1
|
Li A, Zhao Z, Yang G, Zhang Q, Chen X, Yuan WZ. Polymorphism and phase transformation tuned luminescence and mechanistic insights in nonconventional luminophores. Chem Sci 2025:d5sc02250a. [PMID: 40443988 PMCID: PMC12117707 DOI: 10.1039/d5sc02250a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
Nonconventional luminophores (NCLs) are attracting significant attention for their unique properties and applications. However, the lack of a comprehensive mechanistic understanding impedes their further development. Particularly, a recurring assumption that impurities are responsible for the luminescence has hindered progress. To elucidate the emission mechanism, we report tunable intrinsic emission from highly purified gemini aliphatic quaternary ammonium salts (GAQASs), leveraging their polymorphism. We demonstrate that polymorphism-dependent luminescence arises from distinct molecular packings and consequent varied clustering states. Specifically, denser ion clustering enhances charge transfer and recombination, heavy atom effects and conformational rigidity, thereby accelerating radiative triplet decay and intersystem crossing, while suppressing nonradiative triplet decay, ultimately leading to enhanced phosphorescence. Furthermore, GAQAS crystals undergo irreversible phase transformations upon heating, which partially disrupt intermolecular interactions, thus allowing for tunable emission. This polymorphism and phase transformation regulated luminescence in GAQASs strongly suggests that intrinsic factors, rather than impurities, are responsible for the observed emission, and are consistent with the clustering-triggered emission mechanism. Our findings establish a direct link between molecular packing, electronic structure and luminescent properties in NCLs. This study advances the mechanistic understanding of NCL luminescence, demonstrating an effective strategy for tunable emission via polymorphism and phase transformation.
Collapse
Affiliation(s)
- Anze Li
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Zihao Zhao
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Guangxin Yang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Qiang Zhang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Xiang Chen
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Wang Zhang Yuan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| |
Collapse
|
2
|
Liu F, Chen G, Liu X, Jiang T, Guo W, Li X, Wei Z. Anionic modulation induces molecular polarity in a three-component crown ether system. Dalton Trans 2025; 54:2793-2798. [PMID: 39804110 DOI: 10.1039/d4dt03466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO4] (1) and [(PTFMA)(15-crown-5)PF6] (2), through the reaction of p-trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (P21) to the centrosymmetric space group (P21/c) with increasing temperature. This transformation is accompanied by a switchable second harmonic generation (SHG) signal, a noticeable dielectric response, and a reversible phase transition in differential scanning calorimetry (DSC). For compound 2, there are reversible phase transitions accompanied by a dielectric response, but it does not exhibit a switchable SHG signal. The difference in properties between the two compounds may be due to the polarity modulation of the anion, providing new ideas for obtaining crown ether complexes with SHG response properties.
Collapse
Affiliation(s)
- Feiyan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Guoyong Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiao Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Ting Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiancai Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
3
|
Zhou F, Weng YR, Shi Y, Yu YH, Lu D, Yu Y, She JZ, Ai Y. Plastic phase transitions in tris(hydroxymethyl)aminomethane perchlorate. Dalton Trans 2024; 53:7965-7970. [PMID: 38647331 DOI: 10.1039/d4dt00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Organic crystal materials with metal-free feature and intrinsically low molecular mass are highly desirable for applications in flexible smart devices. Here, we reported a plastic crystal, tris(hydroxymethyl)aminomethane perchlorate (Tris-HClO4), which crystallizes in the R3̄ space group at room temperature and undergoes plastic phase transition at 369 K, showing a large entropy gain of 70.5 J mol-1 K-1, much higher than its fusion entropy gain (12.9 J mol-1 K-1). PXRD measurement indicates that it has cubic lattice symmetry in the high-temperature phase. Moreover, it exhibits excellent dielectric permittivity switching properties and robust cyclic stability. This work could be the pathway for chemical designing multifunctional switchable materials with the motive of combining the idea of symmetry breaking and plastic phase transition.
Collapse
Affiliation(s)
- Feng Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yan-Ran Weng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yu Shi
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yun-Hui Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Dan Lu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yong Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Jia-Zi She
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| |
Collapse
|
4
|
Yuan GJ, Pan XW, Chen L, Chen C, Ren XM. Supramolecular crystals of Mn(15-crown-5)(MnCl 4)(DMF) with dielectric phase transition, high quantum yield and phase transition-induced luminescence enhancement behavior. Dalton Trans 2024; 53:2687-2695. [PMID: 38226466 DOI: 10.1039/d3dt03838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The supramolecular crystals, Mn(15-crown-5)(MnCl4)(DMF), (1; 15-crown-5 = 1,4,7,10,13-pentaoxacyclopentadecane), were synthesized via a self-assembly strategy under ambient conditions. Comprehensive characterization of the crystals involved microanalysis for C, H, and N elements, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and single-crystal X-ray diffraction techniques. The results reveal that 1 undergoes a two-step thermotropic and isostructural phase transition at around 217 K and 351 K upon heating. All three phases belong to the same space group (P212121) with analogous cell parameters. These two phase transitions primarily involve the thermally activated ring rotational dynamics of the 15-crown-5 molecule, with only the transition at ca. 351 K being associated with a dielectric anomaly. 1 exhibits intense luminescence with a peak at ∼600 nm and a high quantum yield of 68%. The mechanisms underlying this intense luminescence are likely linked to low-symmetry ligand fields. Additionally, 1 displays phase transition-induced luminescence enhancement behavior, and the possible mechanism is further discussed.
Collapse
Affiliation(s)
- Guo-Jun Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular of Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Xue-Wei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular of Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Li Chen
- Goldenway Environmental Technology Co., Ltd, Nanjing 211121, P. R. China
| | - Chao Chen
- Goldenway Environmental Technology Co., Ltd, Nanjing 211121, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular of Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Hellwig H, Nowok A, Peksa P, Dulski M, Musioł R, Pawlus S, Kuś P. Molecular Dynamics and Near- Tg Phenomena of Cyclic Thioethers. Int J Mol Sci 2023; 24:17166. [PMID: 38138995 PMCID: PMC10742681 DOI: 10.3390/ijms242417166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
This article presents the synthesis and molecular dynamics investigation of three novel cyclic thioethers: 2,3-(4'-methylbenzo)-1,4,7,10-tetrathiacyclododeca-2-ene (compound 1), 2,3,14,15-bis(4',4″(5″)-methylbenzo)-1,4,7,10,13,16,19,22,25-octathiacyclotetracosa-2,14-diene (compound 2), and 2,3,8,9-bis(4',4″(5″)-methylbenzo)-1,4,7,10-tetrathiacyclododeca-2,8-diene (compound 3). The compounds exhibit relatively high glass transition temperatures (Tg), which range between 254 and 283 K. This characteristic positions them within the so-far limited category of crown-like glass-formers. We demonstrate that cyclic thioethers may span both the realms of ordinary and sizeable molecular glass-formers, each featuring distinct physical properties. Furthermore, we show that the Tg follows a sublinear power law as a function of the molar mass within this class of compounds. We also reveal multiple dielectric relaxation processes of the novel cyclic thioethers. Above the Tg, their dielectric loss spectra are dominated by a structural relaxation, which originates from the cooperative reorientation of entire molecules and exhibits an excess wing on its high-frequency slope. This feature has been attributed to the Johari-Goldstein (JG) process. Each investigated compound exhibits also at least one intramolecular secondary non-JG relaxation stemming from conformational changes. Their activation energies range from approximately 19 kJ/mol to roughly 40 kJ/mol. Finally, we analyze the high-pressure molecular dynamics of compound 1, revealing a pressure-induced increase in its Tg with a dTg/dp coefficient equal to 197 ± 8 K/GPa.
Collapse
Affiliation(s)
- Hubert Hellwig
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège, B6a, Room 3/19, Allée du Six Août 13, 4000 Liege, Belgium;
| | - Andrzej Nowok
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland; (A.N.); (P.P.)
| | - Paulina Peksa
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland; (A.N.); (P.P.)
| | - Mateusz Dulski
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003 Katowice, Poland;
| | - Sebastian Pawlus
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland;
| | - Piotr Kuś
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003 Katowice, Poland;
| |
Collapse
|
6
|
Liu Y, Hu H, Qi H, Lv M, Liu Z. The Synthesis, Structure, and Dielectric Properties of a One-Dimensional Hydrogen-Bonded DL-α-Phenylglycine Supramolecular Crown-Ether-Based Inclusion Compound. Molecules 2023; 28:7586. [PMID: 38005309 PMCID: PMC10673173 DOI: 10.3390/molecules28227586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]-(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature-variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]- presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Huanhuan Qi
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Meixia Lv
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
7
|
Zhang H, Wang L, Guo W, Cai H, Wei Z. An organic-inorganic hybrid material [Me 3NCH 2CH 2F]FeBr 4 exhibits three-step SHG on/off. Chem Commun (Camb) 2023; 59:13442-13445. [PMID: 37881000 DOI: 10.1039/d3cc04700h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A novel solid-state second harmonic generation (SHG) organic-inorganic hybrid switch [Me3NCH2CH2F]FeBr4 (1) exhibits genuine three-step "on-off-on-off" SHG-switching above-room temperature, which has potential applications in multi-step optical devices.
Collapse
Affiliation(s)
- Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Lingyu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| |
Collapse
|
8
|
Li B, Rao W, You X, Wang P, Wei J, Wei Z, Zhang H, Cai H. Three-Dimensional Perovskite Phase Transition Materials with Switchable Second Harmonic Generation Properties Introduced by Homochiral (1 S,4 S)-2,5-Diazabicyclo[2.2.1]-heptane. Inorg Chem 2023; 62:942-949. [PMID: 36602537 DOI: 10.1021/acs.inorgchem.2c03740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Switchable second harmonic generation (SHG) materials have potential applications in information storage, signal processing, and so on because they can switch between SHG-on and SHG-off states. In this work, we designed and synthesized three organic-inorganic hybrid Rb halide three-dimensional (3D) perovskite materials [1S,4S 2,5-2.2.1-H2dabch]RbX3·0.5H2O (X = Cl, 1; Br, 2; I, 3) based on the chiral 1S,4S-2,5-diazabicyclo[2.2.1]heptane (1S,4S-2,5-2.2.1-dabch). The selection of homochiral organic cations ensures that the compounds 1∼3 crystallize in the noncentrosymmetric and chiral space group P212121, which further leads to reversible SHG responses of the three compounds. Through differential scanning calorimetry (DSC) and dielectric measurements, it revealed that the phase transition point of the compounds 1∼3 increased with RbCl, RbBr, and RbI. This is because the hydrogen interaction H···X between the inorganic framework [RbX3]n and the organic cation [1S,4S-2,5-2.2.1-H2dabch]2+ is increased with the order of I > Br > Cl. This study can provide an effective molecular design strategy for the exploration and construction of temperature-tunable SHG switching materials.
Collapse
Affiliation(s)
- Bo Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wenjun Rao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi Province, People's Republic of China
| | - Pan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
9
|
Ye X, He W, Wei J, Wei Z, You X, Cai H. Two host-guest grown ether supramolecules show switchable phase transition, dielectric and second-harmonic generation effect. Dalton Trans 2022; 51:15074-15079. [PMID: 36112093 DOI: 10.1039/d2dt01826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excellent properties of host-guest crown ether inclusions in phase transition, dielectric and second-order nonlinear optical properties have attracted much attention. In this paper, we successfully designed and prepared two novel host-guest crown ether supramolecules [(DFBA)(15-crown-5)]X (X = ClO4-, 1; ReO4-, 2) by reactions of 2,6-difluorobenzylamine (DFBA) with 1,4,10,13-pentaoxacyclopentadecane (15-crown-5) in HClO4, or HReO4 aqueous solution. By the introduction of difluoro-substituted benzylamine as a guest cation, the phase transition temperatures are greatly increased to 377 K for 1 and 391 K for 2. More importantly, the space group of 1 has changed from centrosymmetric (CS) P2/c to the non-centrosymmetric (NCS) Pca21 in 2 when substituting perchlorate (ClO4-) with the larger and heavier perrhenate (ReO4-), which leads to 2 showing a switchable and stable second-harmonic generation (SHG) effect. According to the principle of momentum matching between a cation and anion, the perrhenate group increases the energy barrier of the molecular thermal motion, which not only significantly increases the phase transition temperature of 2 but also causes it to be frozen and crystallized in a NCS space group at room temperature. This research demonstrates that a polar molecule can adjust the suitability of anions and cations inside the crystal by practical chemical means.
Collapse
Affiliation(s)
- Xing Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Wenhui He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
10
|
Han K, Ye X, Li B, Wei Z, Wei J, Wang P, Cai H. Organic–Inorganic Hybrid Compound [H 2-1,5-Diazabicyclo[3.3.0]octane]ZnBr 4 with Reverse Symmetry Breaking Shows a Switchable Dielectric Anomaly and Robust Second Harmonic Generation Effect. Inorg Chem 2022; 61:11859-11865. [DOI: 10.1021/acs.inorgchem.2c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keke Han
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Xing Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Bo Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Pan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People’s Republic of China
| |
Collapse
|
11
|
Gao H, Chen YD, Zhang T, Ge JZ, Fu DW, Zhang Y. Homochiral Chemistry Strategy To Trigger Dielectric Switching and Second-Harmonic Generation Response on Spirocyclic Derivatives. Inorg Chem 2022; 61:10872-10879. [DOI: 10.1021/acs.inorgchem.2c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Gao
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yi-Dan Chen
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
12
|
Han K, Wei Z, Ye X, Li B, Wang P, Cai H. A lead bromide organic-inorganic hybrid perovskite material showing reversible dual phase transition and robust SHG switching. Dalton Trans 2022; 51:8273-8278. [PMID: 35579326 DOI: 10.1039/d2dt01040b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-dimensional organic-inorganic hybrid perovskite material [3.3.0-dabco]PbBr3 (1) was synthesized by the reaction of 1,5-diazabicyclo[3.3.0]octane (3.3.0-dabco) with PbBr2 in concentrated HBr aqueous solution. Differential scanning calorimetry, dielectric measurements, and variable-temperature structural analyses revealed that compound 1 exhibits two successive structural phase transitions from P212121 to Pbcm at 387 K (T1) and then to P6/mmc at 436 K (T2), accompanied by two pairs of dielectric anomalies with a clear one at T1 and an unobvious one at T2. In addition, compound 1 shows a robust second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states during its centrosymmetric to non-centrosymmetric symmetry breaking phase transition at T1.
Collapse
Affiliation(s)
- Keke Han
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Xing Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Bo Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Pan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| |
Collapse
|
13
|
Liao RM, An Z, Ye HY. Structural phase transition in a charge-transfer compound: tropylium hexafluoridoantimonate(V)–1,4-dimethylnaphthalene (1/1). ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:366-370. [DOI: 10.1107/s2053229622005320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Molecular motion in crystals has attracted much attention for the development of stimuli-responsive materials. The most studied are molecules with few atoms or highly symmetrical molecules. To develop molecules with new motion characteristics, we synthesized a charge-transfer compound, namely, tropylium hexafluoridoantimonate(V)–1,4-dimethylnaphthalene (1/1), (C7H7)[SbF6]·C12H12, and studied its structural phase transition. In this compound, the tropylium cation and the 1,4-dimethylnaphthalene molecule have planar geometry, but the latter has low symmetry. They are stacked as a one-dimensional chain structure through π–π charge-transfer interactions. Weak intermolecular interactions and planar molecular geometry result in a large degree of freedom of in-plane motion. Upon heating, due to the in-plane rotation of the molecules, the compound undergoes an order–disorder structural phase transition (phase-transition temperature = 334 K). The space group of the room-temperature phase is P21/m and the space group of the high-temperature phase is P4/mmm. This phase transition is accompanied by significant dielectric anomalies. The current investigation shows that the structural features of the title compound can be used to construct functional materials with phase transitions, such as molecular ferroelectrics.
Collapse
|
14
|
Li YK, Tan YH, Tang YZ, Fan XW, Wang SF, Ying TT, Zhang H. Unusual high-temperature host–guest inclusion compound-based ferroelectrics with nonlinear optical switching and large spontaneous polarization behaviours. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01020h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host–guest inclusion compound-based ferroelectrics [Hcta-(18-crown-6)]+[BF4]− (1) and [Hcta-(18-crown-6)]+[ClO4]− (2) with a high Curie temperature (Tc = 403/394 K) and large spontaneous polarization (Ps = 5.7/4.7 μC cm−2) are reported.
Collapse
Affiliation(s)
- Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiao-Wei Fan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Su-Fen Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
15
|
Wang P, Chen MK, Tong YQ, Yin SQ, Huang B. Structural phase transition and dielectric relaxation in an organic–inorganic hybrid compound: [(CH 3) 3NH] 4[Fe(SCN) 6]Cl. CrystEngComm 2022. [DOI: 10.1039/d2ce01150f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new hybrid compound undergoes a structural phase transition accompanied by the thermal hysteresis of dielectric bistability as well as anisotropic dielectric relaxation along the a-, b-, and c-axis.
Collapse
Affiliation(s)
- Ping Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ming-Kun Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Qiao Tong
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Shi-Qing Yin
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
16
|
Di FF, Zhou L, Chen WJ, Liu JC, Peng H, Tang SY, Yu H, Liao WQ, Wang ZX. Room-temperature dielectric switching in a host–guest crown ether inclusion complex. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00959a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the “momentum matching” theory, we have designed a new host–guest crown ether inclusion complex, which exhibits prominent room temperature bistable dielectric switching.
Collapse
Affiliation(s)
- Fang-Fang Di
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lin Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wu-Jia Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shu-Yu Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
17
|
Huang RK, Chen XX, Xiao ZF, Liu DX, Zhang WX, Chen XM. Enhancing switchable dielectric property for crystalline supramolecular rotor compounds by adding polar components. Chem Commun (Camb) 2020; 56:4114-4117. [PMID: 32163092 DOI: 10.1039/d0cc01026j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Two new compounds were obtained by assembling the [(2-methoxy-5-nitro-anilinium)(18-crown-6)]+ cation with non-polar PF6- and polar SO3CF3- anions, respectively. Benefiting from its polar anion, the SO3CF3- compound reveals a more significant dielectric switching behaviour during phase transition, demonstrating an effective strategy to enhance the dielectric property by adding polar components.
Collapse
Affiliation(s)
- Rui-Kang Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Zhi-Feng Xiao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - De-Xuan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
18
|
Li HH, Wang CF, Wu YX, Jiang F, Shi C, Ye HY, Zhang Y. Halogen substitution regulates the phase transition temperature and band gap of semiconductor compounds. Chem Commun (Camb) 2020; 56:1697-1700. [PMID: 31939947 DOI: 10.1039/c9cc09477f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
(CH3CH2NH3)3BiX6 and (CH2ClCH2NH3)3BiX6 (X = Cl, Br) obtained by halogen substitution not only realize the adjustment of the phase transition in a relatively wide temperature range, but also optimize the semiconductor performance. This will promote the exploration and construction of semiconductor materials with tunable temperatures and lower band gaps.
Collapse
Affiliation(s)
- Hui-Hui Li
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
| | - Chang-Feng Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Ya-Xing Wu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
| | - Fan Jiang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.
| | - Chao Shi
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yi Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China. and Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
19
|
Hellwig H, Nowok A, Małecki JG, Kuś P, Jędrzejowska A, Grzybowska K, Pawlus S. Conformational analysis and molecular dynamics of glass-forming aromatic thiacrown ethers. Phys Chem Chem Phys 2020; 22:17948-17959. [DOI: 10.1039/d0cp02585b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dielectric properties, glass transition temperature and molecular dynamics of thiacrown ethers are strongly dependent on the thiacrown ring type.
Collapse
Affiliation(s)
- Hubert Hellwig
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Andrzej Nowok
- August Chełkowski Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | | | - Piotr Kuś
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | | | | | - Sebastian Pawlus
- August Chełkowski Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| |
Collapse
|
20
|
Above Room Temperature Reversible Phase Transition Induces Distinct Dielectric and Nonlinear Optical Switching Response Behavior in Crown-Ether-Based Supramolecular Clathrate. CRYSTALS 2019. [DOI: 10.3390/cryst9040184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimuli-responsive materials with coexisting nonlinear optical (NLO) and dielectric properties are technologically important, which enable simultaneous conversion of optoelectronic properties between different states under external stimuli. By rationally screening guest cations (C6H5NF2)+ in the crown-ether inclusion system, we synthesized a crown-ether supramolecular compound [(C6H5NF2)(18-crown-6)][PF6] (1). Differential scanning calorimetry (DSC) showed that 1 undergoes a reversible phase transition above room temperatures (305 K/292 K), with a thermal hysteresis of 13 K. Temperature-dependent dielectric and NLO measurements show that the compound exhibits two distinct switching response behaviors. Structural analysis indicates that the order–disorder change of the host molecule 18-crown-6 and the guest organic cation during the phase transition induces the dielectric and NLO switching behavior of the compound.
Collapse
|
21
|
Zhou L, Shi PP, Zheng X, Geng FJ, Ye Q, Fu DW. Molecular design of high-temperature organic dielectric switches. Chem Commun (Camb) 2018; 54:13111-13114. [PMID: 30398486 DOI: 10.1039/c8cc07311b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A design strategy of reducing the molecular symmetry was used to obtain a series of picrate-based high-temperature phase transition compounds. Their dielectric switching behaviours accompanied by phase transitions can be attributed to the order-disorder transitions of the cations and the displacements of both cations and anions.
Collapse
Affiliation(s)
- Lin Zhou
- Ordered Matter Science Research Center and Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
22
|
Wei YL, Jing J, Shi C, Ye HY, Wang ZX, Zhang Y. High quantum yield and unusual photoluminescence behaviour in tetrahedral manganese(ii) based on hybrid compounds. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00793d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High quantum yields and unusual luminescence characteristics were successfully achieved by regulating the organic cations in tetrahedral manganese(ii) complexes.
Collapse
Affiliation(s)
- Yan-Li Wei
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P. R. China
| | - Jing Jing
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P. R. China
| | - Chao Shi
- Chaotic Matter Science Research Center
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P. R. China
| |
Collapse
|