1
|
Hou M, Wang Y, Yang H, Zhang J, Wu XF. Carbon Monoxide and Alkoxycarbonyl Radical Enabled Migration Strategy for the Carbonylative Functionalization of Unactivated Alkenes. Chemistry 2025; 31:e202404113. [PMID: 39628124 DOI: 10.1002/chem.202404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Herein we report a "carbonylative migration" strategy for the acylation-esterification type double functionalization of unactivated alkenes using alkyloxalkyl chlorides and CO as the reagents. The transformation is proceeded by the alkoxycarbonyl radical addition to unactivated alkenes, followed by the insertion of carbon monoxide to induce intramolecular migration of heteroaryl groups, which is different from the traditional reaction modes. The reaction conditions were mild and well tolerated with varieties of functional groups. A variety of 1,4-dicarbonyl compounds with different ester groups were produced easily which has high potential applications in biology, medicine, and other fields.
Collapse
Affiliation(s)
- Ming Hou
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Yuanrui Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Hefei Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Jiajun Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
2
|
Wang Z, Chang C, Chen Y, Wu X, Li J, Zhu C. Remote desaturation of hexenenitriles by radical-mediated cyano migration. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Chen Y, Zhang G, Guo C, Lan P, Banwell MG, He Y. Silver‐Promoted Radical Ring‐Opening
/
Pyridylation of Cyclobutanols with
N
‐Methoxypyridinium Salts. Chemistry 2022; 28:e202104627. [DOI: 10.1002/chem.202104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Chen
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Guang‐Yi Zhang
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Chan Guo
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| | - Yu‐Tao He
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou 510632 Guangdong P. R. China
- College of Pharmacy Jinan University Guangzhou 510632 Guangdong P. R. China
| |
Collapse
|
4
|
Luo CH, Wang PL, Chang CC. Cascade Vinyl Radical Ipso-Cyclization Reactions and the Formation of α,β-Unsaturated-β-aryl-γ-lactams from N-Propargyl Benzamides. J Org Chem 2021; 86:15033-15044. [PMID: 34591475 DOI: 10.1021/acs.joc.1c01717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various N-(2-bromo-allyl) benzamides were used as the starting materials to study vinyl radical cyclization reactions. The vinyl radicals underwent ipso-cyclization, fragmentation, and cyclization reactions to produce β-aryl-γ-lactams with the carbonyl group remaining intact. To further study this cascade radical reaction, vinyl radicals were generated by the addition of a tributyltin radical to alkyne moieties, followed by radical ipso-cyclization, fragmentation, cyclization, and β-scission reactions with the production of a series of α,β-unsaturated-β-aryl-γ-lactam derivatives. This new type of radical reaction was examined from the substituent effects on both the amino groups and the aryl groups. A bulky tert-butyl substituent on the amino group enhanced the formation of a Z-conformation of the benzamides and facilitated vinyl radical ipso-cyclization reactions. A synthetic method for preparing α,β-unsaturated-β-aryl-γ-lactams from N-propargyl benzamides was developed.
Collapse
Affiliation(s)
- Chih-Hao Luo
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205 Taiwan
| | - Pei-Ling Wang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205 Taiwan
| | - Che-Chien Chang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205 Taiwan
| |
Collapse
|
5
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Kwon Y, Zhang W, Wang Q. Copper-Catalyzed Aminoheteroarylation of Unactivated Alkenes through Distal Heteroaryl Migration. ACS Catal 2021; 11:8807-8817. [PMID: 36381639 PMCID: PMC9648721 DOI: 10.1021/acscatal.1c01001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a copper-catalyzed aminoheteroarylation of unactivated alkenes to access valuable heteroarylethylamine motif. The developed reaction features a copper-catalyzed intermolecular electrophilic amination of the alkenes followed by a migratory heteroarylation. The method applies on alcohol-, amide-, and ether-containing alkenes, overcoming the common requirement of a hydroxyl motif in previous migratory difunctionalization reactions. This reaction is effective for the introduction of diverse aliphatic amines and has good functional group tolerance, which is particularly useful for richly functionalized heteroarenes. This migration-involved reaction was found well suited as a powerful ring expansion approach for the construction of medium-sized rings that are in great demand in medicinal chemistry.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Zhou N, Wu S, Kuang K, Wu M, Zhang M. Ni-Catalyzed radical cyclization of vinyl azides with cyclobutanone oxime esters to access cyanoalkyl containing quinoxalin-2(1 H)-ones. Org Biomol Chem 2021; 19:4697-4700. [PMID: 33982738 DOI: 10.1039/d1ob00610j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed cascade addition/cyclization of 2-azido-N-arylacrylamides and cyclobutanone oxime esters for the construction of 3-cyanoalkylated quinoxalin-2(1H)-ones is developed. This reaction proceeds under mild conditions with good functional group tolerance and broad substrate scope. A preliminary mechanistic experiment indicated that the cyanoalkyl radical might be involved in this transformation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
8
|
Zhang P, Zhang T, Cai P, Jiang B, Tu S. Study on tert-Butyl Radical-Initiated 1,2-Alkynyl Migration. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Chen Z, Zhou Q, Wang Q, Chen P, Xiong B, Liang Y, Tang K, Liu Y. Iron‐Mediated Cyanoalkylsulfonylation/Arylation of Active Alkenes with Cycloketone Oxime Derivatives via Sulfur Dioxide Insertion. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Quan Zhou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Qiao‐Lin Wang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Pu Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| |
Collapse
|
10
|
Affiliation(s)
- Moriah Locklear
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| | - Patrick H. Dussault
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| |
Collapse
|
11
|
Patel OPS, Jaspal S, Shinde VN, Nandwana NK, Rangan K, Kumar A. Phenyliodine(III) Diacetate-Mediated 1,2-ipso-Migration in Mannich Bases of Imidazo[1,2-a]pyridines: Preparation of N-Acetoxymethyl/Alkoxymethyl-N-arylimidazo[1,2-a]pyridine-3-amines. J Org Chem 2020; 85:7309-7321. [DOI: 10.1021/acs.joc.0c00674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Sonam Jaspal
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vikki N. Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Nitesh K. Nandwana
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
12
|
Meng N, Wang L, Liu Q, Li Q, Lv Y, Yue H, Wang X, Wei W. Metal-Free Trifluoroalkylation of Quinoxalin-2(1H)-ones with Unactivated Alkenes and Langlois’ Reagent. J Org Chem 2020; 85:6888-6896. [DOI: 10.1021/acs.joc.9b03505] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Leilei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qishun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qinyu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Huilan Yue
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaojuan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| |
Collapse
|
13
|
Liu C, Jiang Q, Lin Y, Fang Z, Guo K. C- to N-Center Remote Heteroaryl Migration via Electrochemical Initiation of N Radical by Organic Catalyst. Org Lett 2020; 22:795-799. [PMID: 31922422 DOI: 10.1021/acs.orglett.9b04141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein an exogenous oxidant- and metal-free electrochemical heteroaryl migration triggered by N radicals to construct new N-C bonds was developed. This methodology features a high atom economy and utilization rate of energy, and it is insensitive to water and air. Moreover, a user-friendly undivided cell was employed. The use of an organic catalyst makes it more efficient, green, and practical.
Collapse
Affiliation(s)
- Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Qiang Jiang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yang Lin
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China.,State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
14
|
Liu Y, Wang QL, Chen Z, Li H, Xiong BQ, Zhang PL, Tang KW. Visible-light photoredox-catalyzed dual C–C bond cleavage: synthesis of 2-cyanoalkylsulfonylated 3,4-dihydronaphthalenes through the insertion of sulfur dioxide. Chem Commun (Camb) 2020; 56:3011-3014. [DOI: 10.1039/c9cc10057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light photoredox-catalyzed dual C–C bond cleavage of methylenecyclopropanes and cycloketone oximes for accessing 2-cyanoalkylsulfonated 3,4-dihydronaphthalenes is established.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Hua Li
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| |
Collapse
|
15
|
Liu C, Cai C, Yuan C, Jiang Q, Fang Z, Guo K. Visible-light-promoted N-centered radical generation for remote heteroaryl migration. Org Biomol Chem 2020; 18:7663-7670. [DOI: 10.1039/d0ob01594f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient visible-light-mediated organocatalyzed N–H heteroarylation was accomplished via remote heteroaryl ipso-migration.
Collapse
Affiliation(s)
- Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chen Cai
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chengcheng Yuan
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiang Jiang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
16
|
Zhao Q, Hao WJ, Shi HN, Xu T, Tu SJ, Jiang B. Photocatalytic Annulation–Alkynyl Migration Strategy for Multiple Functionalization of Dual Unactivated Alkenes. Org Lett 2019; 21:9784-9789. [DOI: 10.1021/acs.orglett.9b04018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hao-Nan Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
17
|
Synthesis of cyanoalkyl indolines through cyanoalkylarylation of N-allyl anilines with alkyl nitriles under metal-free and neutral conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Visible-light-induced carbosulfonylation of unactivated alkenes via remote heteroaryl and oximino migration. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Zou Z, Zhang W, Wang Y, Kong L, Karotsis G, Wang Y, Pan Y. Electrochemically Promoted Fluoroalkylation-Distal Functionalization of Unactivated Alkenes. Org Lett 2019; 21:1857-1862. [PMID: 30817165 DOI: 10.1021/acs.orglett.9b00444] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Difunctionalization of olefins represents a powerful synthetic tool and yet a challenging task. This work describes an electrochemically enabled fluoroalkylation-migration reaction of unactivated olefins in the absence of a strong oxidant or heavy metal catalyst, affording fluorinated (hetero)aryl ketones in good yields and excellent regioselectivities. The efficient and sustainable electrochemical strategy provides a rapid access to a dual functionalized fluorine-containing heterocyclic manifold.
Collapse
Affiliation(s)
- Zhenlei Zou
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , 210023 Nanjing , China
| | - Weigang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , 210023 Nanjing , China
| | - Yang Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , 210023 Nanjing , China
| | - Lingyu Kong
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , 210023 Nanjing , China
| | - Georgios Karotsis
- School of Chemistry, Environmental & Life Sciences , University of The Bahamas , Nassau , 999154 , The Bahamas
| | - Yi Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , 210023 Nanjing , China
| | - Yi Pan
- Jiangsu Key Laboratory of Advanced Organic Materials, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , 163 Xianlin Avenue , 210023 Nanjing , China
| |
Collapse
|
20
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|