1
|
Liu P, Wang R, Yu F. Highly Efficient Solvent-Free Cyanosilylation of Aldehydes Catalyzed by Bilayered Two-Dimensional Metal-Organic Frameworks. Chemistry 2025:e202500741. [PMID: 40159340 DOI: 10.1002/chem.202500741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
While metal-organic frameworks (MOFs) are promising for heterogeneous catalysis and mechanistic investigations due to their well-defined active sites, high porosity, large surface area, and structural tunability, two-dimensional (2D) MOFs exhibit superior catalytic efficiency over three-dimensional (3D) MOFs by offering higher specific surface areas and reduced diffusion limitations, thus enhancing active site exposure and substrate accessibility. In this work, two novel bilayered 2D MOFs, Mg3(TPHB)2(H2O)6·(DMF)12 (Mg-TPHB-MOF) and Mn3(TPHB)2(H2O)6·(DMF)16 (Mn-TPHB-MOF), were synthesized, and their efficacy as Lewis acid catalysts in the solvent-free cyanosilylation of aldehydes was investigated. Both MOFs exhibited remarkable catalytic activity, with Mg-TPHB-MOF achieving complete conversion of benzaldehyde within 10 min at room temperature. This catalytic performance surpasses that of many previously reported MOF catalysts for the same reaction, highlighting the potential of 2D MOFs in catalysts. To gain deeper insights into the catalytic mechanism and the superior performance of Mg-TPHB-MOF, computational studies were conducted to determine the free energy profiles of the reaction pathways with and without the catalyst. The results of these calculations corroborated the experimental findings, indicating a lower energy barrier for the Mg-TPHB-MOF-catalyzed reaction. Furthermore, both MOFs demonstrated good reusability over five catalytic cycles, maintaining high conversion rates and structural integrity.
Collapse
Affiliation(s)
- Ping Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Rui Wang
- School of Physics, Southeast University, Nanjing, People's Republic of China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Derese AT, Menkir MG, Wolie MK, Yemam DA. Computational study on catalyst-free BCl 3-promoted chloroboration of carbonyl compounds. RSC Adv 2025; 15:2862-2873. [PMID: 39877698 PMCID: PMC11774190 DOI: 10.1039/d4ra06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
DFT calculations were performed to investigate the possible reaction mechanisms underlying catalyst-free chloroboration reactions of carbonyl compounds with BCl3. The interaction between BCl3 and the C[double bond, length as m-dash]O moiety of carbonyl compounds is a two-step reaction. In the first step, B of BCl3 forms a bond with the O of the C[double bond, length as m-dash]O moiety, followed by the 1,3-Cl migration process from BCl3 to the C of the carbonyl group. To indicate the versatility of our synthetic methodology, a catalyst-free chloroboration of a variety of aldehydes and ketones with a broad range of electron-donating and electron-withdrawing groups with BCl3 was checked. According to DFT results, BCl3-induced chloroboration of aldehydes and ketones progressed under a kinetically favorable condition with <20 kcal mol-1 of activation free energy.
Collapse
|
3
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024; 53:18207-18216. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
4
|
Wang C, Huang M, Miao H, Liu C, Qin Z, Ma W, Han M, Yu J, Li Y, Wei B, Chen Z. Alkylaluminum Complexes Featuring Bridged Bis-Formylfluorenimide Ligands for Hydroboration of Aldehyde, Ketone, and Imines. Inorg Chem 2024; 63:19332-19343. [PMID: 39360903 DOI: 10.1021/acs.inorgchem.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three bis-formylfluorenimide ligands with different bridging groups were designed and synthesized, leading to the successful preparation of six novel alkylaluminum complexes through their reaction with alkylaluminum reagents (AlMe3 or AlEt3). Complexes 1 and 2 were obtained by the reaction of 1,2-propylene-bridged diamine (L1) with AlMe3 or AlEt3. By reacting 1,2-cyclohexylene-bridged diamine (L2) with AlMe3 or AlEt3 to obtain complexes 3 and 4. The above ligands formed a bidentate four-coordinate structure with alkylaluminum, which involved the elimination of one alkyl group as the ligand reacted with alkylaluminum. The complexes 5 and 6 were synthesized through the reaction of 1,2-phenylene-bridged diamine (L3) with AlEt3 in toluene or tetrahydrofuran. Notably, L3 exhibited unique reactivity compared with the other ligands, which formed a tridentate four-coordinated structure when reacting with alkylaluminum. The formation of the tridentate complex resulted from the introduction of a benzimidazole derivative or tetrahydrofuran (THF) molecule along with the elimination of two alkyl groups during its coordination with alkylaluminum. All complexes were characterized via 1H NMR, 13C NMR, and elemental analysis, with structural determination confirmed through X-ray. Furthermore, the catalytic activity in the hydroboration reaction of aldehyde, ketone, and imines was investigated with these complexes as catalysts. Among them, complex 1 demonstrated excellent catalytic performance (up to 99% yield) and broad substrate compatibility (more than 30 substrates) at low catalyst loading (1 mol %) under mild reaction conditions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Mengna Huang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Chenxu Liu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zhibiao Qin
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Wenning Ma
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Mengmeng Han
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Junjie Yu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongmin Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Biao Wei
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Zhang X, Lu K, Chen X, Su G, Rong X, Ma M. Hydroboration and hydrosilylation of alkenes catalyzed by an unsymmetrical magnesium methyl complex. Org Biomol Chem 2024; 22:5353-5360. [PMID: 38869074 DOI: 10.1039/d4ob00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The hydroboration and hydrosilylation of alkenes catalyzed by the unsymmetrical β-diketiminate magnesium methyl complex [(DippXylNacnac)MgMe (THF)] (1) have been reported. When complex 1 was employed as a highly efficient catalyst in the hydroboration of various alkenes with HBpin, only the anti-Markovnikov hydroboration products were obtained in high yields and with high regioselectivities under mild reaction conditions (60 °C). To our surprise, it showed different regioselectivities in the hydrosilylation of a range of alkenes with PhSiH3. Aromatic alkene substrates afforded the corresponding branched Markovnikov hydrosilylation products in high yields and with high regioselectivities; conversely, aliphatic alkenes produced the linear anti-Markovnikov products in moderate yields. This is completely consistent with the corresponding density functional theory (DFT) calculations. In addition, the practical utility was demonstrated via scale-up reactions of boronate esters and a preliminary plausible mechanism of hydroboration and hydrosilylation have been investigated as well.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Kai Lu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xi Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Guanxin Su
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Rong
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
7
|
Kumar R, Sharma V, Banerjee S, Vanka K, Sen SS. Controlled reduction of isocyanates to formamides using monomeric magnesium. Chem Commun (Camb) 2023; 59:2255-2258. [PMID: 36748261 DOI: 10.1039/d3cc00036b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Subhrashis Banerjee
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
8
|
Prey SE, Herok C, Fantuzzi F, Bolte M, Lerner HW, Engels B, Wagner M. Multifaceted behavior of a doubly reduced arylborane in B-H-bond activation and hydroboration catalysis. Chem Sci 2023; 14:849-860. [PMID: 36755708 PMCID: PMC9890859 DOI: 10.1039/d2sc05518j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Alkali-metal salts of 9,10-dimethyl-9,10-dihydro-9,10-diboraanthrancene (M2[DBA-Me2]; M+ = Li+, Na+, K+) activate the H-B bond of pinacolborane (HBpin) in THF already at room temperature. For M+ = Na+, K+, the addition products M2[4] are formed, which contain one new H-B and one new B-Bpin bond; for M+ = Li+, the H- ion is instantaneously transferred from the DBA-Me2 unit to another equivalent of HBpin to afford Li[5]. Although Li[5] might commonly be considered a [Bpin]- adduct of neutral DBA-Me2, it donates a [Bpin]+ cation to Li[SiPh3], generating the silyl borane Ph3Si-Bpin; Li2[DBA-Me2] with an aromatic central B2C4 ring acts as the leaving group. Furthermore, Li2[DBA-Me2] catalyzes the hydroboration of various unsaturated substrates with HBpin in THF. Quantum-chemical calculations complemented by in situ NMR spectroscopy revealed two different mechanistic scenarios that are governed by the steric demand of the substrate used: in the case of the bulky Ph(H)C[double bond, length as m-dash]NtBu, the reaction requires elevated temperatures of 100 °C, starts with H-Bpin activation which subsequently generates Li[BH4], so that the mechanism eventually turns into "hidden borohydride catalysis". Ph(H)C[double bond, length as m-dash]NPh, Ph2C[double bond, length as m-dash]O, Ph2C[double bond, length as m-dash]CH2, and iPrN[double bond, length as m-dash]C[double bond, length as m-dash]NiPr undergo hydroboration already at room temperature. Here, the active hydroboration catalyst is the [4 + 2] cycloadduct between the respective substrate and Li2[DBA-Me2]: in the key step, attack of HBpin on the bridging unit opens the bicyclo[2.2.2]octadiene scaffold and gives the activated HBpin adduct of the Lewis-basic moiety that was previously coordinated to the DBA-B atom.
Collapse
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische und Analytische Chemie, Goethe-Universität FrankfurtFrankfurt am Main D-60438Germany
| | - Christoph Herok
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Felipe Fantuzzi
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany .,School of Chemistry and Forensic Science, University of Kent Canterbury CT2 7NH UK
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| |
Collapse
|
9
|
Dang Y, Jia C, Wang Y, Wang L, Li Y, Li Y. Synthesis and Characterization of Zinc, Lithium and Magnesium Complexes Containing Pyrrolyl Ligands, and Utilization as Catalysts in Borylation of Aryl Iodides and Hydroboration of Aldehydes and Ketones. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Sen N, Gothe P, Sarkar P, Das S, Tothadi S, Pati SK, Khan S. Donor free stibenium cation as an efficient cyanosilylation catalyst. Chem Commun (Camb) 2022; 58:10380-10383. [PMID: 36039684 DOI: 10.1039/d2cc03158b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel stibenium cations and their catalytic application in cyanosilylation of carbonyl compounds have been described. Treatment of chlorostibine L1SbCl [L1 = 1,2-C6H4{N(CH2tBu)}2] (2) with 1 equiv. of AgOTf and AgSbF6 resulted in the formation of donor free L1SbOTf (3) and [L1Sb]+[SbF6]- (4), respectively. Among these three compounds, 4 exhibits excellent catalytic activity towards the cyanosilylation of aldehydes and ketones.
Collapse
Affiliation(s)
- Nilanjana Sen
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Prachi Gothe
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Pallavi Sarkar
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Shubhajit Das
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research (AcSIR), Ghaziabad-201002, UP, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
11
|
Mulvey RE, Lynch JR, Kennedy AR, Barker J, Reid J. Crystallographic Characterisation of Organolithium and Organomagnesium Intermediates in Reactions of Aldehydes and Ketones. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Robert E. Mulvey
- University of Strathclyde Pure and Applied Chemistry 295 Cathedral Street G1 1XL Glasgow UNITED KINGDOM
| | | | - Alan R. Kennedy
- University of Strathclyde Pure and Applied Chemistry UNITED KINGDOM
| | - Jim Barker
- Innospec Ltd Research and Technology UNITED KINGDOM
| | | |
Collapse
|
12
|
Sa S, Ponniah S J, Biswal P, Sathesh V, Murali AC, Venkatasubbaiah K. Distannadithiophenes and their application towards hydroboration of carbonyl compounds. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shreenibasa Sa
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Joseph Ponniah S
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Priyabrata Biswal
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Venkatesan Sathesh
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | | | - Krishnan Venkatasubbaiah
- National Institute of Science Education and Research School of Chemical Sciences NISER 752050 Bhubaneswar INDIA
| |
Collapse
|
13
|
Chen Z, Lv K, Yuan T, Zhang X, Yao W, Ma M. Electrochemical hydroboration of carbonyl compounds. Dalton Trans 2022; 51:11868-11875. [PMID: 35876237 DOI: 10.1039/d2dt01841a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and sustainable electrochemical hydroboration of carbonyl compounds with HBpin has been reported for the first time. Under catalyst-free and additive-free mild reaction conditions the corresponding boronic esters were obtained in excellent yields via the simple electrochemical hydroboration of various aldehydes and ketones with HBpin at room temperature. The scale-up reaction demonstrated potential practical applications. A plausible reaction mechanism was proposed based on the corresponding deuterium-labelling, radical inhibition and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Zewei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Kang Lv
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Taoyue Yuan
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xuguang Zhang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiwei Yao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
De S, Dutta S, Koley D. Theoretical Insights into Aluminum-Catalyzed Cyanosilylation of Aldehydes and Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| |
Collapse
|
15
|
|
16
|
A uranium(
IV
) alkyl complex: Synthesis and catalytic property in carbonyl hydroboration. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Abstract
The addition of a B-H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon-carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Arsenyeva KV, Klimashevskaya AV, Pashanova KI, Trofimova OY, Chegerev MG, Starikova AA, Cherkasov AV, Fukin GK, Yakushev IA, Piskunov AV. Stable heterocyclic stannylene: The metal, ligand‐centered reactivity, and effective catalytic hydroboration of aldehydes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kseniya V. Arsenyeva
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| | - Anastasiya V. Klimashevskaya
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| | - Kira I. Pashanova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| | - Olesya Yu. Trofimova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| | - Maxim G. Chegerev
- Institute of Physical and Organic Chemistry Southern Federal University Rostov‐on‐Don Russian Federation
| | - Alyona A. Starikova
- Institute of Physical and Organic Chemistry Southern Federal University Rostov‐on‐Don Russian Federation
| | - Anton V. Cherkasov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| | - Ilya A. Yakushev
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Moscow Russian Federation
| | - Alexandr V. Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences Nizhny Novgorod Russian Federation
| |
Collapse
|
19
|
Li Y, Pan H, Lu Y, Luo Y, Dang Y, Wang Y, Xia S, Li Y, Xia Y. Lithium and magnesium complexes from the employment of pyridyl-pendanted unsymmetrical β-diketiminates: syntheses and utilization as catalysts for the hydroboration of carbonyl compounds. Dalton Trans 2022; 51:3616-3624. [DOI: 10.1039/d1dt03235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The push for environmentally benign and sustainable chemical processes has reinforced the demand to displace transition metals with cheap, nontoxic and naturally abundant metals. To fulfil this requirement, we endeavored...
Collapse
|
20
|
Pahar S, Sharma V, Tothadi S, Sen SS. Pyridylpyrrolido ligand in Ge(II) and Sn(II) chemistry: synthesis, reactivity and catalytic application. Dalton Trans 2021; 50:16678-16684. [PMID: 34757370 DOI: 10.1039/d1dt03136h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our previous communication, we have reported the synthesis of a new chlorogermylene (B) featuring a pyridylpyrrolido ligand. This study details the preparation of a series of new germylenes and stannylenes starting from B. A transmetallation reaction between B and SnCl2 led to the analogous chlorostannylene (1) with the simultaneous elimination of GeCl2. This is a very unusual example of transmetallation between two elements of the same group. The preparation of 1via lithiation led to the formation of 2 as a side product, where the ortho C-H bond of the pyridine ring was activated and functionalized with a nBu moiety. Subsequently, B and 1 were used as precursors to generate germylene (4) and stannylene (5) featuring tris(trimethylsilyl)silyl (hypersilyl) moieties. We also prepared tetrafluoropyridyl germylene (6) by reacting 4 with C5F5N with the simultaneous elimination of (Me3Si)3SiF by utilizing the fluoride affinity of the silicon atom. As there is scarcity of Sn(II) compounds as single-site catalysts, we investigated 5 as a catalyst towards the hydroboration of aldehydes, ketones, alkenes and alkynes. All the compounds have been characterized by single-crystal X-ray diffraction and by state of the art spectroscopic studies.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
21
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
22
|
|
23
|
Li M, Liu X, Cui D. Catalytic hydroboration of carbonyl derivatives by using phosphinimino amide ligated magnesium complexes. Dalton Trans 2021; 50:13037-13041. [PMID: 34581349 DOI: 10.1039/d1dt00143d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of carbonyl derivatives by using Earth-abundant, cheap, and environmentally benign metal-based catalysts through an atom-efficient method is a challenging task. Herein, we report the synthesis and characterization of dinuclear magnesium complexes 1-3 chelated by a phosphinimino amide skeleton. In combination with pinacolborane (HBpin) as a reducing agent, complex 1 bearing an ortho-methyl substituent on the phenyl ring of the ligand showed excellent reduction capability for a broad range of carbonyl derivatives under mild reaction conditions. Aldehydes, ketones, and acrolein substrates were efficiently reduced to the corresponding alkoxy-borane products with a record high TOF. Besides, acrolein derivatives were exclusively reduced to 1,2-regioselective products. Using two equiv. of HBpin, ester substrates were reduced to two kinds of alkoxy-borane products. Carbonate reduction accomplished by using complex 1 and three equiv. of HBpin afforded diols and a methanol precursor, respectively. When chiral substrates such as (S)-1,2-propanediol carbonate and L-lactide or polymeric P(L-LA) were employed, the chirality was almost retained in their reductive products.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Ankur, Kannan R, Chambenahalli R, Banerjee S, Yang Y, Maron L, Venugopal A. [(Me
6
TREN)MgOCHPh
2
][B(C
6
F
5
)
4
]: A Model Complex to Explore the Catalytic Activity of Magnesium Alkoxides in Ketone Hydroboration. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ankur
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Ramkumar Kannan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Raju Chambenahalli
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Sumanta Banerjee
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Yan Yang
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Laurent Maron
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Ajay Venugopal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| |
Collapse
|
25
|
Kang Z, Xu X, Wang Y, Zhang W, Zhou S, Zhu X, Xue M. n-Butyllithium as a highly efficient precatalyst for cyanosilylation of aldehydes and ketones. Org Biomol Chem 2021; 19:7432-7437. [PMID: 34397075 DOI: 10.1039/d1ob01297e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient cyanosilylation protocol mediated by the easily available n-BuLi with a wide range of aldehydes and ketones was developed. This protocol features excellent yields with very low n-BuLi loadings (0.01-0.05 mol%) at room temperature, solvent-free process, good chemo-/regio-selectivity and functional group tolerance and scalability. A possible reaction pathway based upon stoichiometric reactivity was put forward.
Collapse
Affiliation(s)
- Zihan Kang
- Key Laboratory of Organic Synthesis of Jiangsu province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bisai MK, Gour K, Das T, Vanka K, Sen SS. Readily available lithium compounds as catalysts for the hydroboration of carbodiimides and esters. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Sarkar D, Dutta S, Weetman C, Schubert E, Koley D, Inoue S. Germyliumylidene: A Versatile Low Valent Group 14 Catalyst. Chemistry 2021; 27:13072-13078. [PMID: 34171132 PMCID: PMC8518661 DOI: 10.1002/chem.202102233] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Bis‐NHC stabilized germyliumylidenes [RGe(NHC)2]+ are typically Lewis basic (LB) in nature, owing to their lone pair and coordination of two NHCs to the vacant p‐orbitals of the germanium center. However, they can also show Lewis acidity (LA) via Ge−CNHC σ* orbital. Utilizing this unique electronic feature, we report the first example of bis‐NHC‐stabilized germyliumylidene [MesTerGe(NHC)2]Cl (1), (MesTer=2,6‐(2,4,6‐Me3C6H2)2C6H3; NHC= IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) catalyzed reduction of CO2 with amines and arylsilane, which proceeds via its Lewis basic nature. In contrast, the Lewis acid nature of 1 is utilized in the catalyzed hydroboration and cyanosilylation of carbonyls, thus highlighting the versatile ambiphilic nature of bis‐NHC stabilized germyliumylidenes.
Collapse
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.,Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Emeric Schubert
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
28
|
Ghosh P, Jacobi von Wangelin A. Manganese‐Catalyzed Hydroborations with Broad Scope. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pradip Ghosh
- Dept. of Chemistry University of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | | |
Collapse
|
29
|
Ghosh P, Jacobi von Wangelin A. Manganese-Catalyzed Hydroborations with Broad Scope. Angew Chem Int Ed Engl 2021; 60:16035-16043. [PMID: 33894033 PMCID: PMC8362021 DOI: 10.1002/anie.202103550] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Indexed: 12/29/2022]
Abstract
Reductive transformations of easily available oxidized matter are at the heart of synthetic manipulation and chemical valorization. The applications of catalytic hydrofunctionalization benefit from the use of liquid reducing agents and operationally facile setups. Metal‐catalyzed hydroborations provide a highly prolific platform for reductive valorizations of stable C=X electrophiles. Here, we report an especially facile, broad‐scope reduction of various functions including carbonyls, carboxylates, pyridines, carbodiimides, and carbonates under very mild conditions with the inexpensive pre‐catalyst Mn(hmds)2. The reaction could be successfully applied to depolymerizations.
Collapse
Affiliation(s)
- Pradip Ghosh
- Dept. of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146, Hamburg, Germany
| | | |
Collapse
|
30
|
Bisai MK, Sharma V, Gonnade RG, Sen SS. Reactivities of Silaimines with Boranes: From Cooperative B–H Bond Activation to Donor Stabilized Silyl Cation. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh G. Gonnade
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
31
|
Dang Y, Wang Y, Li Y, Xu M, Jia C, Lu Y, Zhang L, Li Y, Xia Y. Nucleophilic Addition and α-C–H Substitution Reactions of an Imine Mediated by Dibutylmagnesium and Organolithium Reagents. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Dang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yalan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yafei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Chaohong Jia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanhua Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
32
|
Peddarao T, Baishya A, Sarkar N, Acharya R, Nembenna S. Conjugated Bis‐Guanidines (CBGs) as
β
‐Diketimine Analogues: Synthesis, Characterization of CBGs/Their Lithium Salts and CBG Li Catalyzed Addition of B−H and TMSCN to Carbonyls. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thota Peddarao
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Ashim Baishya
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Nabin Sarkar
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Rudresh Acharya
- School of Biological Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Sharanappa Nembenna
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| |
Collapse
|
33
|
Gauld RM, Lynch JR, Kennedy AR, Barker J, Reid J, Mulvey RE. Expected and Unexpected Reactivities of Homoleptic LiNacNac and Heteroleptic NacNacMg(TMP) β-Diketiminates toward Various Small Unsaturated Organic Molecules. Inorg Chem 2021; 60:6057-6064. [PMID: 33830739 PMCID: PMC8154426 DOI: 10.1021/acs.inorgchem.1c00549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homoleptic LiNacNac forms simple donor-acceptor complexes with N,N'-dicyclohexylcarbodiimide (CyN═C═NCy), triphenylphosphine oxide (Ph3P═O), and benzophenone (Ph2CO). These crystallographically characterized compounds could be regarded as model intermediates en route to reducing the N═C, P═O, and C═O bonds of unsaturated substrates. Heteroleptic NacNacMg(TMP) intriguingly functions as a TMP nucleophile both with t-BuNCO and t-BuNCS, producing a urea or thiourea derivative respectively attached to Mg, though the NacNac ligand in the former reaction also engages noninnocently with a second t-BuNCO molecule via insertion at the reactive NacNac backbone γ-carbon site.
Collapse
Affiliation(s)
- Richard M Gauld
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Jennifer R Lynch
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Jim Barker
- Innospec Ltd., Innospec Manufacturing Park, Oil Sites Road, Ellesmere Port, Cheshire CH65 4EY, U.K
| | - Jacqueline Reid
- Innospec Ltd., Innospec Manufacturing Park, Oil Sites Road, Ellesmere Port, Cheshire CH65 4EY, U.K
| | - Robert E Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| |
Collapse
|
34
|
Sen N, Khan S. Heavier Tetrylenes as Single Site Catalysts. Chem Asian J 2021; 16:705-719. [DOI: 10.1002/asia.202100038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Nilanjana Sen
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pashan, Pune 411008 India
| | - Shabana Khan
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pashan, Pune 411008 India
| |
Collapse
|
35
|
Bisai MK, Gour K, Das T, Vanka K, Sen SS. Lithium compound catalyzed deoxygenative hydroboration of primary, secondary and tertiary amides. Dalton Trans 2021; 50:2354-2358. [PMID: 33570073 DOI: 10.1039/d1dt00364j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A selective and efficient route for the deoxygenative reduction of primary to tertiary amides to corresponding amines has been achieved with pinacolborane (HBpin) using simple and readily accessible 2,6-di-tert-butyl phenolate lithium·THF (1a) as a catalyst. Both experimental and DFT studies provide mechanistic insight.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kritika Gour
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tamal Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India and Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India and Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
36
|
Affiliation(s)
- Ruibin Wang
- Department of Chemistry Guangdong Technion Israel Institute of Technology Guangdong 515063 P. R. China
| | - Sehoon Park
- Department of Chemistry Guangdong Technion Israel Institute of Technology Guangdong 515063 P. R. China
- Technion-Israel Institute of Technology Technion City 32000 Haifa Israel
| |
Collapse
|
37
|
Bisai MK, Swamy VSVSN, Raj KV, Vanka K, Sen SS. Diverse Reactivity of Hypersilylsilylene with Boranes and Three-Component Reactions with Aldehyde and HBpin. Inorg Chem 2021; 60:1654-1663. [DOI: 10.1021/acs.inorgchem.0c03137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V. S. V. S. N. Swamy
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K. Vipin Raj
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumar Vanka
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Bhawar R, Patil KS, Bose SK. CeO 2–nanocubes as efficient and selective catalysts for the hydroboration of carbonyl groups. NEW J CHEM 2021. [DOI: 10.1039/d1nj00065a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and reusable CeO2 nanocatalyst has been developed for the selective hydroboration of carbonyl compounds, including aromatic, heteroaromatic, aliphatic, and (hetero)aliphatic aldehydes and ketones.
Collapse
Affiliation(s)
- Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India
| | - Kiran S. Patil
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India
| |
Collapse
|
39
|
Bage AD, Nicholson K, Hunt TA, Langer T, Thomas SP. The Hidden Role of Boranes and Borohydrides in Hydroboration Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04051] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Andrew D. Bage
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Kieran Nicholson
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Thomas A. Hunt
- Medicinal Chemistry, Early Oncology, AstraZeneca, Unit 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, United Kingdom
| | - Thomas Langer
- Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca, Silk Road, Macclesfield, SK10 2NA, United Kingdom
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
40
|
Pahar S, Kundu G, Sen SS. Cyanosilylation by Compounds with Main-Group Elements: An Odyssey. ACS OMEGA 2020; 5:25477-25484. [PMID: 33073074 PMCID: PMC7557257 DOI: 10.1021/acsomega.0c03293] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The past few decades have seen remarkable headways in the structural and reaction chemistry of compounds with heavier main-group elements. In recent years, there is an ongoing effort to derive catalytic chemistry involving main-group compounds, driven by their lower costs and higher terrestrial abundances. Here, a survey on the state-of-the-art in the development of cyanosilylation methodology by compounds with heavier main-group elements has been given. Once dominated by transition metals, the field has matured to embrace the majority of the main-group elements including aluminum, silicon, and calcium. Of particular focus will be how the mechanism of cyanosilylation involving compounds with main-group elements differs from those of transition metals.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic
Chemistry and Catalysis Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gargi Kundu
- Inorganic
Chemistry and Catalysis Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakya S. Sen
- Inorganic
Chemistry and Catalysis Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
41
|
Sahoo RK, Mahato M, Jana A, Nembenna S. Zinc Hydride-Catalyzed Hydrofuntionalization of Ketones. J Org Chem 2020; 85:11200-11210. [PMID: 32786632 DOI: 10.1021/acs.joc.0c01285] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new dimeric bis-guanidinate zinc(II) alkyl, halide, and hydride complexes [LZnEt]2 (1), [LZnI]2 (2) and [LZnH]2 (3) were prepared. Compound 3 was successfully employed for the hydrosilylation and hydroboration of a vast number of ketones. The catalytic performance of 3 in the hydroboration of acetophenone exhibits a turnover frequency, reaching up to 5800 h-1, outperforming that of reported zinc hydride catalysts. Notably, both intra- and intermolecular chemoselective hydrosilylation and hydroboration reactions have been investigated.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Mamata Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Achintya Jana
- Undergraduate Programme, Indian Institute of Science, Bangalore 560 012, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| |
Collapse
|
42
|
Rawat S, Bhandari M, Prashanth B, Singh S. Three Coordinated Organoaluminum Cation for Rapid and Selective Cyanosilylation of Carbonyls under Solvent‐Free Conditions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sandeep Rawat
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| | - Mamta Bhandari
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| | - Billa Prashanth
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| | - Sanjay Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81 SAS Nagar Mohali 140306 Punjab India
| |
Collapse
|
43
|
Kuciński K, Hreczycho G. Potassium Fluoride-Catalyzed Hydroboration of Aldehydes and Ketones: Facile Reduction to Primary and Secondary Alcohols. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Krzysztof Kuciński
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; Ul. Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; Ul. Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University; Ul. Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| |
Collapse
|
44
|
Abstract
An operationally facile hydroboration of nitriles is reported that utilizes the stable and inexpensive catalyst LiN(SiMe3)2. The reaction displayed good tolerance of functional groups and also converted carbonyl derivatives.
Collapse
Affiliation(s)
- Pradip Ghosh
- Department of Chemistry
- University of Hamburg
- Martin-Luther-King-Platz 6
- 20146 Hamburg
- Germany
| | | |
Collapse
|
45
|
Willcox D, Carden JL, Ruddy AJ, Newman PD, Melen RL. Asymmetric ketone hydroboration catalyzed by alkali metal complexes derived from BINOL ligands. Dalton Trans 2020; 49:2417-2420. [PMID: 32039419 DOI: 10.1039/d0dt00232a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability of alkali metal complexes featuring functionalized BINOL-derived ligands to catalyze ketone hydroboration reactions was explored. The reduced products were formed in excellent yields and with variable enantioselectivities dependent upon the nature of the ligand and the alkali metal cation.
Collapse
Affiliation(s)
- Darren Willcox
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK. and Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Jamie L Carden
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Adam J Ruddy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Paul D Newman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
46
|
Cao X, Li J, Zhu A, Su F, Yao W, Xue F, Ma M. Syntheses of asymmetrical magnesium(i) complexes and their catalytic application in epoxide hydroboration. Org Chem Front 2020. [DOI: 10.1039/d0qo00938e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of novel structural magnesium(i) complexes stabilized by cyclopentyl and cyclohexyl substituted β-diketiminate ligands have been synthesized and used as highly active and regioselective pre-catalysts for various epoxides hydroboration.
Collapse
Affiliation(s)
- Xu Cao
- Institute of Material Physics & Chemistry
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Jia Li
- Institute of Material Physics & Chemistry
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Anqiao Zhu
- Institute of Material Physics & Chemistry
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fan Su
- Institute of Material Physics & Chemistry
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Weiwei Yao
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Fei Xue
- Institute of Material Physics & Chemistry
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Mengtao Ma
- Institute of Material Physics & Chemistry
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
47
|
Wang W, Luo M, Zhu D, Yao W, Xu L, Ma M. Green hydroboration of carboxylic acids and mechanism investigation. Org Biomol Chem 2019; 17:3604-3608. [PMID: 30912564 DOI: 10.1039/c9ob00485h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A catalyst-free and solvent-free method for the hydroboration of a variety of carboxylic acids with pinacolborane was developed. The hydroboration of various aromatic and aliphatic carboxylic acids as well as dicarboxylic acids with HBpin could be completed within 6 h at room temperature or within 1 h at 60 °C to give the products in quantitative yields under neat conditions without the need for any solvent or metal catalyst. The possible reaction mechanism was investigated in detail based on the corresponding DFT calculations and the stoichiometric reaction of acetic acid with different equivalents of HBpin (at room temperature and 0 °C) and it revealed the stepwise nature of the protocol.
Collapse
Affiliation(s)
- Weifan Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | | | |
Collapse
|
48
|
Xu X, Yan D, Zhu Z, Kang Z, Yao Y, Shen Q, Xue M. Catalyst-Free Approach for Hydroboration of Carboxylic Acids under Mild Conditions. ACS OMEGA 2019; 4:6775-6783. [PMID: 31459799 PMCID: PMC6647974 DOI: 10.1021/acsomega.9b00406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
Herein, we present a facile method for deoxygenative hydroboration of a broad range of carboxylic acids under very mild conditions. The most striking feature of this attractive hydroboration is that this elusive and challenging transformation was realized without catalyst and solvent. The investigation of solvent effect showed that tetrahydrofuran was also suitable for this kind of reaction. Moreover, a successful gram-scale trial may provide a very promising toolkit for carboxylic acid reduction at a large scale.
Collapse
|
49
|
|
50
|
de Bruin‐Dickason CN, Deacon GB, Jones C, Junk PC, Wiecko M. Functionalised Alkaline Earth Iodides from Grignard Synthons “PhAeI(thf)
n
” (Ae = Mg‐Ba). Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Glen B. Deacon
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| | - Cameron Jones
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| | - Peter C. Junk
- College of Science & Engineering James Cook University Townsville, Qld., 4811 Australia
| | - Michal Wiecko
- School of Chemistry Monash University Clayton Vic. 3800 Australia
| |
Collapse
|