1
|
Sutarlie L, Chee HL, Ow SY, Su X. A Rapid Total Bacterial Count Method for Food Samples using Syringe Filters and Lectin-Conjugated Semiconductor Nanorods. Chem Asian J 2024; 19:e202400332. [PMID: 38785228 DOI: 10.1002/asia.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Total bacterial count in food is one of important food safety criteria. The current plate count method (Heterotrophic Plate Count) for food analysis requires microbiology lab facilities and at least 2 days turnover time. We developed a rapid fluorescence-based total bacterial count method that utilises semiconductor nanorods (SNRs) conjugated with a lectin Griffonia simplicifolia II (GSII-SNRs) to stain bacterial cells captured on syringe filters, via the common N-acetylglucosamine molecules on bacterial cell wall. This "Filter-and-Stain" detection method has a rapid turnover time of 20 min. The fluorescence emission can be seen under UV light with minimum interference from food sample background. The fluorescence intensity quantified through image analysis is proportional to the bacterial concentration with a limit of detection of 1000 CFU/mL, for total bacterial count assessment in food safety. Moreover, the GSII-SNRs do not bind to heat inactivated bacterial cells, and thus can differentiate live and dead bacteria. Our method has been validated with representative food (coffee powder, raw spinach leaves, and ready-to-eat tomato salsa) to demonstrate its high potential for on-site food safety assessment, especially in places with no immediate access to microbiology labs.
Collapse
Affiliation(s)
- Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Sian Yang Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, Block S8, level 3, 3 Science Drive 3, Singapore, Singapore, 117543
| |
Collapse
|
3
|
Chen P, Bai Y, Tang S, Wang N, He Y, Huang K, Huang J, Ying B, Cao Y. Homogeneous Binary Visual and Fluorescence Detection of Tetanus Toxoid in Clinical Samples Based on Enzyme-Free Parallel Hybrid Chain Reaction. NANO LETTERS 2022; 22:1710-1717. [PMID: 35119287 DOI: 10.1021/acs.nanolett.1c04818] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we report a simple aptamer-based toxoid test with both fluorescence and binary visual readouts. This test is established based on our recent finding that CdTe quantum dots could differentiate DNA templated Cu NPs from Cu2+. Through the further integration with enzyme-free triple parallel hybridization chain reaction, cation exchange reaction, and inkjet printing, we demonstrated specific detection of tetanus toxoid with a limit-of-detection (LOD) of 0.25 fg/mL using fluorescence readout. Using color- and distance-based binary visual readouts, we were able to achieve LODs of 10 fg/mL and 1 fg/mL, respectively. The quantitative test results for tetanus toxoid using both fluorescence and visual readouts were successfully validated in 84 clinical serum samples. Moreover, our strategy also enabled accurate monitoring of tetanus toxoid levels in patients before and after drug treatment. On the basis of our clinical test results, we recommend a cutoff value of 5 fg/mL for tetanus infection.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunjin Bai
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyuan Tang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Disaster Medical Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nian Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaqin He
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jin Huang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Cao
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Urology, Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Disaster Medical Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Ibrahim SA, Chan Y. Fluorescent Semiconductor Nanorods for the Solid-Phase Polymerase Chain Reaction-Based, Multiplexed Gene Detection of Mycobacterium tuberculosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35294-35305. [PMID: 34313114 DOI: 10.1021/acsami.1c05312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spread of infectious diseases with significantly high mortality rates can wreak devastating damage on global health systems and economies, underscoring the need for better disease diagnostic platforms. Solid-phase polymerase chain reaction (SP-PCR) potentially combines the advantages of conventional PCR-based diagnostics with the capability of multiplexed detection, given that the spatial separation between primers circumvents unwanted primer-primer interactions. However, the generally low efficiency of solid-phase amplification results in poor sensitivity and limits its use in detection schemes. We present an SP-PCR-based, multiplexed pulldown fluorescence assay for the detection of Mycobacterium tuberculosis (MTB), utilizing highly fluorescent oligonucleotide-functionalized CdSe/CdS and CdSe1-xSx/CdS nanorods (NRs) as multicolor hybridization probes. The large surface area of the NRs allows for their easy capture and pulldown, but without contributing significantly to the interparticle photon reabsorption when clustered at the pulldown sites. The NR nanoprobes were specifically designed to target the hotspot regions of the rpoB gene of MTB, which have been implicated in resistance to standard rifampicin treatment. The implementation of the semiconductor NRs as photostable multicolor fluorophores in a multiplexed SP-PCR-based detection scheme allowed for the identification of multiple hotspot regions with sub-picomolar levels of sensitivity and high specificity in artificial sputum. While this work demonstrates the utility of semiconductor NRs as highly fluorescent chromophores that can enable SP-PCR as a sensitive and accurate technique for multipathogen diagnostics, the flexible surface chemistry of the NRs should allow them to be applicable to a wide variety of detection motifs.
Collapse
Affiliation(s)
- Salwa Ali Ibrahim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt
| | - Yinthai Chan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
5
|
Qin X, Lu Y, Bian M, Xiao Z, Zhang Y, Yuan Y. Influence of gold nanoparticles in different aggregation states on the fluorescence of carbon dots and its application. Anal Chim Acta 2019; 1091:119-126. [PMID: 31679565 DOI: 10.1016/j.aca.2019.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/02/2023]
Abstract
Herein, gold nanoparticles (Au NPs) in solution protected by various concentration of DNA at different aggregation states were found to have different quenching effect to the fluorescence of carbon dots (CDs). Au NPs wrapped up in more amount of DNA were able to quench the fluorescence of CDs more effectively, and vice versa. Based on this phenomenon, a facile and novel fluorescence sensing platform without labeling was constructed by designing the sequence of DNA as the aptamer of the detection target. With the addition of specific molecule, taking acetamiprid as representative, DNA was prior to bind with target and the Au NPs became less protected, leading to the fluorescence recovery of the CDs. Experimental results showed that the fluorescence of CDs was linearly recovered by acetamiprid in the concentration range of 7.8 × 10-9-1.4 × 10-6 mol/L, with the detection limit of 1.5 × 10-9 mol/L. This promising sensor might provide a new aspect for exploring the versatile application of CDs in various fields.
Collapse
Affiliation(s)
- Xuefei Qin
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yuping Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Mengmeng Bian
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Zhourui Xiao
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, China.
| |
Collapse
|