1
|
Diaz-Rodriguez RM, Gálico DA, Chartrand D, Murugesu M. Ligand Effects on the Emission Characteristics of Molecular Eu(II) Luminescence Thermometers. J Am Chem Soc 2024; 146:34118-34129. [PMID: 39610301 DOI: 10.1021/jacs.4c13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Discrete molecular organometallic europium(II) complexes are promising functional materials due to their ability to behave as highly sensitive band-shift luminescence thermometers. Furthering our understanding of the design principles salient to the emission behavior of such systems is important for developing them in this emerging application. To this end, a series of pseudo-C4v-symmetric organometallic europium(II) complexes bearing systematically varying ligand sets were synthesized and characterized to probe the influence of subtle structural modification on their optical properties. Opto-structural correlation analyses via variable-temperature single-crystal X-ray diffraction and photoluminescence spectroscopy reveal a remarkable variability in properties among structurally similar complexes and a convoluted dependence of the emission characteristics on the stereoelectronic properties of the ligands. A few factors of particular influence are nevertheless identified, including the distance between the europium(II) ion and the basal plane of the square-pyramidal coordination polyhedron, the presence of pendant electron density that might further interact with the excited-state 5d orbitals, and, qualitatively, the metal-ligand flexibility of the construct. These results help to elucidate principles that govern the luminescence properties of organometallic europium(II) complexes with an eye to enabling the rational design of high-performance luminescence thermometers of this genre.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel Chartrand
- Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Rose T, Bursch M, Mewes JM, Grimme S. Fast and Robust Modeling of Lanthanide and Actinide Complexes, Biomolecules, and Molecular Crystals with the Extended GFN-FF Model. Inorg Chem 2024; 63:19364-19374. [PMID: 39334529 DOI: 10.1021/acs.inorgchem.4c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Lanthanides (Ln) and actinides (An) have recently become important tools in biomedical and materials science. However, the development of computational methods able to describe such elements in various environments has not kept up with the pace of the field. Addressing this challenge, this work introduces and showcases an extension of the GFN-FF to An alongside a reparameterization for Ln. This development fills a gap for fast computational methods that are out-of-the-box applicable to large f-element-containing systems with thousands of atoms. We discuss the reparameterization of the charge model and the covalent topology setup and showcase the model through various applications: Molecular dynamics simulations, optimization of Ln-containing biomolecules, and optimizations of several periodic structures. With the presented improvements, GFN-FF is a powerful method that routinely delivers robust and accurate geometries for large Ln/An systems with thousands of atoms.
Collapse
Affiliation(s)
- Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | | | | | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| |
Collapse
|
3
|
Lewandowski EC, Arban CB, Deal MP, Batchev AL, Allen MJ. Europium(II/III) coordination chemistry toward applications. Chem Commun (Camb) 2024; 60:10655-10671. [PMID: 39230388 PMCID: PMC11373536 DOI: 10.1039/d4cc03080j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Europium is an f-block metal with two easily accessible oxidation states (+2 and +3) that have vastly different magnetic and optical properties from each other. These properties are tunable using coordination chemistry and are useful in a variety of applications, including magnetic resonance imaging, luminescence, and catalysis. This review describes important aspects of coordination chemistry of Eu from the Allen Research Group and others, how ligand design has tuned the properties of Eu ions, and how those properties are relevant to specific applications. The review begins with an introduction to the coordination chemistry of divalent and trivalent Eu followed by examples of how the coordination chemistry of Eu has made contributions to magnetic resonance imaging, luminescence, catalysis, and separations. The article concludes with a brief outlook on future opportunities in the field.
Collapse
Affiliation(s)
- Elizabeth C Lewandowski
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Colin B Arban
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Morgan P Deal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Andrea L Batchev
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan, 48202, USA.
| |
Collapse
|
4
|
Bokouende SS, Ward CL, Allen MJ. Understanding the Coordination Chemistry and Structural and Photophysical Properties of Eu II- and Sm II-Containing Complexes of Hexamethylhexacyclen and Noncyclic Tetradentate Amines. Inorg Chem 2024; 63:16991-17004. [PMID: 39238155 DOI: 10.1021/acs.inorgchem.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Ligands play a crucial role in supporting or stabilizing the divalent oxidation state of lanthanide metals. To expand the range of ligands used to chelate divalent lanthanide ions, we synthesized and studied the structural and photophysical properties of complexes of EuII and SmII with hexamethylhexacyclen, 1,1,4,7,10,10-hexamethyltriethylenetetramine, tris[2-(dimethylamino)ethyl]amine, and tris[2-(isopropylamino)ethyl]amine as supporting ligands. Coordination of hexamethylhexacyclen, an analogue of 18-crown-6, generates sterically crowded complexes of EuII and SmII that are either seven or eight coordinate and adopt a range of geometries that differ from those of their 18-crown-6 counterparts and from those of lanthanide-containing complexes with the acyclic tetradente tertiary amine ligands included in this report. The emission spectra of EuII(hexamethylhexacyclen) show a moderate sensitivity to counterion identity and are more red-shifted compared to those of complexes of EuII with 18-crown-6 and the hexamethylated aza derivative of 2.2.2-cryptand. In addition, the morphology of hexamethylhexacyclen in [LnI(hexamethylhexacyclen)]I was found to resemble that of thermally stable alkalides of the form [M(hexamethylhexacyclen)]Na- (M = K+ or Cs+), suggesting that hexamethylhexacyclen could be an interesting ligand for strongly reducing lanthanide ions.
Collapse
Affiliation(s)
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, Michigan 48202, United States
| |
Collapse
|
5
|
Schwarz N, Feye J, Naina VR, Köppe R, Gillhuber S, Sun X, Roesky PW. Phospholyl and Arsolyl Triple-Decker Sandwich Complexes of Europium(II) and Strontium(II). JACS AU 2024; 4:2343-2350. [PMID: 38938793 PMCID: PMC11200235 DOI: 10.1021/jacsau.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
To study the influence of heteroatoms on the photophysical properties of divalent Eu and Sr complexes, the synthesis of the phospholyl and arsolyl compounds [{(Dtp)(thf)M}2{μ-η8:η8-C8H8}] (M = EuII and SrII; Dtp = 3,4-dimethyl-2,5-bis(tert-butyl)phospholyl) and [{(Dtas)(thf)M}2{μ-η8:η8-C8H8}] (M = EuII and SrII; Dtas = 3,4-dimethyl-2,5-bis(tert-butyl)arsolyl) is reported. Organometallic compounds of divalent europium with P and As heterocyclic ligands have not been described previously. They were prepared by salt elimination reactions from potassium phospholyl or arsolyl, K2C8H8, and EuI2(thf)2 or SrI2. Photophysical properties were investigated alongside a reference cyclopentadienyl complex with a comparable structure. Critically, the influence of the heteroatom on the photoluminescence emission and excitation and quantum yields of the complexes is significant. Density functional theory calculations were performed to rationalize the ligand influences.
Collapse
Affiliation(s)
- Noah Schwarz
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Julia Feye
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
- Faculty
of Engineering, Baden-Württemberg
Cooperative State University Karlsruhe, 76133 Karlsruhe, Germany
| | - Vanitha R. Naina
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Ralf Köppe
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Xiaofei Sun
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Peter W. Roesky
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Shephard ACG, Delon A, Chevreux S, Martinez A, Guo Z, Deacon GB, Lemercier G, McClenaghan N, Jonusauskas G, Junk PC, Jaroschik F. Divalent ansa-Octaphenyllanthanocenes: Synthesis, Structures, and Eu II Luminescence. Inorg Chem 2024; 63:9395-9405. [PMID: 37310150 DOI: 10.1021/acs.inorgchem.3c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reductive dimerization of fulvenes using low-valent metal precursors is a straightforward one-step approach to access ethylene-bridged metallocenes. This process has so far mainly been employed with fulvenes carrying one or two substituents in the exocyclic position. In this work, a new synthesis of the unsubstituted exocyclic 1,2,3,4-tetraphenylfulvene (1), its full structural characterization by NMR spectroscopy and single-crystal X-ray diffraction, as well as some photophysical properties and its first use in reductive dimerization are described. This fulvene reacted with different lanthanoid metals in thf to provide the divalent ansa-octaphenylmetallocenes [Ln(C5Ph4CH2)2(thf)n] (Ln = Sm, n = 2 (2); Ln = Eu, n = 2 (3); and Ln = Yb, n = 1 (4)). These complexes were characterized by X-ray diffraction, laser desorption/ionization time of flight mass spectrometry, and, in the case of Sm and Yb, multinuclear NMR spectroscopy, showing the influence of the ansa-bridge on solution and solid-state structures compared to previously reported unbridged metallocenes. Furthermore, the luminescence properties of the Eu ansa complex 3 were studied in solution and the solid state, revealing significant differences with the known octa- and deca-phenyleuropocenes, [Eu(C5Ph4H)2(dme)] and [Eu(C5Ph5)2].
Collapse
Affiliation(s)
- Angus C G Shephard
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
| | - Aymeric Delon
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Sylviane Chevreux
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Agathe Martinez
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Zhifang Guo
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
| | - Glen B Deacon
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Nathan McClenaghan
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | | | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
| | - Florian Jaroschik
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier 34090, France
| |
Collapse
|
7
|
Li YQ, Wang KZ. Photoelectrocatalytic Dioxygen Reduction Based on a Novel Thiophene-Functionalized Tricarbonylchloro(1,10-phenanthroline)rhenium(I). Molecules 2023; 28:molecules28073229. [PMID: 37049999 PMCID: PMC10096527 DOI: 10.3390/molecules28073229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
A novel Re (I) complex of [Re(CO)3Cl(L)], {L = 2-([2,2’-bithiophen]-5-yl)-1-phenyl-1H-imidazo [4,5-f][1,10]phenanthroline}, was synthesized, and its optical (UV–Visible absorption and emission spectroscopy), cyclovoltammetric and photoelectrochemical oxygen reduction properties were studied. The geometric and electronic properties were also investigated by density functional theory calculations. It was found that the ITO electrode coated with drop-casted [Re(CO)3Cl(L)] film exhibited cathodic photocurrent generation characteristics. The illuminated film exhibited a maximum cathodic photocurrent up to 30.4 μA/cm2 with an illumination intensity of 100 mW/cm2 white light at a bias potential of −0.4 V vs. SCE in O2-saturated electrolyte solution, which was reduced by 5.1-fold when thoroughly deoxygenated electrolyte solution was used, signaling that the electrode performed well on the photoelectrochemical oxygen reduction. The photo-electrocatalytic hydrogen peroxide production was proved with a maximum H2O2 concentration of 6.39 μM during 5 h of the photoelectrocatalytic process. This work would guide the construction of more efficient rhenium-based photo(electro)catalytic molecular systems for O2 sensing, hydrogen peroxide production and other types of photoelectrochemical energy conversion and storage.
Collapse
Affiliation(s)
- Yu-Qin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Hay MA, Gable RW, Boskovic C. Modulating the electronic properties of divalent lanthanoid complexes with subtle ligand tuning. Dalton Trans 2023; 52:3315-3324. [PMID: 36806851 DOI: 10.1039/d2dt03782c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Five new compounds of formula [LnII(Mentpa)2](BPh4)2 (Ln = Eu, n = 0 (1-Eu), n = 2 (2-Eu) and n = 3 (3-Eu); Ln = Yb, n = 0 (1-Yb) and n = 2 (2-Yb); tpa = tris(2-pyridylmethyl)amine, n = 0-3 corresponds to successive methylation of the 6-position of the pyridine rings of Mentpa) have been synthesized and their structural, photophysical and electrochemical properties investigated. The LnII ions in the five complexes possess cubic coordination geometry and exhibit only small structural differences, due to the lengthening of the Ln-N bonds to accommodate the additional steric bulk associated with increasing methylation of the Mentpa ligands. Photophysical studies indicate moderate shifts in absorbance, emission and excitation bands associated with the 4f7 ↔ 4f65d1 (EuII) and 4f14 ↔ 4f135d1 (YbII) transitions, while electrochemistry reveals modulation of the redox potential of the LnII to LnIII oxidation. There is a strong correlation between Ln-N bond lengths and both the photophysical transition energies and metal redox-potentials, revealing how subtle ligand changes and ligand field effects can be used to modulate the electronic properties of complexes of divalent lanthanoid ions. Utilization of these insights may ultimately afford design and property tuning strategies for future functional molecular complexes based on divalent lanthanoid metals.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert W Gable
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Yu G, Liu H, Yan W, Guo R, Wu A, Zhao Z, Liu Z, Bian Z. 4f → 3d sensitization: a luminescent Eu II-Mn II heteronuclear complex with a near-unity quantum yield. MATERIALS HORIZONS 2023; 10:625-631. [PMID: 36515011 DOI: 10.1039/d2mh01123a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new heteronuclear EuII-MnII complex [Eu(N2O6)]MnBr4 (N2O6 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) is designed and synthesized, which shows an intense green emission from MnII with a near-unity photoluminescence quantum yield. Measurement of excited-state dynamics demonstrated the sensitization process from EuII to MnII, which represents the first example of f → d molecular sensitization. Due to the large optical absorption cross-section of the EuII center, [Eu(N2O6)]MnBr4 shows an emission intensity 7 to 2500 times stronger than that of the SrII-MnII control complex [Sr(N2O6)]MnBr4 upon the excitation of near ultraviolet to blue light.
Collapse
Affiliation(s)
- Gang Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huanyu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Aoben Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228053. [PMID: 36432156 PMCID: PMC9694868 DOI: 10.3390/molecules27228053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490-560 nm, and short excited state lifetimes of 30-540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.
Collapse
|
11
|
Bokouende SS, Jenks TC, Ward CL, Allen MJ. Solid-state and solution-phase characterization of Sm II-aza[2.2.2]cryptate and its methylated analogue. Dalton Trans 2022; 51:10852-10855. [PMID: 35781473 PMCID: PMC9650674 DOI: 10.1039/d2dt01823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new SmII-azacryptates are reported that differ in steric hindrance and Lewis basicity of donor atoms. The sterically hindered complex has a smaller coordination number and a more negative electrochemical potential than the complex with less steric hindrance.
Collapse
Affiliation(s)
| | - Tyler C Jenks
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA
| | - Matthew J Allen
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Willauer AR, Fadaei-Tirani F, Zivkovic I, Sienkiewicz A, Mazzanti M. Structure and Reactivity of Polynuclear Divalent Lanthanide Disiloxanediolate Complexes. Inorg Chem 2022; 61:7436-7447. [PMID: 35505299 DOI: 10.1021/acs.inorgchem.2c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinuclear molecular complexes of europium (II) and ytterbium(II) [Ln3{(Ph2SiO)2O}3(THF)6], 1-Ln3L3 (Ln = Eu and Yb), supported by the dianionic tetraphenyl disiloxanediolate ligand, were synthesized via protonolysis of the [Ln{N(SiMe3)2}2(THF)2] complexes. In contrast, the reaction of [Sm{N(SiMe3)2}2(THF)2] with the (Ph2SiOH)2O ligand led to the isolation of the mixed-valent Sm(II)/Sm(III) complex [Sm3{(Ph2SiO)2O}3{N(SiMe3)2}(THF)4], 2-Sm3L3, which was crystallographically characterized. The Eu(II) complex 1-Eu3L3 displays weak ferromagnetic coupling between the Eu(II) metal centers (J = 0.1035 cm-1). The addition of 3 equiv of (Ph2SiOK)2O to 1-Eu3L3 resulted in the formation of the polynuclear Eu(II) dimer of dimers [K4Eu2{(Ph2SiO)2O}4(Et2O)2]2, 3-Eu2L4. Complexes 1-Ln3L3 (Ln = Eu and Yb) are stable in solution at room temperature, while 3-Eu2L4 shows higher reactivity and rapidly decomposes to give the mixed-valent Eu(II)/Eu(III) species [K3Eu2{(Ph2SiO)2O}4], 4-Eu2L4. Complex 1-Yb3L3 affects the slow reductive disproportionation of carbon dioxide, but 1-Eu3L3 does not display any reactivity toward CO2. However, the presence of one additional (Ph2SiO-)2O per Eu(II) metal center in 3-Eu2L4 increases dramatically the reductive ability of the Eu(II) metal centers, affording the first example of carbon dioxide activation by an isolated divalent europium complex. The reduction of CO2 by 3-Eu2L4 is immediate, and carbonate is formed selectively after the addition of a stoichiometric amount of CO2.
Collapse
Affiliation(s)
- Aurélien R Willauer
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,ADSresonances Sàrl; Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Wang L, Fang P, Zhao Z, Huang Y, Liu Z, Bian Z. Rare Earth Complexes with 5d-4f Transition: New Emitters in Organic Light-Emitting Diodes. J Phys Chem Lett 2022; 13:2686-2694. [PMID: 35302781 DOI: 10.1021/acs.jpclett.2c00400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic light-emitting diodes (OLEDs) are considered as next-generation displays and lighting technologies. During the past three decades, various luminescent materials such as fluorescence, phosphorescence, and thermally activated delayed fluorescence materials have been subsequently investigated as emitters. To date, blue OLEDs are still the bottleneck as compared to red and green ones because of the lack of efficient emitters with simultaneous high exciton utilization efficiency and long-term stability. Recently, d-f transition rare earth complexes have been reported as new emitters in OLEDs with potential high efficiency and stability. In this Perspective, we present a brief introduction to OLEDs and an overview of the previous electroluminescence study on d-f transition rare earth complexes. This is followed by our recent developments in cerium(III) complex- and europium(II) complex-based OLEDs. We finally discuss the challenges and opportunities for OLED study based on d-f transition rare earth complexes.
Collapse
Affiliation(s)
- Liding Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Acharjya A, Corbin BA, Prasad E, Allen MJ, Maity S. Solvation-Controlled Emission of Divalent Europium Salts. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Diaz-Rodriguez RM, Gálico DA, Chartrand D, Suturina EA, Murugesu M. Toward Opto-Structural Correlation to Investigate Luminescence Thermometry in an Organometallic Eu(II) Complex. J Am Chem Soc 2022; 144:912-921. [PMID: 34989573 DOI: 10.1021/jacs.1c11076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lanthanide-based luminescent materials have unique properties and are well-studied for many potential applications. In particular, the characteristic 5d → 4f emission of divalent lanthanide ions such as EuII allows for tunability of the emissive properties via modulation of the coordination environment. We report the synthesis and photoluminescence investigation of pentamethylcyclopentadienyleuropium(II) tetrahydroborate bis(tetrahydrofuran) dimer (1), the first example of an organometallic, discrete molecular EuII band-shift luminescence thermometer. Complex 1 exhibits an absolute sensitivity of 8.2 cm-1 K-1 at 320 K, the highest thus far observed for a lanthanide-based band-shift thermometer. Opto-structural correlation via variable-temperature single-crystal X-ray diffraction and fluorescence spectroscopy allows rationalization of the remarkable thermometric luminescence of complex 1 and reveals the significant potential of molecular EuII compounds in luminescence thermometry.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel Chartrand
- Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Elizaveta A Suturina
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
16
|
Yan W, Li T, Cai Z, Qi H, Guo R, Huo P, Liu Z, Bian Z. Systematic tuning of the emission colors and redox potential of Eu( ii)-containing cryptates by changing the N/O ratio of cryptands. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The λmax, excited-state lifetimes, and the anodic peak potential of Eu2+/Eu3+ for Eu(ii)-containing cryptates depend linearly on the number of N atoms.
Collapse
Affiliation(s)
- Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tingzhou Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zelun Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Prieto A, Jaroschik F. Recent Applications of Rare Earth Complexes in Photoredox Catalysis for Organic
Synthesis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272825666211126123928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, photoredox catalysis has appeared as a new paradigm for forging a
wide range of chemical bonds under mild conditions using abundant reagents. This approach
allows many organic transformations through the generation of various radical species, enabling
the valorization of non-traditional partners. A continuing interest has been devoted to
the discovery of novel radical-generating procedures. Over the last ten years, strategies using
rare-earth complexes as either redox-active centers or as redox-neutral Lewis acids have
emerged. This review provides an overview of the recent accomplishments made in this field.
It especially aims to demonstrate the utility of rare-earth complexes for ensuring photocatalytic
transformations and to inspire future developments.
Collapse
Affiliation(s)
- Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
18
|
Ilichev VA, Silantyeva LI, Rogozhin AF, Yablonskiy AN, Andreev BA, Rumyantsev RV, Fukin GK, Bochkarev MN. Luminescence thermochromism in novel mixed Eu(II)-Cu(I) iodide. Dalton Trans 2021; 50:14244-14251. [PMID: 34553198 DOI: 10.1039/d1dt02384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new mixed Eu(II)-Cu(I) iodide [Eu(DME)4][Cu2I4] (1) was synthesized by the reaction of an organosulphide salt of Eu(II) and CuI in DME media. X-ray analysis revealed that 1 is an ate-complex consisting of Eu(DME)4 dications and tetraiododicuprate dianions. Upon UV light excitation (λ = 365 nm), the compound exhibits intense double-peaked photoluminescence (PL) at 445 and 500 nm. The relative intensity of these peaks changes dramatically when the temperature changes in the range of 180-250 K. To understand the nature of the found PL thermochromism, the structure and time-resolved PL of 1 were studied at various temperatures. The time-resolved PL studies of 1 at various temperatures revealed the presence of two luminescent centers which are excited by the capture of an electron from the conduction band. The ratio of intensities at 445 and 500 nm (R = I445/I500) in the PL spectra of 1 changes by almost two orders of magnitude and the relative sensitivity S (S = (∂R/∂T)/R) exceeds 5% per K in the range of 190-245 K that makes this compound a promising luminescent thermometer for the range where ammonia exists in a liquid state.
Collapse
Affiliation(s)
- Vasily A Ilichev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Liubov I Silantyeva
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Anton F Rogozhin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Artem N Yablonskiy
- Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Boris A Andreev
- Institute for Physics of Microstructures of Russian Academy of Sciences, 7 ul. Akademicheskaya, 603950 Nizhny Novgorod, Russian Federation
| | - Roman V Rumyantsev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Georgy K Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| | - Mikhail N Bochkarev
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950 Nizhny Novgorod, Russian Federation.
| |
Collapse
|
19
|
Poe TN, Beltrán-Leiva MJ, Celis-Barros C, Nelson WL, Sperling JM, Baumbach RE, Ramanantoanina H, Speldrich M, Albrecht-Schönzart TE. Understanding the Stabilization and Tunability of Divalent Europium 2.2.2B Cryptates. Inorg Chem 2021; 60:7815-7826. [PMID: 33990139 DOI: 10.1021/acs.inorgchem.1c00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lanthanides such as europium with more accessible divalent states are useful for studying redox stability afforded by macrocyclic organic ligands. Substituted cryptands, such as 2.2.2B cryptand, that increase the oxidative stability of divalent europium also provide coordination environments that support synthetic alterations of Eu(II) cryptate complexes. Two single crystal structures were obtained containing nine-coordinate Eu(II) 2.2.2B cryptate complexes that differ by a single coordination site, the occupation of which is dictated by changes in reaction conditions. A crystal structure containing a [Eu(2.2.2B)Cl]+ complex is obtained from a methanol-THF solvent mixture, while a methanol-acetonitrile solvent mixture affords a [Eu(2.2.2B)(CH3OH)]2+ complex. While both crystals exhibit the typical blue emission observed in most Eu(II) containing compounds as a result of 4f65d1 to 4f7 transitions, computational results show that the substitution of a Cl- anion in the place of a methanol molecule causes mixing of the 5d excited states in the Eu(II) 2.2.2B cryptate complex. Additionally, magnetism studies reveal the identity of the capping ligand in the Eu(II) 2.2.2B cryptate complex may also lead to exchange between Eu(II) metal centers facilitated by π-stacking interactions within the structure, slightly altering the anticipated magnetic moment. The synthetic control present in these systems makes them interesting candidates for studying less stable divalent lanthanides and the effects of precise modifications of the electronic structures of low valent lanthanide elements.
Collapse
Affiliation(s)
- Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - Maria J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - William L Nelson
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Harry Ramanantoanina
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - Manfred Speldrich
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee 32306, Florida, United States.,National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
20
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
21
|
Abstract
Structures, electron spectroscopy and theoretical (DFT and TD DFT) analyses of two complexes of Eu(ii) with phosphonate and phosphinate ligands based on cyclen ring are presented.
Collapse
|
22
|
Spectroscopic and electrochemical studies on the complexes of urea ligands with uranyl (VI) and europium (III) in ionic liquid. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nat Commun 2020; 11:5218. [PMID: 33060573 PMCID: PMC7562750 DOI: 10.1038/s41467-020-19027-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023] Open
Abstract
Divalent europium 5d-4f transition has aroused great attention in many fields, in a way of doping Eu2+ ions into inorganic solids. However, molecular Eu2+ complexes with 5d-4f transition are thought to be too air-unstable to explore their applications. In this work, we synthesized four Eu2+-containing azacryptates EuX2-Nn (X = Br, I, n = 4, 8) and systematically studied the photophysical properties in crystalline samples and solutions. Intriguingly, the EuX2-N8 complexes exhibit near-unity photoluminescence quantum yield, good air-/thermal-stability and mechanochromic property (X = I). Furthermore, we proved the application of Eu2+ complexes in organic light-emitting diodes (OLEDs) with high efficiency and luminance. The optimized device employing EuI2-N8 as emitter has the best performance as the maximum luminance, current efficiency, and external quantum efficiency up to 25470 cd m−2, 62.4 cd A−1, and 17.7%, respectively. Our work deepens the understanding of structure-property relationship in molecular Eu2+ complexes and could inspire further research on application in OLEDs. Though divalent-europium-based complexes are promising materials for next-generation light-emitting devices, their poor air stability limits their applicability. Here, the authors report the design of air stable divalent-europium-based complexes for efficient organic light-emitting diodes.
Collapse
|
24
|
Andres J, Chauvin AS. Colorimetry of Luminescent Lanthanide Complexes. Molecules 2020; 25:molecules25174022. [PMID: 32899208 PMCID: PMC7570272 DOI: 10.3390/molecules25174022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Europium, terbium, dysprosium, and samarium are the main trivalent lanthanide ions emitting in the visible spectrum. In this work, the potential of these ions for colorimetric applications and colour reproduction was studied. The conversion of spectral data to colour coordinates was undertaken for three sets of Ln complexes composed of different ligands. We showed that Eu is the most sensitive of the visible Ln ions, regarding ligand-induced colour shifts, due to its hypersensitive transition. Further investigation on the spectral bandwidth of the emission detector, on the wavelengths’ accuracy, on the instrumental correction function, and on the use of incorrect intensity units confirm that the instrumental correction function is the most important spectrophotometric parameter to take into account in order to produce accurate colour values. Finally, we established and discussed the entire colour range (gamut) that can be generated by combining a red-emitting Eu complex with a green-emitting Tb complex and a blue fluorescent compound. The importance of choosing a proper white point is demonstrated. The potential of using different sets of complexes with different spectral fingerprints in order to obtain metameric colours suitable for anti-counterfeiting is also highlighted. This work answers many questions that could arise during a colorimetric analysis of luminescent probes.
Collapse
Affiliation(s)
- Julien Andres
- Section of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Correspondence: (J.A.); (A.-S.C.); Tel.: +41-21-693-7455 (J.A.); +41-21-693-9824 (A.-S.C.)
| | - Anne-Sophie Chauvin
- Section of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Correspondence: (J.A.); (A.-S.C.); Tel.: +41-21-693-7455 (J.A.); +41-21-693-9824 (A.-S.C.)
| |
Collapse
|
25
|
Rudel SS, Graubner T, Karttunen AJ, Kraus F. Reactions in Anhydrous Liquid Ammonia: Syntheses and Crystal Structures of [
M
(NH
3
)
8
]I
2
(
M
= Eu, Yb) with Bicapped Trigonal‐Prismatic Octaammine Lanthanoid(II) Cations. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan S. Rudel
- Fluorchemie, Anorganische Chemie, Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Str. 4 35032 Marburg Germany
| | - Tim Graubner
- Fluorchemie, Anorganische Chemie, Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Str. 4 35032 Marburg Germany
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science Aalto University 00076 Aalto Finland
| | - Florian Kraus
- Fluorchemie, Anorganische Chemie, Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Str. 4 35032 Marburg Germany
| |
Collapse
|
26
|
Barraza R, Allen MJ. Lanthanide Luminescence in Visible-Light-Promoted Photochemical Reactions. Molecules 2020; 25:molecules25173892. [PMID: 32858962 PMCID: PMC7503482 DOI: 10.3390/molecules25173892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
The excitation of lanthanides with visible light to promote photochemical reactions has garnered interest in recent years. Lanthanides serve as initiators for photochemical reactions because they exhibit visible-light-promoted 4f→5d transitions that lead to emissive states with electrochemical potentials that are more negative than the corresponding ground states. The lanthanides that have shown the most promising characteristics for visible-light promoted photoredox are SmII, EuII, and CeIII. By understanding the effects that ligands have on the 5d orbitals of SmII, EuII, and CeIII, luminescence and reactivity can be rationally modulated using coordination chemistry. This review briefly overviews the photochemical reactivity of SmII, EuII, and CeIII with visible light; the properties that influence the reactivity of these ions; and the research that has been reported towards modulating their photochemical-relevant properties using visible light and coordination chemistry.
Collapse
|
27
|
Basal LA, Kajjam AB, Bailey MD, Allen MJ. Systematic Tuning of the Optical Properties of Discrete Complexes of Eu II in Solution Using Counterions and Solvents. Inorg Chem 2020; 59:9476-9480. [PMID: 32618468 DOI: 10.1021/acs.inorgchem.0c01516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a systematic study of the influence of halides and solvents on the optical properties of EuII-containing complexes in solution starting from well-defined crystalline precursors. Anionic halides, chloride and bromide, blue-shift the spectroscopic properties of EuII, whereas neutral ligands, methanol and acetonitrile, cause a red shift. This system provides evidence that EuII has a stronger affinity for chloride, and to some extent bromide, relative to acetonitrile but not methanol. We also describe a simple procedure using an ion-exchange resin for the exchange of iodide counterions to hexafluorophosphate. These findings are a step toward designing ligands that can tune the optical properties of EuII-containing complexes for solution-based applications.
Collapse
Affiliation(s)
- Lina A Basal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Department of Chemistry and Biochemistry, Colorado College, 1040 North Nevada Avenue, Colorado Springs, Colorado 80903, United States
| | - Aravind B Kajjam
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matthew D Bailey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Jenks TC, Kuda-Wedagedara ANW, Bailey MD, Ward CL, Allen MJ. Spectroscopic and Electrochemical Trends in Divalent Lanthanides through Modulation of Coordination Environment. Inorg Chem 2020; 59:2613-2620. [PMID: 31999439 DOI: 10.1021/acs.inorgchem.0c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the importance of both visible-light luminescence and lanthanides in modern society, the influence of the ligand environment on complexes of YbII were studied and compared with analogous complexes of EuII. Four ligands with systematically varied electronic and steric characteristics were used to probe the coordination environment and electronic and redox properties of the corresponding YbII-containing complexes. Strong-field nitrogenous donors gave rise to bathochromic shifts, leading to visible-light absorption by YbII. Trends in properties across the series of YbII-containing complexes were compared to trends reported for the analogous EuII-containing complexes, revealing the translatability of coordination environment effects across the divalent lanthanide series. These studies provide valuable information regarding the behavior of small and medium-sized divalent lanthanides outside of the solid state.
Collapse
|
29
|
Lenora CU, Staples RJ, Allen MJ. Measurement of the Dissociation of Eu II-Containing Cryptates Using Murexide. Inorg Chem 2020; 59:86-93. [PMID: 30777754 DOI: 10.1021/acs.inorgchem.8b03605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The dissociation rates of five EuII-containing cryptates in water were measured using UV-visible spectroscopy and murexide at pH 6.5, 7, 7.5, 8, and 9. Murexide was used as a coordinating dye for EuII. The results for a known cryptate were within experimental error of the value obtained using other methods and enabled the measurement of other cryptates. This validation of the use of murexide to study the dissociation of EuII-containing cryptates enables its use with other complexes of EuII.
Collapse
Affiliation(s)
- Chamika U Lenora
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Richard J Staples
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Matthew J Allen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
30
|
Yang CB, Jiang CB, Zhang MY, Chen X, Zou P, Yang RW, Rao HB, Wang GT. A multifunctional Eu-based coordination polymer luminescent sensor for highly sensitive and selective detection of Fe3+ and acetone. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Li H, Li Y, Cheng H, Yang Q, Xiong J, Ma Y, Ding L, Zeng C. Lanthanide Metal-Organic Frameworks as Luminescent Sensor for Toluene. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Huh DN, Ziller JW, Evans WJ. Facile Encapsulation of Ln(II) Ions into Cryptate Complexes from LnI 2(THF) 2 Precursors (Ln = Sm, Eu, Yb). Inorg Chem 2019; 58:9613-9617. [PMID: 31290306 DOI: 10.1021/acs.inorgchem.9b01049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of LnI2(THF)2 (Ln = Sm, Eu, Yb; THF = tetrahydrofuran) with 2.2.2-cryptand (crypt) was explored to see if these readily accessible precursors could provide new examples of lanthanide-in-crypt complexes. The crystallographically characterized Ln(II)-in-crypt complexes [Ln(crypt)(DMF)2][I]2 (Ln = Sm, Eu) and [Yb(crypt)(DMF)][I]2 (DMF = dimethylformamide) were synthesized by reacting LnI2(THF)2 (Ln = Sm, Eu, Yb) with crypt in THF and recrystallizing from DMF. Crystallographic data were also obtained on the Ln(II)-in-crypt (Ln = Sm, Eu) complexes [Ln(crypt)(DMF)2][BPh4]2, which were synthesized by addition of 2 equiv of NaBPh4 to [Ln(crypt)(DMF)2][I]2.
Collapse
Affiliation(s)
- Daniel N Huh
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - William J Evans
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
33
|
Zheng K, Ding LW, Zeng CH. Highly luminescent lanthanide complexes constructed by Bis-tridentate ligand and as sensor for Et 2 O. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|