity correlates proportionally with DNA concentration. COE-S3 interacts with double-stranded DNA (dsDNA) through an intercalation binding mode, exhibiting a binding constant (K) of 1.32 × 106 M-1. Its amphiphilic nature and strong DNA affinity facilitate its localization within mitochondria in living cells and nuclei in apoptotic cells. Remarkably, within 30 min of COE-S3 staining, cell vitality can be discerned through real-time nuclear fluorescence imaging of apoptotic cells. COE-S3's high DNA selectivity enables quantitative intracellular DNA analysis, providing insights into cell proliferation, differentiation, and growth. Our findings underscore COE-S3, with its strategically designed, shortened planar backbone, as a promising intercalative probe for DNA quantification and nuclear imaging.
Collapse
Affiliation(s)
- Xinmeng Zhang
- Shenzhen Testing Center of Medical Devices, Shenzhen Institute for Drug Control, Shenzhen 518057, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jianxun Hou
- Shenzhen Testing Center of Medical Devices, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Shao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Groß P, Hoffmann RS, Müller M, Schönherr H, Ihmels H. Fluorimetric Cell Analysis with 9-Aryl-Substituted Berberine Derivatives as DNA-Targeting Fluorescent Probes. Chembiochem 2024; 25:e202300761. [PMID: 37934026 DOI: 10.1002/cbic.202300761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
DNA-sensitive fluorescent light-up probes based on berberine are presented. This biogenic fluorophore was chosen as central unit to use its potential biocompatibility and its DNA-binding properties. To provide predictable fluorescence quenching in aqueous solution and a fluorescence light-up effect upon DNA binding, aryl substituents were attached at the 9-position by Suzuki-Miyaura coupling reactions. The 9-arylberberine derivatives have a very low fluorescence quantum yield (Φfl =<0.02), which is caused by the radiationless deactivation of the excited state by torsional relaxation about the biaryl axis. In addition, these berberine derivatives intercalate into DNA with high affinity (Kb =2.0-22×104 M-1 ). Except for the nitrophenyl- and hydroxyphenyl-substituted derivatives, all tested compounds exhibited a pronounced fluorescence light-up effect upon association with DNA, because the deactivation of the excited-state by torsional relaxation is suppressed in the DNA binding site. Most notably, it was shown exemplarily with the 9-(4-methoxyphenyl)- and the 9-(6-methoxynaphthyl)-substituted derivatives that these properties are suited for fluorimetric cell analysis. In particular, these probes generated distinct staining patterns in eukaryotic cells (NIH 3T3 mouse fibroblasts), which enabled the identification of nuclear substructures, most likely heterochromatin or nucleoli, respectively.
Collapse
Affiliation(s)
- Philipp Groß
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Renée S Hoffmann
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Mareike Müller
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Holger Schönherr
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| |
Collapse
|
9
|
Yang Y, Yan DX, Rong RX, Shi BY, Zhang M, Liu J, Xin J, Xu T, Ma WJ, Li XL, Wang KR. Nucleolus imaging based on naphthalimide derivatives. Bioorg Chem 2024; 142:106969. [PMID: 37988784 DOI: 10.1016/j.bioorg.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Nucleolus was an important cellular organelle. The abnormal morphology and number of the nucleolus have been considered as diagnostic biomarkers for some human diseases. However, the imaging agent based on nucleolus was limited. In this manuscript, a series of nucleolar fluorescent probes based on naphthalimide derivatives (NI-1 ∼ NI-5) had been designed and synthesized. NI-1 ∼ NI-5 could penetrate cell membranes and nuclear membranes, achieve clear nucleolar staining in living cells. These results suggested that the presence of amino groups on the side chains of naphthalimide backbone could enhance the targeting to the cell nucleolus. In addition, the molecular docking results showed that NI-1 ∼ NI-5 formed hydrogen bonds and hydrophobic interactions with RNA, and exhibited enhanced fluorescence upon binding with RNA. These results will provide favorable support for the diagnosis and treatment of nucleolus-related diseases in the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Dong-Xiao Yan
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China.
| | - Bing-Ye Shi
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, PR China
| | - Man Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jing Liu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jie Xin
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Tao Xu
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Wen-Jie Ma
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, PR China
| | - Xiao-Liu Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
10
|
Zhao M, Zhang Y, Miao J, Zhou H, Jiang Y, Zhang Y, Miao M, Chen W, Xing W, Li Q, Miao Q. An Activatable Phototheranostic Probe for Anti-hypoxic Type I Photodynamic- and Immuno-Therapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305243. [PMID: 37643544 DOI: 10.1002/adma.202305243] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Photodynamic therapy (PDT), which utilizes type I photoreactions, has great potential as an effective cancer treatment because of its hypoxia-tolerant superiority over the commonly used type II pathway. A few type I photosensitizers are exploited; however, they majorly induce cytotoxicity and possess poor tumor specificity and low-efficient theranostics. To resolve this issue, herein an aminopeptidase N (APN)-activated type I phototheranostic probe (CyA) is reported for anti-hypoxic PDT in conjunction with immunotherapy for effective cancer treatment. CyA can specifically activate near-infrared fluorescence, photoacoustic signals, and phototoxicity following APN-induced substrate cleavage and the subsequent generation of active phototheranostic molecules (such as CyBr). CyA endows specific imaging capabilities and effective phototoxicity toward tumor cells overexpressing APN under both normoxia and hypoxia. In addition, the locally activatable PDT induces systemic antitumor immune responses. More importantly, the integration of localized activated PDT and systemic immunotherapy evokes enhanced therapeutic effects with improved tumor inhibition efficiency in live mice compared with individual treatments. This study aims to present an activatable phototheranostic probe for effective hypoxia-tolerant PDT and combination therapy.
Collapse
Affiliation(s)
- Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuyang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Hui Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei Xing
- Department of Imaging, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Johnson RE, Murray MT, Bycraft LJ, Myler P, Wetmore SD, Manderville RA. Harnessing a 4-Formyl-Aniline Handle to Tune the Stability of a DNA Aptamer-Protein Complex via Fluorescent Surrogates. Bioconjug Chem 2023; 34:2066-2076. [PMID: 37857354 DOI: 10.1021/acs.bioconjchem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Interactions between DNA aptamers and protein targets hold promise for the development of pharmaceuticals and diagnostics. As such, the utilization of fluorescent nucleobase surrogates in studying aptamer-protein interactions is a powerful tool due to their ability to provide site-specific information through turn-on fluorescence. Unfortunately, previously described turn-on probes serving as nucleobase replacements have only been strongly disruptive to the affinity of aptamer-protein interactions. Herein, we present a modified TBA15 aptamer for thrombin containing a fluorescent surrogate that provides site-specific turn-on emission with low nanomolar affinity. The modification, referred to as AnBtz, was substituted at position T3 and provided strong turn-on emission (Irel ≈ 4) and brightness (ε·Φ > 20 000 cm-1 M-1) with an apparent dissociation constant (Kd) of 15 nM to afford a limit of detection (LOD) of 10 nM for thrombin in 20% human serum. The probe was selected through a modular "on-strand" synthesis process that utilized a 4-formyl-aniline (4FA) handle. Using this platform, we were able to enhance the affinity of the final aptamer conjugate by ∼30-fold in comparison with the initial conjugate design. Molecular dynamics simulations provide insight into the structural basis for this phenomenon and highlight the importance of targeting hydrophobic protein binding sites with fluorescent nucleobase surrogates to create new contacts with protein targets.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Lucas J Bycraft
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Peter Myler
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
13
|
Suzuki M, Sato Y, Togashi N, Nishizawa S. Cationic Oligopeptides with Amino Groups as Synthetic Nucleolar Localization Signals for the Rational Design of Nucleolus-Staining Probes. ACS OMEGA 2023; 8:9592-9596. [PMID: 36936342 PMCID: PMC10018684 DOI: 10.1021/acsomega.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cationic oligopeptides with amino groups were found to function as synthetic nucleolar localization signals for directing various fluorophores to the nucleolus with high selectivity in the cells with a view toward the development of nucleolus-staining probes.
Collapse
|
14
|
Felder S, Sagné C, Benedetti E, Micouin L. Small-Molecule 3D Ligand for RNA Recognition: Tuning Selectivity through Scaffold Hopping. ACS Chem Biol 2022; 17:3069-3076. [PMID: 36314850 DOI: 10.1021/acschembio.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Targeting RNAs with small molecules is considered the next frontier for drug discovery. In this context, the development of compounds capable of binding RNA structural motifs of low complexity with high affinity and selectivity would greatly expand the number of targets of potential therapeutic value. In this study, we demonstrate that tuning the three-dimensional shape of promiscuous nucleic acid binders is a valuable strategy for the design of new selective RNA ligands. Indeed, starting from a known cyanine, the simple replacement of a phenyl ring with a [2.2]paracyclophane moiety led to a new compound able to discriminate between nucleic acids showing different structural characteristics with a marked affinity and selectivity for an octahairpin loop RNA sequence. This shape modification also affected the in cellulo behavior of the cyanine. These results suggest that scaffold hopping is a valuable strategy to improve the selectivity of RNA/small-molecule interactions and highlight the need to explore a new chemical space for the design of selective RNA ligands.
Collapse
Affiliation(s)
- Simon Felder
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Corinne Sagné
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France
| | - Erica Benedetti
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Laurent Micouin
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| |
Collapse
|
15
|
Supabowornsathit K, Faikhruea K, Ditmangklo B, Jaroenchuensiri T, Wongsuwan S, Junpra-Ob S, Choopara I, Palaga T, Aonbangkhen C, Somboonna N, Taechalertpaisarn J, Vilaivan T. Dicationic styryl dyes for colorimetric and fluorescent detection of nucleic acids. Sci Rep 2022; 12:14250. [PMID: 35995925 PMCID: PMC9395382 DOI: 10.1038/s41598-022-18460-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Nucleic acid staining dyes are important tools for the analysis and visualizing of DNA/RNA in vitro and in the cells. Nevertheless, the range of commercially accessible dyes is still rather limited, and they are often very costly. As a result, finding nontoxic, easily accessible dyes, with desirable optical characteristics remains important. Styryl dyes have recently gained popularity as potential biological staining agents with many appealing properties, including a straightforward synthesis procedure, excellent photostability, tunable fluorescence, and high fluorescence quantum yield in the presence of nucleic acid targets with low background fluorescence signals. In addition to fluorescence, styryl dyes are strongly colored and exhibit solvatochromic properties which make them useful as colorimetric stains for low-cost and rapid testing of nucleic acids. In this work, novel dicationic styryl dyes bearing quaternary ammonium groups are designed to improve binding strength and optical response with target nucleic acids which contain a negatively charged phosphate backbone. Optical properties of the newly synthesized styryl dyes have been studied in the presence and absence of nucleic acid targets with the aim to find new dyes that can sensitively and specifically change fluorescence and/or color in the presence of nucleic acid targets. The binding interaction and optical response of the dicationic styryl dyes with nucleic acid were superior to the corresponding monocationic styryl dyes. Applications of the developed dyes for colorimetric detection of DNA in vitro and imaging of cellular nucleic acids are also demonstrated.
Collapse
Affiliation(s)
- Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Boonsong Ditmangklo
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theeranuch Jaroenchuensiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sutthida Wongsuwan
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirikarn Junpra-Ob
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ilada Choopara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Li Y, Zhu Y, Cai X, Guo J, Yao C, Pan Q, Wang X, Wang KN. A benzothiazole-based near-infrared fluorescent probe for sensing SO 2 derivatives and viscosity in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119457. [PMID: 33485241 DOI: 10.1016/j.saa.2021.119457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The unbalanced metabolism of sulfur dioxide can cause various diseases, such as neurological disorders and lung cancer. Until now, some researches revealed that the normal function of lysosomes would be disrupted by its abnormal viscosity. As a signal molecule, sulfur dioxide (SO2) plays an important role in lysosome metabolism. However, the connection of metabolism between the SO2 and viscosity in lysosomes is still unknown. Herein, we developed a benzothiazole-based near-infrared (NIR) fluorescent probe (Triph-SZ), which can monitor the SO2 derivatives and respond to the change of viscosity in lysosomes through two-photon imaging. Triph-SZ present high sensitivity and selectivity fluorescence response with the addition of SO2 derivatives based on the nucleophilic addition, and it also exhibits a sensitive fluorescence enhancement to environmental viscosity, which allows Triph-SZ to be employed to monitor the level of HSO3- and viscosity changes in lysosomes by the two-photon fluorescence lifetime imaging microscopy.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Yilin Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuzi Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Avenue, Guangzhou, Guangdong, China
| | - Jimin Guo
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiling Pan
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Avenue, Guangzhou, Guangdong, China.
| | - Kang-Nan Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| |
Collapse
|
17
|
Wang K, Liu L, Qi G, Chao X, Ma W, Yu Z, Pan Q, Mao Z, Liu B. Light-Driven Cascade Mitochondria-to-Nucleus Photosensitization in Cancer Cell Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004379. [PMID: 33898198 PMCID: PMC8061408 DOI: 10.1002/advs.202004379] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Indexed: 05/13/2023]
Abstract
Nuclei and mitochondria are the only cellular organelles containing genes, which are specific targets for efficient cancer therapy. So far, several photosensitizers have been reported for mitochondria targeting, and another few have been reported for nuclei targeting. However, none have been reported for photosensitization in both mitochondria and nucleus, especially in cascade mode, which can significantly reduce the photosensitizers needed for maximal treatment effect. Herein, a light-driven, mitochondria-to-nucleus cascade dual organelle cancer cell ablation strategy is reported. A functionalized iridium complex, named BT-Ir, is designed as a photosensitizer, which targets mitochondria first for photosensitization and subsequently is translocated to a cell nucleus for continuous photodynamic cancer cell ablation. This strategy opens new opportunities for efficient photodynamic therapy.
Collapse
Affiliation(s)
- Kang‐Nan Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Xi‐Juan Chao
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhiqiang Yu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiling Pan
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and SyntheticChemistry School of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University Binhai New CityFuzhou350207China
| |
Collapse
|
18
|
Xiao H, Li P, Tang B. Small Molecular Fluorescent Probes for Imaging of Viscosity in Living Biosystems. Chemistry 2021; 27:6880-6898. [DOI: 10.1002/chem.202004888] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Institute of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
19
|
Liu LY, Zhao Y, Zhang N, Wang KN, Tian M, Pan Q, Lin W. Ratiometric Fluorescence Imaging for the Distribution of Nucleic Acid Content in Living Cells and Human Tissue Sections. Anal Chem 2021; 93:1612-1619. [PMID: 33381958 DOI: 10.1021/acs.analchem.0c04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misregulation of nucleic acids behavior leads to cell dysfunction and induces serious diseases. A ratiometric fluorescence probe is a powerful tool to study the dynamic behavior and function relationships of nucleic acids. However, currently, no such effective probe has been reported for in situ, real-time tracking of nucleic acids in living cells and tissue sections. Herein, the unique probe named QPP-AS was rationally designed for ratiometric fluorescence response to nucleic acids through skillful regulation of the intramolecular charge-transfer capabilities of the electron acceptor and donor. Encouraged by the advantages of the selective nucleic acid response, ideal biocompatibility, and high signal-to-noise ratio, QPP-AS has been applied for in situ, real-time ratiometric fluorescence imaging of nucleic acids in living cells for the first time. Furthermore, we have demonstrated that QPP-AS is capable of visualizing the dynamic behavior of nucleic acids during different cellular processes (e.g., cell division and apoptosis) by ratiometric fluorescence imaging. More significantly, QPP-AS has been successfully used for ratiometric fluorescence imaging of nucleic acids in human tissue sections, which provides not only the cell contour, nuclear morphology, and nuclear-plasma ratio but also the nucleic acid content information and may greatly improve accuracy in clinicopathological diagnosis.
Collapse
Affiliation(s)
- Liu-Yi Liu
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, P.R. China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yuping Zhao
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China.,Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Nan Zhang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou 510080, P.R. China
| | - Kang-Nan Wang
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, P.R. China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Qiling Pan
- Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, P.R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China.,Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
20
|
Enantiomeric selectivity of ruthenium (II) chiral complexes with antitumor activity, in vitro and in vivo. J Inorg Biochem 2020; 216:111339. [PMID: 33388703 DOI: 10.1016/j.jinorgbio.2020.111339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/17/2023]
Abstract
Different enantiomers of chiral drugs show distinctive activities. Here, a pair of chiral ruthenium Λ-[Ru(phen)2(TPEPIP)]2+ (Λ-Ru), and Δ-[Ru(phen)2(TPEPIP)]2+ (Δ-Ru) (phen = 1,10-phenanthroline; TPEPIP = 2-(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) compounds have been prepared and characterized. Both have aggregation-induced emission characteristics, although Λ-Ru exhibits much higher activity, towards duplex DNA extracted from SGC-7901 cancer cells. In vitro experiments demonstrate that both Λ-Ru and Δ-Ru can induce the apoptosis of tumor cells with Λ-Ru showing greater activity than Δ-Ru. Λ-Ru aggregates in the cell nucleus of SGC-7901 within 5 h which shows that nucleic acids may be the effective target of Λ-Ru. In vivo experiments with nude mice showed that Λ-Ru can inhibit the growth and proliferation of a tumor, in tumor-bearing mice as well as targeting the tumor site, as demonstrated by fluorescence. These results demonstrate the dual-function of Λ-Ru, which could be used for real-time visualization of a chemotherapeutic agent.
Collapse
|
21
|
Liu L, Fang H, Chen Q, Chan MH, Ng M, Wang K, Liu W, Tian Z, Diao J, Mao Z, Yam VW. Multiple‐Color Platinum Complex with Super‐Large Stokes Shift for Super‐Resolution Imaging of Autolysosome Escape. Angew Chem Int Ed Engl 2020; 59:19229-19236. [DOI: 10.1002/anie.202007878] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hongbao Fang
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Qixin Chen
- Institute of Materia Medica Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250062 P. R. China
| | - Michael Ho‐Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhiqi Tian
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Jiajie Diao
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
22
|
Liu L, Fang H, Chen Q, Chan MH, Ng M, Wang K, Liu W, Tian Z, Diao J, Mao Z, Yam VW. Multiple‐Color Platinum Complex with Super‐Large Stokes Shift for Super‐Resolution Imaging of Autolysosome Escape. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hongbao Fang
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Qixin Chen
- Institute of Materia Medica Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250062 P. R. China
| | - Michael Ho‐Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhiqi Tian
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Jiajie Diao
- Department of Cancer Biology University of Cincinnati College of Medicine Cincinnati OH 45267 USA
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
23
|
Ma Y, Yin J, Li G, Gao W, Lin W. Simultaneous sensing of nucleic acid and associated cellular components with organic fluorescent chemsensors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Peng M, Yin J, Lin W. Development of a two-photon fluorescent probe to monitor the changes of viscosity in living cells, zebra fish and mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117310. [PMID: 31326856 DOI: 10.1016/j.saa.2019.117310] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
The detection of viscosity is of great significance for medical research. Herein, we have developed a two-photon fluorescent probe CB-V for monitoring micro-viscosity changes. The fluorescence emission intensity of CB-V increased 9.6-fold from methanol to glycerol exhibiting an excellent fluorescence response. With excellent properties of CB-V, monitoring the viscosity variations has been achieved not only in living cells but also in zebra fish and mice.
Collapse
Affiliation(s)
- Min Peng
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Junling Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
25
|
Li N, Zhang W, Li Y, Lin JM. Analysis of cellular biomolecules and behaviors using microfluidic chip and fluorescence method. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Giacomazzo GE, Palladino P, Gellini C, Salerno G, Baldoneschi V, Feis A, Scarano S, Minunni M, Richichi B. A straightforward synthesis of phenyl boronic acid (PBA) containing BODIPY dyes: new functional and modular fluorescent tools for the tethering of the glycan domain of antibodies. RSC Adv 2019; 9:30773-30777. [PMID: 35529362 PMCID: PMC9072199 DOI: 10.1039/c9ra07608e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
We report here on the efficient and straightforward synthesis of a series of modular and functional PBA-BODIPY dyes 1–4. They are an outstanding example of the efficient merge of the versatility of the 3,5-dichloro-BODIPY derivatives and the receptor-like ability of the PBA moiety. The potential bioanalytical applicability of these tools was assessed by measuring the binding to glycan chains of antibodies by a Quartz Crystal Microbalance (QCM). PBA-BODIPY dyes as functional and modular fluorescent probes for the tethering of the glycan domain of mAbs.![]()
Collapse
Affiliation(s)
| | | | - Cristina Gellini
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Gianluca Salerno
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | | | - Alessandro Feis
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Simona Scarano
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Maria Minunni
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’
- University of Florence
- 50019 FI
- Italy
| |
Collapse
|
27
|
A novel algorithm for second-order calibration of three-way data in fluorescence assays of multiple breast cancer-related DNAs. Talanta 2018; 195:433-440. [PMID: 30625566 DOI: 10.1016/j.talanta.2018.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Fluorescent probes have been valuable tools for bioanalytical multiplex assays. However, as a common phenomenon in multiplex fluorescence assays, spectral overlap usually leads to difficulty in spectral analysis for multiple analytes. Although multiway calibrations have provided mathematic approaches for complex spectral analysis, it remains a grand challenge for these methods in practical applications because of the problems such as prior rank estimation. Herein, we report a novel second-order calibration algorithm of alternating residual trilinearization (ART) for the decomposition of complex spectra generated from multiplex fluorescence assays. By alternating iterative convergence to the spectral profiles of each component in convergence process, ART enables automatic rank estimation for second-order calibration, thus able to avoid the risk of chemical meaningless fitting of component spectra. Combined with fluorescence excitation-emission matrix (EEM) spectroscopy, the performance of ART has been demonstrated by a simulated example and an analytical experiment performed using molecular beacons (MBs) for the simultaneous assay of three breast cancer related DNA targets. The results revealed that the proposed algorithm is capable of automatic estimating the number of underlying components during its convergence process to produce acceptable performance in spectral profile resolution and concentration estimation. Compared with other existing iterative trilinear decomposition strategies such as parallel factor analysis (PARAFAC) requiring a prior rank estimation, the proposed ART therefore provides a robust second-order calibration strategy for complex spectral analysis in multiplex fluorescence assays.
Collapse
|