1
|
Wang W, Tachibana R, Zhang K, Lau K, Pojer F, Ward TR, Hu X. Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations. Angew Chem Int Ed Engl 2025; 64:e202422783. [PMID: 39760306 DOI: 10.1002/anie.202422783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/07/2025]
Abstract
Artificial metalloenzymes (ArMs) enable the integration of abiotic cofactors within a native protein scaffold, allowing for non-natural catalytic activities. Previous ArMs, however, have primarily relied on single cofactor systems, limiting them to only one catalytic function. Here we present an approach to construct ArMs embedding two catalytic cofactors based on the biotin-streptavidin technology. By incorporating multiple catalytic cofactors into the four binding sites of streptavidin, we engineered programmable ArMs for tandem abiotic transformations including an enantioselective formal C-H hydroxylation and a photooxidation-Michael addition. This work thus outlines a promising strategy for the development of ArMs embedding multiple cofactors.
Collapse
Affiliation(s)
- Weijin Wang
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, I, SIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland Website
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Kailin Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, I, SIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland Website
| |
Collapse
|
2
|
Mintz T, Liu L, Pappo D. Chiral Bis-8-Aryl-isoquinoline Bis-alkylamine Iron Catalysts for Asymmetric Oxidation Reactions. Org Lett 2025; 27:1078-1083. [PMID: 39841035 PMCID: PMC11791880 DOI: 10.1021/acs.orglett.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
A novel class of bis-8-aryl-isoquinoline (AriQ) bis-alkylamine iron complexes, FeII(AriQ2dp)(OTf)2 and FeII(AriQ2mc)(OTf)2 (dp = dipyrrolidinyl or mc = N,N'-dimethylcyclohexyl-diamine), for asymmetric oxidation reactions is reported. The scalable divergent synthesis of 8-aryl-3-formylisoquinolines (8), the key intermediates in preparing these ligands, enables precise structural and electronic tuning around the metal center. The enantioselective epoxidation and hydroxy carbonylation of conjugated alkenes, mediated by the FeII(3,5-di-CF3iQ2dp) catalyst with H2O2 as the oxidant, demonstrates the potential of these redox FeII[N4] catalysts in inducing face selection in oxygen transfer transformations.
Collapse
Affiliation(s)
- Tomer Mintz
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 8410501, Israel
| | - Lei Liu
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Doron Pappo
- Department
of Chemistry, Ben-Gurion University of the
Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Liu XM, Li F, Wang T, Dai L, Yang Y, Jiang NQ, Xue LY, Liu JY, Xue XS, Xiao LJ, Zhou QL. Catalytic Asymmetric Oxidative Coupling between C(sp 3)-H Bonds and Carboxylic Acids. J Am Chem Soc 2025; 147:627-635. [PMID: 39690117 DOI: 10.1021/jacs.4c12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The direct enantioselective functionalization of C(sp3)-H bonds in organic molecules could fundamentally transform the synthesis of chiral molecules. In particular, the enantioselective oxidation of these bonds would dramatically change the production methods of chiral alcohols and esters, which are prevalent in natural products, pharmaceuticals, and fine chemicals. Remarkable advances have been made in the enantioselective construction of carbon-carbon and carbon-nitrogen bonds through the C(sp3)-H bond functionalization. However, the direct enantioselective formation of carbon-oxygen bonds from C(sp3)-H bonds remains a considerable challenge. We herein report a highly enantioselective C(sp3)-H bond oxidative coupling with carboxylic acids. The method applies to allylic and propargylic C-H bonds and employs various carboxylic acids as oxygenating agents. The method successfully synthesized a range of chiral esters directly from readily available alkenes and alkynes, greatly simplifying the synthesis of chiral esters and related alcohols.
Collapse
Affiliation(s)
- Xian-Ming Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Fu Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Tongkun Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Dai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yin Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Neng-Quan Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Yuan Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jing-Yuan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Zhang T, Tian E, Xiong Y, Shen X, Li Z, Yan X, Yang Y, Zhou Z, Wang Y, Wang P. Development of a RNA-protein complex based smart drug delivery system for 9-hydroxycamptothecin. Int J Biol Macromol 2024; 276:133871. [PMID: 39009257 DOI: 10.1016/j.ijbiomac.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Camptothecin (CPT) is a monoterpenoid indole alkaloid with a wide spectrum of anticancer activity. However, its application is hindered by poor solubility, lack of targeting specificity, and severe side effects. Structural derivatization of CPT and the development of suitable drug delivery systems are potential strategies for addressing these issues. In this study, we discovered that the protein Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) from Homo sapiens catalyzes CPT to yield 9-hydroxycamptothecin (9-HCPT), which exhibits increased water solubility and cytotoxicity. We then created a RNA-protein complex based drug delivery system with enzyme and pH responsiveness and improved the targeting and stability of the nanomedicine through protein module assembly. The subcellular localization of nanoparticles can be visualized using fluorescent RNA probes. Our results not only identified the protein CYP1A1 responsible for the structural derivatization of CPT to synthesize 9-HCPT but also offered potential strategies for enhancing the utilization of silk-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Tong Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ernuo Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Ying Xiong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
6
|
Cao M, Wang H, Hou F, Zhu Y, Liu Q, Tung CH, Liu L. Catalytic Enantioselective Hydroxylation of Tertiary Propargylic C(sp 3)-H Bonds in Acyclic Systems: a Kinetic Resolution Study. J Am Chem Soc 2024; 146:18396-18406. [PMID: 38936812 DOI: 10.1021/jacs.4c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Direct site-selective and enantioselective oxyfunctionalization of C(sp3)-H bonds to form alcohols with a general scope, with predictable selectivities, and in preparatively useful yields represents a paradigm shift in the standard logic of synthetic organic chemistry. However, the knowledge of either enzymatic or nonenzymatic asymmetric hydroxylation of tertiary C-H bonds for enantioenriched tertiary alcohol synthesis is sorely lacking. Here, we report a practical manganese-catalyzed enantio-differentiating hydroxylation of tertiary propargylic C-H bonds in acyclic systems, producing a wide range of structurally diverse enantioenriched tertiary propargyl alcohols in high efficiency with extremely efficient chemo- and enantio-discrimination. Other features include the use of C-H substrates as the limiting reagent, noteworthy functional group compatibility, great synthetic utilities, and scalability. The findings serve as a blueprint for the development of metal-catalyzed asymmetric oxidation of challenging substrates.
Collapse
Affiliation(s)
- Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hongliang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fangao Hou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuhang Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qianqian Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
7
|
Luo X, Jiang Z, Yang S, Ren X, Wang T. Organocatalyzed Asymmetric Conjugate Addition of Alcohols to β-Fluoroalkyl Vinylsulfones by Bifunctional Phosphonium Salt Catalyst. Chemistry 2024; 30:e202401325. [PMID: 38698535 DOI: 10.1002/chem.202401325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Chiral secondary alcohols, serving as essential structural motifs, hold significant potential for diverse applications. The exploration of effective synthetic strategies toward these compounds is both attractive and challenging. Herein, we present an asymmetric oxa-Michael reaction involving aliphatic alcohols as nucleophiles and β-fluoroalkyl vinylsulfones catalyzed by bifunctional phosphonium salt (BPS), achieving high yields and excellent enantioselectivities (up to 98 % yield and 98 % ee). Additionally, a sequential process including asymmetric oxa-Michael and debenzylation, facilitated by BPS/Lewis acid cooperation, was revealed for synthesizing diverse chiral secondary alcohol compounds in high yields (81-88 %) with consistent stereoselectivities. Furthermore, mechanistic explorations and subsequent results unveiled that the enantioselectivity originates from hydrogen-bonding and ion-pair interactions between the BPS catalyst and the substrates.
Collapse
Affiliation(s)
- Xingjie Luo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Siqun Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
| |
Collapse
|
8
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Mechanisms of Mn(V)-Oxo to Mn(IV)-Oxyl Conversion: From Closed-Cubane Photosystem II to Mn(V) Catalysts and the Role of the Entering Ligands. Chemistry 2024; 30:e202400396. [PMID: 38659321 DOI: 10.1002/chem.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Ghosh S, Khandelia T, Mahadevan A, Panigrahi P, Kumar P, Mandal R, Boruah D, Venkataramani S, Patel BK. Photo-Induced Generation of Oxygenated Quaternary Centers via EnT Enabled Singlet O 2 Addition to C3-Maleimidated Quinoxaline: A Reagent-Less Approach. Chemistry 2024:e202400219. [PMID: 38717037 DOI: 10.1002/chem.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 06/15/2024]
Abstract
Demonstrated here is an external photo-sensitizer-free (auto-sensitized) singlet oxygen-enabled solvent-dependent tertiary hydroxylation and aryl-alkyl spiro-etherification of C3-maleimidated quinoxalines. Such "reagent-less" photo-oxygenation at Csp3-H and etherification involving Csp3-H/Csp2-H are unparalleled. Possibly, the highly π-conjugated N-H tautomer allows the substrate to get excited by irradiation, and subsequently, it attains the triplet state via ISC. This excited triplet-state sensitized molecule then transfers its energy to a triplet-state oxygen (3O2) generating reactive singlet oxygen (1O2) for hydroxylation and spirocyclization depending on the solvent used. In HFIP, the generated alkoxy radical accepts a proton via HAT giving hydroxylated product. In contrast, in an aprotic PhCl it underwent a radical addition at the ortho-position of the C2 aryl to provide spiro-ether. An unprecedented orthogonal spiro-etherification was observed via the displacement of o-substitutents for ortho (-OEt, -OMe, -F, -Cl, -Br) substituted substrates. The order of ipso substitution follows the trend -OMe>-OEt>-F>-H>-Cl>-Br. Both these oxygenation reactions can be carried out with nearly equal ease using direct sunlight without the requirement of any elaborate reaction setup. Demonstration of large-scale synthesis and a few interesting transformations have also been realized. Furthermore, several insightful control experiments and quantum chemical computations were performed to unravel the mechanism.
Collapse
Affiliation(s)
- Subhendu Ghosh
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Tamanna Khandelia
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Anjali Mahadevan
- Department of chemistry, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India
| | - Pritishree Panigrahi
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Piyush Kumar
- Department of chemistry, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India
| | - Raju Mandal
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Deepjyoti Boruah
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sugumar Venkataramani
- Department of chemistry, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, 140306, India
| | - Bhisma K Patel
- Department of chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
10
|
Grotemeyer EN, Parham JD, Jackson TA. Reaction landscape of a mononuclear Mn III-hydroxo complex with hydrogen peroxide. Dalton Trans 2023; 52:14350-14370. [PMID: 37767937 DOI: 10.1039/d3dt02672h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Peroxomanganese species have been proposed as key intermediates in the catalytic cycles of both manganese enzymes and synthetic catalysts. However, many of these intermediates have yet to be observed. Here, we report the formation of a series of intermediates, each generated from the reaction of the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq2Me)]+ with hydrogen peroxide under slightly different conditions. By changing the acidity of the reaction mixture and/or the quantity of hydrogen peroxide added, we are able to control which intermediate forms. Using a combination of electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies, as well as density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations, we formulate these intermediates as the bis(μ-oxo)dimanganese(III,IV) complex [MnIIIMnIV(μ-O)2(dpaq2Me)2]+, the MnIII-hydroperoxo complex [MnIII(OOH)(dpaq2Me)]+, and the MnIII-peroxo complex [MnIII(O2)(dpaq2Me)]. The formation of the MnIII-hydroperoxo species from the reaction of a MnIII-hydroxo complex with hydrogen peroxide mimics an elementary reaction proposed for many synthetic manganese catalysts that activate hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth N Grotemeyer
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Joshua D Parham
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
11
|
Call A, Capocasa G, Palone A, Vicens L, Aparicio E, Choukairi Afailal N, Siakavaras N, López Saló ME, Bietti M, Costas M. Highly Enantioselective Catalytic Lactonization at Nonactivated Primary and Secondary γ-C-H Bonds. J Am Chem Soc 2023; 145:18094-18103. [PMID: 37540636 PMCID: PMC10507665 DOI: 10.1021/jacs.3c06231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/06/2023]
Abstract
Chiral oxygenated aliphatic moieties are recurrent in biological and pharmaceutically relevant molecules and constitute one of the most versatile types of functionalities for further elaboration. Herein we report a protocol for straightforward and general access to chiral γ-lactones via enantioselective oxidation of strong nonactivated primary and secondary C(sp3)-H bonds in readily available carboxylic acids. The key enabling aspect is the use of robust sterically encumbered manganese catalysts that provide outstanding enantioselectivities (up to >99.9%) and yields (up to 96%) employing hydrogen peroxide as the oxidant. The resulting γ-lactones are of immediate interest for the preparation of inter alia natural products and recyclable polymeric materials.
Collapse
Affiliation(s)
- Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Giorgio Capocasa
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Laia Vicens
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Eric Aparicio
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Najoua Choukairi Afailal
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Nikos Siakavaras
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Maria Eugènia López Saló
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
12
|
Wang PZ, Chen JR, Xiao WJ. Emerging Trends in Copper-Promoted Radical-Involved C-O Bond Formations. J Am Chem Soc 2023; 145:17527-17550. [PMID: 37531466 DOI: 10.1021/jacs.3c04879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The C-O bond is ubiquitous in biologically active molecules, pharmaceutical agents, and functional materials, thereby making it an important functional group. Consequently, the development of C-O bond-forming reactions using catalytic strategies has become an increasingly important research topic in organic synthesis because more conventional methods involving strong base and acid have many limitations. In contrast to the ionic-pathway-based methods, copper-promoted radical-mediated C-O bond formation is experiencing a surge in research interest owing to a renaissance in free-radical chemistry and photoredox catalysis. This Perspective highlights and appraises state-of-the-art techniques in this burgeoning research field. The contents are organized according to the different reaction types and working models.
Collapse
Affiliation(s)
- Peng-Zi Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Palone A, Casadevall G, Ruiz-Barragan S, Call A, Osuna S, Bietti M, Costas M. C-H Bonds as Functional Groups: Simultaneous Generation of Multiple Stereocenters by Enantioselective Hydroxylation at Unactivated Tertiary C-H Bonds. J Am Chem Soc 2023; 145:15742-15753. [PMID: 37431886 PMCID: PMC10651061 DOI: 10.1021/jacs.2c10148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 07/12/2023]
Abstract
Enantioselective C-H oxidation is a standing chemical challenge foreseen as a powerful tool to transform readily available organic molecules into precious oxygenated building blocks. Here, we describe a catalytic enantioselective hydroxylation of tertiary C-H bonds in cyclohexane scaffolds with H2O2, an evolved manganese catalyst that provides structural complementary to the substrate similarly to the lock-and-key recognition operating in enzymatic active sites. Theoretical calculations unveil that enantioselectivity is governed by the precise fitting of the substrate scaffold into the catalytic site, through a network of complementary weak non-covalent interactions. Stereoretentive C(sp3)-H hydroxylation results in a single-step generation of multiple stereogenic centers (up to 4) that can be orthogonally manipulated by conventional methods providing rapid access, from a single precursor to a variety of chiral scaffolds.
Collapse
Affiliation(s)
- Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Guillem Casadevall
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sergi Ruiz-Barragan
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| | - Sílvia Osuna
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia E-17071, Spain
| |
Collapse
|
14
|
Jiang SY, Shi J, Wang W, Sun YZ, Wu W, Song JR, Yang X, Hao GF, Pan WD, Ren H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Shu-Yun Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Yan-Zheng Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Xiaoyan Yang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| |
Collapse
|
15
|
Yang G, Mikhalyova EA, Filatov AS, Kryatov SV, Rybak-Akimova EV. Manganese(II) Complexes of 1,1'-Bis[(pyridine-2-yl)methyl)]-2,2'-bipiperidine (PYBP): Synthesis, Structure, Catalytic Properties in Alkene Epoxidation with Hydrogen Peroxide, and Related Mechanistic Studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Cheng S, Li Q, Cheng X, Lin Y, Gong L. Recent Advances in Asymmetric Transformations of Unactivated Alkanes and Cycloalkanes through Direct C–H Functionalization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Qianyu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yu‐Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005 China
| |
Collapse
|
17
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202204290. [DOI: 10.1002/anie.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
18
|
Kejriwal A. Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H 2O 2) as powerful oxidant. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2085567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ambica Kejriwal
- Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
19
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
20
|
Ye P, Feng A, Wang L, Cao M, Zhu R, Liu L. Kinetic resolution of cyclic benzylic azides enabled by site- and enantioselective C(sp 3)-H oxidation. Nat Commun 2022; 13:1621. [PMID: 35338143 PMCID: PMC8956603 DOI: 10.1038/s41467-022-29319-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Catalytic nonenzymatic kinetic resolution (KR) of racemates remains one of the most powerful tools to prepare enantiopure compounds, which dominantly relies on the manipulation of reactive functional groups. Moreover, catalytic KR of organic azides represents a formidable challenge due to the small size and instability of the azido group. Here, an effective KR of cyclic benzylic azides through site- and enantioselective C(sp3)-H oxidation is described. The manganese catalyzed oxidative KR reaction exhibits good functional group tolerance, and is applicable to a range of tetrahydroquinoline- and indoline-based organic azides with excellent site- and enantio-discrimination. Computational studies elucidate that the effective chiral recognition is derived from hydrogen bonding interaction between substrate and catalyst.
Collapse
Affiliation(s)
- Pengbo Ye
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Aili Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
21
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
22
|
Zhang Z, Chen P, Liu G. Copper-catalyzed radical relay in C(sp 3)-H functionalization. Chem Soc Rev 2022; 51:1640-1658. [PMID: 35142305 DOI: 10.1039/d1cs00727k] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical-involved transition metal (TM) catalysis has greatly enabled new reactivities in recent decades. Copper-catalyzed radical relay offers enormous potential in C(sp3)-H functionalization which combines the unique regioselectivity of hydrogen atom transfer (HAT) and the versatility of copper-catalyzed cross-coupling. More importantly, significant progress has been achieved in asymmetric C-H functionalization through judicious ligand design. This tutorial review will highlight the recent advances in this rapidly growing area, and we hope this survey will inspire future strategic developments for selective C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese, Academy of Sciences, Shanghai 200032, China.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese, Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
23
|
Munshi S, Sinha A, Yiga S, Banerjee S, Singh R, Hossain MK, Haukka M, Valiati AF, Huelsmann RD, Martendal E, Peralta R, Xavier F, Wendt OF, Paine TK, Nordlander E. Hydrogen-atom and oxygen-atom transfer reactivities of iron(IV)-oxo complexes of quinoline-substituted pentadentate ligands. Dalton Trans 2022; 51:870-884. [PMID: 34994361 DOI: 10.1039/d1dt03381f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of iron(II) complexes with the general formula [FeII(L2-Qn)(L)]n+ (n = 1, L = F-, Cl-; n = 2, L = NCMe, H2O) have been isolated and characterized. The X-ray crystallographic data reveals that metal-ligand bond distances vary with varying ligand field strengths of the sixth ligand. While the complexes with fluoride, chloride and water as axial ligand are high spin, the acetonitrile-coordinated complex is in a mixed spin state. The steric bulk of the quinoline moieties forces the axial ligands to deviate from the Fe-Naxial axis. A higher deviation/tilt is noted for the high spin complexes, while the acetonitrile coordinated complex displays least deviation. This deviation from linearity is slightly less in the analogous low-spin iron(II) complex [FeII(L1-Qn)(NCMe)]2+ of the related asymmetric ligand L1-Qn due to the presence of only one sterically demanding quinoline moiety. The two iron(II)-acetonitrile complexes [FeII(L2-Qn)(NCMe)]2+ and [FeII(L1-Qn)(NCMe)]2+ generate the corresponding iron(IV)-oxo species with higher thermal stability of the species supported by the L1-Qn ligand. The crystallographic and spectroscopic data for [FeIV(O)(L1-Qn)](ClO4)2 bear resemblance to other crystallographically characterized S = 1 iron(IV)-oxo complexes. The hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactivities of both the iron(IV)-oxo complexes were investigated, and a Box-Behnken multivariate optimization of the parameters for catalytic oxidation of cyclohexane by [FeII(L2-Qn)(NCMe)]2+ using hydrogen peroxide as the terminal oxidant is presented. An increase in the average Fe-N bond length in [FeII(L1-Qn)(NCMe)]2+ is also manifested in higher HAT and OAT rates relative to the other reported complexes of ligands based on the N4Py framework. The results reported here confirm that the steric influence of the ligand environment is of critical importance for the reactivity of iron(IV)-oxo complexes, but additional electronic factors must influence the reactivity of iron-oxo complexes of N4Py derivatives.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Arup Sinha
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Solomon Yiga
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Reena Singh
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Md Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 35, FI-400 14, Jyväskylä, Finland
| | - Andrei Felipe Valiati
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Ricardo Dagnoni Huelsmann
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Edmar Martendal
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Rosely Peralta
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Fernando Xavier
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Ola F Wendt
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Tapan K Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
24
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Zhu X, Jian W, Huang M, Li D, Li Y, Zhang X, Bao H. Asymmetric radical carboesterification of dienes. Nat Commun 2021; 12:6670. [PMID: 34795235 PMCID: PMC8602303 DOI: 10.1038/s41467-021-26843-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
The straightforward strategy of building a chiral C-O bond directly on a general carbon radical center is challenging and stereocontrol of the reactions of open-chain hydrocarbon radicals remains a largely unsolved problem. Advance in this elementary step will spur the development of asymmetric radical C-O bond construction. Herein, we report a copper-catalyzed regioselective and enantioselective carboesterification of substituted dienes using alkyl diacyl peroxides as the source of both the carbon and oxygen substituents. The participation of external acids in this reaction substantially extends its applicability and leads to structurally diverse allylic ester products. This work represents the advance in the key elementary reaction of intermolecular enantioselective construction of C-O bond on open-chain hydrocarbon radicals and may lead to the discovery of other asymmetric radical reactions. Stereocontrol of C–O bond formation from a carbon-based radical is very difficult due to the rapid inversion of the carbon radical. Here the authors present a method to form chiral esters from conjugated dienes with copper and chiral PyBox ligands, likely proceeding via an allylic radical.
Collapse
Affiliation(s)
- Xiaotao Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
| | - Wujun Jian
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China
| | - Meirong Huang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. of China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fujian, China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China.
| |
Collapse
|
26
|
Costas M. Site and Enantioselective Aliphatic C-H Oxidation with Bioinspired Chiral Complexes. CHEM REC 2021; 21:4000-4014. [PMID: 34609780 DOI: 10.1002/tcr.202100227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Selective oxidation of aliphatic C-H bonds stands as an unsolved problem in organic synthesis, with the potential to offer novel paths for preparing molecules of biological interest. The quest for reagents that can perform this class of reactions finds oxygenases and their mechanisms of action as inspiration motifs. Among the numerous families of synthetic catalysts that have been explored, complexes with linear tetraazadentate ligands combining two aliphatic amines and two aromatic amine heterocycles display a structural versatility proven instrumental in the design of C-H oxidation reactions showing site and enantioselectivities, not accessible by conventional oxidants. This manuscript makes a review of recent advances in the field.
Collapse
Affiliation(s)
- Miquel Costas
- Department of Chemistry and Institut de Química Computacional I Catàlisi (IQCC), Universitat de Girona Facultat de Ciències, Campus de Montilivi, 17003, Girona, Spain
| |
Collapse
|
27
|
Wang B, Lin J, Sun Q, Xia C, Sun W. Efficient Aliphatic C–H Oxidation and C═C Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bingyang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Griffin JD, Vogt DB, Du Bois J, Sigman MS. Mechanistic Guidance Leads to Enhanced Site-Selectivity in C–H Oxidation Reactions Catalyzed by Ruthenium bis(Bipyridine) Complexes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jeremy D. Griffin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - David B. Vogt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - J. Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Wang G, Lu R, He C, Liu L. Kinetic resolution of indolines by asymmetric hydroxylamine formation. Nat Commun 2021; 12:2512. [PMID: 33947847 PMCID: PMC8096955 DOI: 10.1038/s41467-021-22658-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Catalytic kinetic resolution of amines represents a longstanding challenge in chemical synthesis. Here, we described a kinetic resolution of secondary amines through oxygenation to produce enantiopure hydroxylamines involving N–O bond formation. The economic and practical titanium-catalyzed asymmetric oxygenation with environmentally benign hydrogen peroxide as oxidant is applicable to a range of racemic indolines with multiple stereocenters and diverse substituent patterns in high efficiency with efficient chemoselectivity and enantio-discrimination. Late-stage asymmetric oxygenation of bioactive molecules that are otherwise difficult to synthesize was also explored. Catalytic kinetic resolution of amines is a longstanding challenge in chemical synthesis. Here, the authors report on titanium‐catalysed asymmetric oxygenation with hydrogen peroxide for kinetic resolution of secondary amines through oxygenation to produce enantiopure hydroxylamines involving N–O bond formation.
Collapse
Affiliation(s)
- Gang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Ran Lu
- School of Pharmaceutical Sciences, Jinan, China
| | | | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China. .,School of Pharmaceutical Sciences, Jinan, China.
| |
Collapse
|
30
|
Vicens L, Bietti M, Costas M. General Access to Modified α-Amino Acids by Bioinspired Stereoselective γ-C-H Bond Lactonization. Angew Chem Int Ed Engl 2021; 60:4740-4746. [PMID: 33210804 DOI: 10.1002/anie.202007899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Indexed: 01/06/2023]
Abstract
α-Amino acids represent a valuable class of natural products employed as building blocks in biological and chemical synthesis. Because of the limited number of natural amino acids available, and of their widespread application in proteomics, diagnosis, drug delivery and catalysis, there is an increasing demand for the development of procedures for the preparation of modified analogues. Herein, we show that the use of bioinspired manganese catalysts and H2 O2 under mild conditions, provides access to modified α-amino acids via γ-C-H bond lactonization. The system can efficiently target 1°, 2° and 3° γ-C-H bonds of α-substituted and achiral α,α-disubstituted α-amino acids with outstanding site-selectivity, good to excellent diastereoselectivity and (where applicable) enantioselectivity. This methodology may be considered alternative to well-established organometallic procedures.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| |
Collapse
|
31
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
32
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
33
|
Zhang C, Li ZL, Gu QS, Liu XY. Catalytic enantioselective C(sp 3)-H functionalization involving radical intermediates. Nat Commun 2021; 12:475. [PMID: 33473126 PMCID: PMC7817665 DOI: 10.1038/s41467-020-20770-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, with the boosted development of radical chemistry, enantioselective functionalization of C(sp3)-H bonds via a radical pathway has witnessed a renaissance. In principle, two distinct catalytic modes, distinguished by the steps in which the stereochemistry is determined (the radical formation step or the radical functionalization step), can be devised. This Perspective discusses the state-of-the-art in the area of catalytic enantioselective C(sp3)-H functionalization involving radical intermediates as well as future challenges and opportunities.
Collapse
Affiliation(s)
- Chi Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
34
|
Cai M, Xu K, Li Y, Nie Z, Zhang L, Luo S. Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. J Am Chem Soc 2021; 143:1078-1087. [PMID: 33399468 DOI: 10.1021/jacs.0c11787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbonyls and amines are yin and yang in organocatalysis as they mutually activate and transform each other. These intrinsically reacting partners tend to condense with each other, thus depleting their individual activity when used together as cocatalysts. Though widely established in many prominent catalytic strategies, aminocatalysis and carbonyl catalysis do not coexist well, and, as such, a cooperative amine/carbonyl dual catalysis remains essentially unknown. Here we report a cooperative primary amine and ketone dual catalytic approach for the asymmetric α-hydroxylation of β-ketocarbonyls with H2O2. Besides participating in the typical enamine catalytic cycle, the chiral primary amine catalyst was found to work cooperatively with a ketone catalyst to activate H2O2 via an oxaziridine intermediate derived from an in-situ-generated ketimine. Ultimately, this enamine-oxaziridine coupling facilitated the highly controlled α-hydroxylation of several β-ketocarbonyls in excellent yield and enantioselectivity. Notably, late-stage hydroxylation for peptidyl amide or chiral esters can also be achieved with high stereoselectivity. In addition to its operational simplicity and mild conditions, this cooperative amine/ketone catalytic approach also provides a new strategy for the catalytic activation of H2O2 and expands the domain of typical amine and carbonyl catalysis to include this challenging transformation.
Collapse
Affiliation(s)
- Mao Cai
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaini Xu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuze Li
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongxiu Nie
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Sun S, Ma Y, Liu Z, Liu L. Oxidative Kinetic Resolution of Cyclic Benzylic Ethers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shutao Sun
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yingang Ma
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
| | - Ziqiang Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250100 P. R. China
- School of School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
36
|
Masferrer-Rius E, Li F, Lutz M, Klein Gebbink RJM. Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; a focus on enantioselective benzylic oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01642c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of highly electron-rich manganese complexes for enantioselective benzylic oxidation (and asymmetric epoxidation) is described, to provide chiral benzylic alcohols and epoxides in good yields and enantioselectivites.
Collapse
Affiliation(s)
- Eduard Masferrer-Rius
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fanshi Li
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
37
|
General Access to Modified α‐Amino Acids by Bioinspired Stereoselective γ‐C−H Bond Lactonization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Sun Q, Sun W. Catalytic Enantioselective Methylene C(sp 3)-H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Org Lett 2020; 22:9529-9533. [PMID: 33300804 DOI: 10.1021/acs.orglett.0c03585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving direct C-H hydroxylation in a highly diastereo- and enantioselective manner is still a challenging goal. This reaction is mainly hindered by the potential for overoxidation of the generated alcohols as well as low stereoselectivity. Herein, we present an enantioselective benzylic C-H hydroxylation catalyzed by a manganese complex, H2O2, and a carboxylic acid in 2,2,2-trifluoroethanol. The benzylic alcohols were successfully furnished in excellent diastereoselectivities (up to >95:5) and enantioselectivities (up to 95% ee). As a highlight of this work, high diastereoselectivity of C-H hydroxylation could be achieved by tuning the amount of carboxylic acid additive.
Collapse
Affiliation(s)
- Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
39
|
|
40
|
Sun S, Yang Y, Zhao R, Zhang D, Liu L. Site- and Enantiodifferentiating C(sp 3)-H Oxidation Enables Asymmetric Access to Structurally and Stereochemically Diverse Saturated Cyclic Ethers. J Am Chem Soc 2020; 142:19346-19353. [PMID: 33140964 DOI: 10.1021/jacs.0c09636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A manganese-catalyzed site- and enantiodifferentiating oxidation of C(sp3)-H bonds in saturated cyclic ethers has been described. The mild and practical method is applicable to a range of tetrahydrofurans, tetrahydropyrans, and medium-sized cyclic ethers with multiple stereocenters and diverse substituent patterns in high efficiency with extremely efficient site- and enantiodiscrimination. Late-stage application in complex biological active molecules was further demonstrated. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity. The ability to employ ether substrates as the limiting reagent, together with a broad substrate scope, and a high level of chiral recognition, represent a valuable demonstration of the utility of asymmetric C(sp3)-H oxidation in complex molecule synthesis.
Collapse
Affiliation(s)
- Shutao Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yiying Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ran Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dongju Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
41
|
Sun S, Ma Y, Liu Z, Liu L. Oxidative Kinetic Resolution of Cyclic Benzylic Ethers. Angew Chem Int Ed Engl 2020; 60:176-180. [PMID: 33112503 DOI: 10.1002/anie.202009594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 01/04/2023]
Abstract
A manganese-catalyzed oxidative kinetic resolution of cyclic benzylic ethers through asymmetric C(sp3 )-H oxidation is reported. The practical approach is applicable to a wide range of 1,3-dihydroisobenzofurans bearing diverse functional groups and substituent patterns at the α position with extremely efficient enantiodiscrimination. The generality of the strategy was further demonstrated by efficient oxidative kinetic resolution of another type of five-membered cyclic benzylic ether, 2,3-dihydrobenzofurans, and six-membered 6H-benzo[c]chromenes. Direct late-stage oxidative kinetic resolution of bioactive molecules that are otherwise difficult to access was further explored.
Collapse
Affiliation(s)
- Shutao Sun
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China.,School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yingang Ma
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Ziqiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, P. R. China.,School of School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
42
|
Kannan N, Patil AR, Sinha A. Direct C-H bond halogenation and pseudohalogenation of hydrocarbons mediated by high-valent 3d metal-oxo species. Dalton Trans 2020; 49:14344-14360. [PMID: 33057538 DOI: 10.1039/d0dt02533j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Late-stage direct functionalization of the C-H bond is synthetically desirable. Metalloenzymes having metal-oxo active sites are well known to selectively catalyze hydroxylation and halogenation reactions with high efficiency. This review highlights the recent developments in the field of direct C-H halogenation and pseudohalogenation reactions catalyzed by the functional models of metalloenzymes.
Collapse
Affiliation(s)
- Neppoliyan Kannan
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Akshay R Patil
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Arup Sinha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
43
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Highly enantioselective undirected catalytic hydroxylation of benzylic CH2 groups with H2O2. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
46
|
Serrano-Plana J, Rumo C, Rebelein JG, Peterson RL, Barnet M, Ward TR. Enantioselective Hydroxylation of Benzylic C(sp 3)-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology. J Am Chem Soc 2020; 142:10617-10623. [PMID: 32450689 PMCID: PMC7332155 DOI: 10.1021/jacs.0c02788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The selective hydroxylation of C–H
bonds is of great interest
to the synthetic community. Both homogeneous catalysts and enzymes
offer complementary means to tackle this challenge. Herein, we show
that biotinylated Fe(TAML)-complexes (TAML = Tetra Amido Macrocyclic
Ligand) can be used as cofactors for incorporation into streptavidin
to assemble artificial hydroxylases. Chemo-genetic optimization of
both cofactor and streptavidin allowed optimizing the performance
of the hydroxylase. Using H2O2 as oxidant, up
to ∼300 turnovers for the oxidation of benzylic C–H
bonds were obtained. Upgrading the ee was achieved by kinetic resolution
of the resulting benzylic alcohol to afford up to >98% ee for (R)-tetralol. X-ray analysis of artificial hydroxylases highlights
critical details of the second coordination sphere around the Fe(TAML)
cofactor.
Collapse
Affiliation(s)
- Joan Serrano-Plana
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Corentin Rumo
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Johannes G Rebelein
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Ryan L Peterson
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland.,Department of Chemistry and Biochemistry, Texas State University, 78666 Texas, United States
| | - Maxime Barnet
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| |
Collapse
|
47
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Yang CJ, Zhang C, Gu QS, Fang JH, Su XL, Ye L, Sun Y, Tian Y, Li ZL, Liu XY. Cu-catalysed intramolecular radical enantioconvergent tertiary β-C(sp3)–H amination of racemic ketones. Nat Catal 2020. [DOI: 10.1038/s41929-020-0460-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Borrell M, Gil-Caballero S, Bietti M, Costas M. Site-Selective and Product Chemoselective Aliphatic C–H Bond Hydroxylation of Polyhydroxylated Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05423] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Margarida Borrell
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia Spain
| | - Sergio Gil-Caballero
- Serveis Tècnics de Recerca (NMR), Universitat de Girona, Parc científic i tecnològic de la UdG, Pic de Peguera 15, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia Spain
| |
Collapse
|
50
|
Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis. Nat Catal 2020. [DOI: 10.1038/s41929-020-0439-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|