1
|
Ying P, Zhou W, Svensson L, Berger E, Fransson E, Eriksson F, Xu K, Liang T, Xu J, Song B, Chen S, Erhart P, Fan Z. Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials. J Chem Phys 2025; 162:064109. [PMID: 39936513 DOI: 10.1063/5.0241006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Path-integral molecular dynamics (PIMD) simulations are crucial for accurately capturing nuclear quantum effects in materials. However, their computational intensity often makes it challenging to address potential finite-size effects. Here, we present a specialized graphics processing units (GPUs) implementation of PIMD methods, including ring-polymer molecular dynamics (RPMD) and thermostatted ring-polymer molecular dynamics (TRPMD), into the open-source Graphics Processing Units Molecular Dynamics (GPUMD) package, combined with highly accurate and efficient machine-learned neuroevolution potential (NEP) models. This approach achieves almost the accuracy of first-principles calculations with the computational efficiency of empirical potentials, enabling large-scale atomistic simulations that incorporate nuclear quantum effects, effectively overcoming finite-size limitations at a relatively affordable computational cost. We validate and demonstrate the efficacy of the combined NEP-PIMD approach by examining various thermal properties of diverse materials, including lithium hydride (LiH), three porous metal-organic frameworks (MOFs), liquid water, and elemental aluminum. For LiH, our NEP-PIMD simulations successfully capture the isotope effect, reproducing the experimentally observed dependence of the lattice parameter on the reduced mass. For MOFs, our results reveal that achieving good agreement with experimental data requires consideration of both nuclear quantum effects and dispersive interactions. For water, our PIMD simulations capture the significant impact of nuclear quantum effects on its microscopic structure. For aluminum, the TRPMD method effectively captures thermal expansion and phonon properties, aligning well with quantum mechanical predictions. This efficient GPU-accelerated NEP-PIMD implementation in the GPUMD package provides an alternative, accessible, accurate, and scalable tool for exploring complex material properties influenced by nuclear quantum effects, with potential applications across a broad range of materials.
Collapse
Affiliation(s)
- Penghua Ying
- Department of Physical Chemistry, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wenjiang Zhou
- Department of Energy and Resources Engineering, Peking University, Beijing 100871, China
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Lucas Svensson
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Esmée Berger
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Erik Fransson
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Fredrik Eriksson
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Ke Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Ting Liang
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Bai Song
- Department of Energy and Resources Engineering, Peking University, Beijing 100871, China
- Department of Advanced Manufacturing and Robotics, Peking University, Beijing 100871, China
- National Key Laboratory of Advanced MicroNanoManufacture Technology, Beijing 100871, China
| | - Shunda Chen
- Department of Civil and Environmental Engineering, George Washington University, Washington, District of Columbia 20052, USA
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Zheyong Fan
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Sharma A, Sanvito S. Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning. NPJ COMPUTATIONAL MATERIALS 2024; 10:237. [PMID: 39391672 PMCID: PMC11461275 DOI: 10.1038/s41524-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Understanding structural flexibility of metal-organic frameworks (MOFs) via molecular dynamics simulations is crucial to design better MOFs. Density functional theory (DFT) and quantum-chemistry methods provide highly accurate molecular dynamics, but the computational overheads limit their use in long time-dependent simulations. In contrast, classical force fields struggle with the description of coordination bonds. Here we develop a DFT-accurate machine-learning spectral neighbor analysis potentials for two representative MOFs. Their structural and vibrational properties are then studied and tightly compared with available experimental data. Most importantly, we demonstrate an active-learning algorithm, based on mapping the relevant internal coordinates, which drastically reduces the number of training data to be computed at the DFT level. Thus, the workflow presented here appears as an efficient strategy for the study of flexible MOFs with DFT accuracy, but at a fraction of the DFT computational cost.
Collapse
Affiliation(s)
- Abhishek Sharma
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
3
|
Kayani KF. Bimetallic metal-organic frameworks (BMOFs) for dye removal: a review. RSC Adv 2024; 14:31777-31796. [PMID: 39380644 PMCID: PMC11459228 DOI: 10.1039/d4ra06626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Safe drinking water and a clean living environment are essential for good health. However, the extensive and growing use of hazardous chemicals, particularly carcinogenic dyes like methylene blue, methyl orange, rhodamine B, and malachite green, in both domestic and industrial settings, has led to a scarcity of potable water and environmental challenges. This trend poses a serious threat to human society, sustainable global development, and marine ecosystems. Consequently, researchers are exploring more advanced methods beyond traditional wastewater treatment to address the removal or degradation of these toxic dyes. Conventional approaches are often inadequate for effectively removing dyes from industrial wastewater. In this study, we investigated bimetallic metal-organic frameworks (BMOFs) as a solution to these limitations. BMOFs demonstrated outstanding dye removal and degradation capabilities due to their multifunctionality, water stability, large surface area, adjustable pore size, and recyclability. This review provides a comprehensive overview of research on dye removal from wastewater using BMOFs, including their synthesis methods, types of dyes, and processes involved in dye removal, such as degradation and adsorption. Finally, the review discusses the future potential and emerging opportunities for BMOFs in sustainable water treatment.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Chamchamal Sulaimani 46023 Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaymaniyah Kurdistan Regional Government 46001 Iraq
| |
Collapse
|
4
|
Mohammed Ameen SS, Omer KM. Recent Advances of Bimetallic-Metal Organic Frameworks: Preparation, Properties, and Fluorescence-Based Biochemical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31895-31921. [PMID: 38869081 DOI: 10.1021/acsami.4c06931] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bimetallic-metal organic frameworks (BiM-MOFs) or bimetallic organic frameworks represent an innovative and promising class of porous materials, distinguished from traditional monometallic MOFs by their incorporation of two metal ions alongside organic linkers. BiM-MOFs, with their unique crystal structure, physicochemical properties, and composition, demonstrate distinct advantages in the realm of biochemical sensing applications, displaying improvements in optical properties, stability, selectivity, and sensitivity. This comprehensive review explores into recent advancements in leveraging BiM-MOFs for fluorescence-based biochemical sensing, providing insights into their design, synthesis, and practical applications in both chemical and biological sensing. Emphasizing fluorescence emission as a transduction mechanism, the review aims to guide researchers in maximizing the potential of BiM-MOFs across a broader spectrum of investigations. Furthermore, it explores prospective research directions and addresses challenges, offering valuable perspectives on the evolving landscape of fluorescence-based probes rooted in BiM-MOFs.
Collapse
Affiliation(s)
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qlisan Street, Sulaymaniyah, 46002 Kurdistan Region, Iraq
| |
Collapse
|
5
|
Sikma RE, Butler KS, Vogel DJ, Harvey JA, Sava Gallis DF. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5715-5734. [PMID: 38364319 DOI: 10.1021/jacs.3c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Collapse
Affiliation(s)
- R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Computational Materials & Data Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
6
|
Mor J, Nelliyil RB, Sharma SK. Fine-Tuning of the Pore Aperture and Framework Flexibility of Mixed-Metal (Zn/Co) Zeolitic Imidazolate Framework-8: An In Situ Positron Annihilation Lifetime Spectroscopy Study under CO 2 Gas Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10056-10065. [PMID: 37436156 DOI: 10.1021/acs.langmuir.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The mixed-metal (Zn/Co) strategy has been used to enhance the gas separation selectivity of zeolitic imidazolate framework-8 (ZIF-8)-based membranes. The enhancement in selectivity has been attributed to possible modifications in the grain boundary structure, pore architecture, and flexibility of the frameworks. In the present study, we used in situ positron annihilation lifetime spectroscopy (PALS) under varying CO2 pressure to investigate the tuning of the pore architecture and framework flexibility of mixed-metal (Zn/Co) ZIF-8 frameworks with varying Co contents. The random distribution of Zn and Co metal nodes within the highly crystalline frameworks having an SOD topology was established using electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The inherent aperture as well as cavity size of the frameworks, and the pore interconnectivity to the outer surface, were observed to vary with the Co content in ZIF-8 due to the random distribution of Zn and Co metal nodes in the frameworks. The aperture size is reduced with the incorporation of an additional metal (Zn or Co) in ZIF-67 or ZIF-8, respectively. The aperture size remains the smallest for a lower Co content (∼0.20) in ZIF-8. The framework flexibility determined by in situ PALS measurements under CO2 pressure continuously reduces with increasing Co content in ZIF-8. A smaller aperture size as well as low flexibility of ZIF-8 with a low Co content is seen to be directly correlated to a higher separation selectivity of membranes prepared with this mixed-metal composition.
Collapse
Affiliation(s)
- Jaideep Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Renjith B Nelliyil
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandeep Kumar Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Castells-Gil J, Almora-Barrios N, Lerma-Berlanga B, Padial NM, Martí-Gastaldo C. Chemical complexity for targeted function in heterometallic titanium-organic frameworks. Chem Sci 2023; 14:6826-6840. [PMID: 37389254 PMCID: PMC10306077 DOI: 10.1039/d3sc01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.
Collapse
Affiliation(s)
- Javier Castells-Gil
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Belén Lerma-Berlanga
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
8
|
Cai J, Liu C, Tao S, Cao Z, Song Z, Xiao X, Deng W, Hou H, Ji X. MOFs-derived advanced heterostructure electrodes for energy storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Vasile R, Godoy AA, Puente Orench I, Nemes NM, de la Peña O’Shea VA, Gutiérrez-Puebla E, Martínez JL, Monge MÁ, Gándara F. Influence of the Synthesis and Crystallization Processes on the Cation Distribution in a Series of Multivariate Rare-Earth Metal-Organic Frameworks and Their Magnetic Characterization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7029-7041. [PMID: 35965890 PMCID: PMC9367679 DOI: 10.1021/acs.chemmater.2c01481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The incorporation of multiple metal atoms in multivariate metal-organic frameworks is typically carried out through a one-pot synthesis procedure that involves the simultaneous reaction of the selected elements with the organic linkers. In order to attain control over the distribution of the elements and to be able to produce materials with controllable metal combinations, it is required to understand the synthetic and crystallization processes. In this work, we have completed a study with the RPF-4 MOF family, which is made of various rare-earth elements, to investigate and determine how the different initial combinations of metal cations result in different atomic distributions in the obtained materials. Thus, we have found that for equimolar combinations involving lanthanum and another rare-earth element, such as ytterbium, gadolinium, or dysprosium, a compositional segregation takes place in the products, resulting in crystals with different compositions. On the contrary, binary combinations of ytterbium, gadolinium, erbium, and dysprosium result in homogeneous distributions. This dissimilar behavior is ascribed to differences in the crystallization pathways through which the MOF is formed. Along with the synthetic and crystallization study and considering the structural features of this MOF family, we also disclose here a comprehensive characterization of the magnetic properties of the compounds and the heat capacity behavior under different external magnetic fields.
Collapse
Affiliation(s)
- Raluca
Loredana Vasile
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Agustín Alejandro Godoy
- Instituto
de Investigación en Tecnología Química (INTEQUI-CONICET),
Universidad Nacional de San Luis, Alte. Brown 1450, D5700HGC San Luis, Argentina
| | - Inés Puente Orench
- Institut
Laue Langevin, 71 Avenue
des Martyrs, Grenoble 38042, France
- Instituto
de Nanociencia y Materiales de Aragón (INMA-CSIC), Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Norbert M. Nemes
- Departamento
de Física de Materiales, Facultad Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Víctor A. de la Peña O’Shea
- Photoactivated
Processes Unit IMDEA Energy Institute, Móstoles Technology Park, Avenida Ramón
de la Sagra 3, Móstoles, Madrid 28935, Spain
| | - Enrique Gutiérrez-Puebla
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jose Luis Martínez
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - M. Ángeles Monge
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Felipe Gándara
- Materials
Science Institute of Madrid—Spanish National Research Council
(ICMM-CSIC), Calle Sor
Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
10
|
Kamencek T, Schrode B, Resel R, Ricco R, Zojer E. Understanding the Origin of the Particularly Small and Anisotropic Thermal Expansion of MOF‐74. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomas Kamencek
- Institute of Solid State Physics Graz University of Technology NAWI Graz Petersgasse 16 Graz 8010 Austria
- Institute of Physical and Theoretical Chemistry Graz University of Technology NAWI Graz Stremayrgasse 9 Graz 8010 Austria
| | | | - Roland Resel
- Institute of Solid State Physics Graz University of Technology NAWI Graz Petersgasse 16 Graz 8010 Austria
| | - Raffaele Ricco
- Institute of Physical and Theoretical Chemistry Graz University of Technology NAWI Graz Stremayrgasse 9 Graz 8010 Austria
- School of Engineering and Technology Asian Institute of Technology 58 Moo 9 Khlong Luang Pathum Thani 12120 Thailand
| | - Egbert Zojer
- Institute of Solid State Physics Graz University of Technology NAWI Graz Petersgasse 16 Graz 8010 Austria
| |
Collapse
|
11
|
Iacomi P, Maurin G. ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50602-50642. [PMID: 34669387 DOI: 10.1021/acsami.1c12403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have long been recognized as a prominent subset of the metal-organic framework (MOF) family, in part because of their ease of synthesis and good thermal and chemical stability, alongside attractive properties for diverse potential applications. Prototypical ZIFs like ZIF-8 have become embodiments of the significant promise held by porous coordination polymers as next-generation designer materials. At the same time, their intriguing property of experiencing significant structural changes upon the application of external stimuli such as temperature, mechanical pressure, guest adsorption, or electromagnetic fields, among others, has placed this family of MOFs squarely under the umbrella of stimuli-responsive materials. In this review, we provide an overview of the current understanding of the triggered structural and electronic responses observed in ZIFs (linker and bond dynamics, crystalline and amorphous phase changes, luminescence, etc.). We then describe the state-of-the-art experimental and computational methodology capable of shedding light on these complex phenomena, followed by a comprehensive summary of the stimuli-responsive nature of four prototypical ZIFs: ZIF-8, ZIF-7, ZIF-4, and ZIF-zni. We further expose the relevant challenges for the characterization and fundamental understanding of responsive ZIFs, including how to take advantage of their flexible properties for new application avenues.
Collapse
Affiliation(s)
- Paul Iacomi
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| | - Guillaume Maurin
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| |
Collapse
|
12
|
Liu Z, Wang Z, Sun D, Xing X. Intrinsic volumetric negative thermal expansion in the "rigid" calcium squarate. Chem Commun (Camb) 2021; 57:9382-9385. [PMID: 34528960 DOI: 10.1039/d1cc03105h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The calcium squarate with a rigid framework is found to exhibit volumetric negative thermal expansion (NTE) with the coefficient -9.51(5) × 10-6 K-1 and uniaxial zero thermal expansion (ZTE, -0.14(4) × 10-6 K-1) over a wide temperature. Detailed comparison of the long-range and local structure sheds light on the fact that the anomalous thermal expansion originates from the transverse vibration of the bridging squarate ligand, although it has been tightly bonded by five calcium ions. We believe that this study can provide a deep insight into the origin of NTE and the structural flexibility of metal organic frameworks (MOFs).
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Zhe Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
van der Lee A, Dumitrescu DG. Thermal expansion properties of organic crystals: a CSD study. Chem Sci 2021; 12:8537-8547. [PMID: 34221335 PMCID: PMC8221191 DOI: 10.1039/d1sc01076j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). The mean volumetric thermal expansion coefficient is 168.8 × 10-6 K-1 and the mean uniaxial thermal expansion coefficient is 71.4 × 10-6 K-1, based on 745 and 1129 different observations, respectively. Normal and anomalous coefficients can be identified using these values and the associated standard deviations. The anisotropy of the thermal expansion is also evaluated and found to have a very broad distribution. 4719 different structures, comprising 4093 different molecular compounds and 626 additional polymorphs have been analyzed on their thermal expansion properties. Approximately 34% of these structures may have at least one orthogonal axis with negative thermal expansion, much more than generally believed. Moreover 127 structures have been identified which could have negative volumetric thermal expansion. Experimental validation using a robust protocol with data collected at more than 2 different temperatures is required to validate these cases.
Collapse
Affiliation(s)
- Arie van der Lee
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Université de Montpellier Montpellier France
| | | |
Collapse
|
14
|
Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, Jeong HK. Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and n-Butane/i-Butane Separations. Angew Chem Int Ed Engl 2021; 60:10103-10111. [PMID: 33620755 DOI: 10.1002/anie.202015635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 11/10/2022]
Abstract
We present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches. DLA, as reported here, is a simple one-step synthesis strategy allowing high incorporation of Im linker into the ZIF-8 framework while still retaining its SOD topology. We fabricated mixed-matrix membranes (MMMs) with 6FDA-DAM polymer and Im/ZIF-8 obtained via DLA as a filler. The Im/ZIF-8-containing MMMs showed excellent performance for both propylene/propane and n-butane/i-butane separation, displaying permeability and ideal selectivity well above the polymer upper bound. Moreover, highly detailed molecular simulations shed light to the aperture size and flexibility response of Im/ZIF-8 and its improved diffusivity as compared to ZIF-8.
Collapse
Affiliation(s)
- Febrian Hillman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, USA
| | - Mohamad Rezi Abdul Hamid
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Panagiotis Krokidas
- National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, 15310, Aghia Paraskevi Attikis, Greece
| | - Salvador Moncho
- Science Program, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Edward N Brothers
- Science Program, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, USA.,Department of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843-3122, USA
| |
Collapse
|
15
|
Hillman F, Hamid MRA, Krokidas P, Moncho S, Brothers EN, Economou IG, Jeong H. Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and n‐Butane/i‐Butane Separations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Febrian Hillman
- Artie McFerrin Department of Chemical Engineering Texas A&M University 3122 TAMU College Station TX 77843-3122 USA
| | - Mohamad Rezi Abdul Hamid
- Department of Chemical and Environmental Engineering Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Panagiotis Krokidas
- National Center for Scientific Research “Demokritos” Institute of Nanoscience and Nanotechnology Molecular Thermodynamics and Modelling of Materials Laboratory 15310 Aghia Paraskevi Attikis Greece
| | - Salvador Moncho
- Science Program Texas A&M University at Qatar P.O. Box 23874, Education City Doha Qatar
| | - Edward N. Brothers
- Science Program Texas A&M University at Qatar P.O. Box 23874, Education City Doha Qatar
| | - Ioannis G. Economou
- Chemical Engineering Program Texas A&M University at Qatar P.O. Box 23874, Education City Doha Qatar
| | - Hae‐Kwon Jeong
- Artie McFerrin Department of Chemical Engineering Texas A&M University 3122 TAMU College Station TX 77843-3122 USA
- Department of Materials Science and Engineering Texas A&M University 3122 TAMU College Station TX 77843-3122 USA
| |
Collapse
|
16
|
Orr KWP, Collins SM, Reynolds EM, Nightingale F, Boström HLB, Cassidy SJ, Dawson DM, Ashbrook SE, Magdysyuk OV, Midgley PA, Goodwin AL, Yeung HHM. Single-step synthesis and interface tuning of core-shell metal-organic framework nanoparticles. Chem Sci 2021; 12:4494-4502. [PMID: 34163714 PMCID: PMC8179513 DOI: 10.1039/d0sc03940c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control over the spatial distribution of components in metal–organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal–organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core–shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core–shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials. Core–shell metal–organic framework nanoparticles have been synthesised in which the internal interface and distribution of components is found to be highly tunable using simple variations in reaction conditions.![]()
Collapse
Affiliation(s)
- Kieran W P Orr
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK.,Cavendish Laboratory, University of Cambridge 19 JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK.,School of Chemical and Process Engineering & School of Chemistry, University of Leeds LS2 9JT UK
| | - Emily M Reynolds
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK.,ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory Chilton Didcot Oxon, OX11 0QX UK
| | - Frank Nightingale
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Hanna L B Boström
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK.,Max Planck Institute for Solid State Research Heisenbergstrasse 1 70569 Stuttgart Germany
| | - Simon J Cassidy
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Daniel M Dawson
- Department of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Sharon E Ashbrook
- Department of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Oxana V Magdysyuk
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Andrew L Goodwin
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Hamish H-M Yeung
- Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK.,School of Chemistry, University of Birmingham Haworth Building, Edgbaston Birmingham B15 2TT UK +44 (0)121 414 8811
| |
Collapse
|
17
|
Insights into methyl orange adsorption behavior on a cadmium zeolitic-imidazolate framework Cd-ZIF-8: A joint experimental and theoretical study. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Abstract
Metal–organic frameworks host many types of compositional and structural disorder. In this Highlight article we explore cases where this disorder is correlated, rather than random.
Collapse
Affiliation(s)
- Emily G. Meekel
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QR
- UK
| | - Andrew L. Goodwin
- Department of Chemistry
- Inorganic Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QR
- UK
| |
Collapse
|
19
|
Chen L, Wang HF, Li C, Xu Q. Bimetallic metal-organic frameworks and their derivatives. Chem Sci 2020; 11:5369-5403. [PMID: 34094065 PMCID: PMC8159423 DOI: 10.1039/d0sc01432j] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bimetallic metal-organic frameworks (MOFs) have two different metal ions in the inorganic nodes. According to the metal distribution, the architecture of bimetallic MOFs can be classified into two main categories namely solid solution and core-shell structures. Various strategies have been developed to prepare bimetallic MOFs with controlled compositions and structures. Bimetallic MOFs show a synergistic effect and enhanced properties compared to their monometallic counterparts and have found many applications in the fields of gas adsorption, catalysis, energy storage and conversion, and luminescence sensing. Moreover, bimetallic MOFs can serve as excellent precursors/templates for the synthesis of functional nanomaterials with controlled sizes, compositions, and structures. Bimetallic MOF derivatives show exposed active sites, good stability and conductivity, enabling them to extend their applications to the catalysis of more challenging reactions and electrochemical energy storage and conversion. This review provides an overview of the significant advances in the development of bimetallic MOFs and their derivatives with special emphases on their preparation and applications.
Collapse
Affiliation(s)
- Liyu Chen
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Hao-Fan Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Caixia Li
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
20
|
Injac S, Yuen AKL, Avdeev M, Wang CH, Turner P, Brand HEA, Kennedy BJ. Structural and Magnetic Studies of ABO4-Type Ruthenium and Osmium Oxides. Inorg Chem 2020; 59:2791-2802. [DOI: 10.1021/acs.inorgchem.9b03118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sean Injac
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexander K. L. Yuen
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Maxim Avdeev
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Chun-Hai Wang
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Turner
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Helen E. A. Brand
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Brendan J. Kennedy
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
22
|
Baxter SJ, Schneemann A, Ready AD, Wijeratne P, Wilkinson AP, Burtch NC. Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach. J Am Chem Soc 2019; 141:12849-12854. [DOI: 10.1021/jacs.9b06109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Samuel J. Baxter
- Sandia National Laboratory, Livermore, California 94550, United States
| | | | - Austin D. Ready
- Sandia National Laboratory, Livermore, California 94550, United States
| | | | | | | |
Collapse
|
23
|
Fraux G, Chibani S, Coudert FX. Modelling of framework materials at multiple scales: current practices and open questions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180220. [PMID: 31130101 PMCID: PMC6562347 DOI: 10.1098/rsta.2018.0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The last decade has seen an explosion of the family of framework materials and their study, from both the experimental and computational points of view. We propose here a short highlight of the current state of methodologies for modelling framework materials at multiple scales, putting together a brief review of new methods and recent endeavours in this area, as well as outlining some of the open challenges in this field. We will detail advances in atomistic simulation methods, the development of material databases and the growing use of machine learning for the prediction of properties. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.
Collapse
|
24
|
Castillo-Blas C, López-Salas N, Gutiérrez MC, Puente-Orench I, Gutiérrez-Puebla E, Ferrer ML, Monge MÁ, Gándara F. Encoding Metal-Cation Arrangements in Metal-Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides. J Am Chem Soc 2019; 141:1766-1774. [PMID: 30621401 DOI: 10.1021/jacs.8b12860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present contribution, we report how through the use of metal-organic frameworks (MOFs) composed of addressable combinations of up to four different metal elements it is possible to program the composition of multimetal oxides, which are not attainable by other synthetic methodologies. Thus, due to the ability to distribute multiple metal cations at specific locations in the MOF secondary building units it is possible to code and transfer selected metal ratios to multimetal oxides with novel, desired compositions through a simple calcination process. The demonstration of an enhancement in the electrocatalytic activity of new oxides by preadjusting the metal ratios is here reported for the oxygen reduction reaction, for which activity values comparable to commercial Pt/C catalysts are reached, while showing long stability and methanol tolerance.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| | - Nieves López-Salas
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| | - María C Gutiérrez
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| | - Inés Puente-Orench
- Université Grenoble Alpes , CNRS, Grenoble INP, Institut Néel , 38000 Grenoble , France.,Institut Laue Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Enrique Gutiérrez-Puebla
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| | - M Luisa Ferrer
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| | - M Ángeles Monge
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| | - Felipe Gándara
- Materials Science Factory , Instituto de Ciencia de Materiales de Madrid (ICMM)-Consejo Superior de Investigaciones Científicas (CSIC) , C/Sor Juana Inés de la Cruz, 3 , Madrid 28049 , Spain
| |
Collapse
|
25
|
Abednatanzi S, Gohari Derakhshandeh P, Depauw H, Coudert FX, Vrielinck H, Van Der Voort P, Leus K. Mixed-metal metal–organic frameworks. Chem Soc Rev 2019; 48:2535-2565. [DOI: 10.1039/c8cs00337h] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mixed-metal MOFs contain at least 2 different metal ions presenting promising potential in heterogeneous catalysis, gas sorption/separation, luminescence and sensing.
Collapse
Affiliation(s)
- Sara Abednatanzi
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | | | - Hannes Depauw
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | | | - Henk Vrielinck
- Department of Solid State Sciences
- Ghent University
- 9000 Gent
- Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | - Karen Leus
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|