1
|
Zheng K, Xiang L, Huang C, Wang Y, Zhang H, Li J. Efficient phosphate removal and recovery from wastewater with Zn(OH)2@DETA-aminated polyacrylonitrile fibre. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Abu Elgoud E, Aly MI, Hamed MM, Nayl AA. NanoTafla Nanocomposite as a Novel Low-Cost and Eco-Friendly Sorbent for Strontium and Europium Ions. ACS OMEGA 2022; 7:10447-10457. [PMID: 35382267 PMCID: PMC8973054 DOI: 10.1021/acsomega.1c07255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Now the wide use of nanooxides is attributed to their remarkable collection of properties. Nanocomposites have an impressive variety of important applications. A thermal decomposition approach provides a more optimistic method for nanocrystal synthesis due to the low cost, high efficiency, and expectations for large-scale production. Therefore, in this study a new eco-friendly nanooxide composite with sorption characteristics for europium (Eu(III)) and strontium (Sr(II)) was synthesized by a one-step thermal treatment process using earth-abundant tafla clay as a starting material to prepare a modified tafla (M-Taf) nanocomposite. The synthesized nancomposite was characterized by different techniques before and after sorption processes. Different factors that affected the sorption behavior of Eu(III) and Sr(II) in aqueous media by the M-Taf nanocomposite were studied. The results obtained illustrated that the kinetics of sorption of Eu(III) and Sr(II) by the M-Taf nanocomposite are obeyed according to the pseudo-second order and controlled by a Langmuir isotherm model with maximum sorption capacities (Q max) of 25.5 and 23.36 mg/g for Eu(III) and Sr(II), respectively. Also, this novel low-cost and eco-friendly sorbent has promising properties and can be used to separate and retain some radionuclides in different applications.
Collapse
Affiliation(s)
- Elsayed
M. Abu Elgoud
- Hot
Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mohamed I. Aly
- Hot
Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mostafa M. Hamed
- Hot
Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - AbdElAziz A. Nayl
- Department
of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 42421, Aljouf, Saudi
Arabia
| |
Collapse
|
3
|
Zeng W, Li B, Lin X, Lv S, Yin W, Li P, Zheng X, Wu J. Enhanced phosphate removal by zero valent iron activated through oxidants from water: batch and breakthrough experiments. RSC Adv 2021; 11:39879-39887. [PMID: 35494108 PMCID: PMC9044562 DOI: 10.1039/d1ra05664f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, oxidants including hydrogen peroxide (H2O2), hypochlorite (ClO-) and persulfate (S2O8 2-) were employed to promote zero-valent iron (ZVI) corrosion and enhance phosphate (P) removal from water through batch and breakthrough experiments. Characterization results indicated that the addition of oxidant can cause large-scale corrosion of the iron surface. This subsequently generates more iron ions and active minerals, resulting in a large number of reaction-adsorption sites for P removal. Therefore, compared with the ZVI alone system (29.4%), the removal efficiency of P by oxidant/ZVI system (H2O2 : ClO- : S2O8 2- = 33.2% : 54% : 67.1%) was improved. For the oxidant/ZVI system, H2O2 can promote the corrosion of ZVI to a certain extent. However, the solution pH could be increased during the corrosion process. This leads to inhibition of P removal performance by the H2O2/ZVI system, which only increased by 12.9% to 33.2%. The reaction between NaClO and ZVI consumes less H+, and the reaction product Cl- can pierce the passivation layer on the surface of the ZVI through the pitting effect. As such, the NaClO/ZVI system attained a 54% P removal rate. Compared with H2O2 and NaClO, a better P removal effect of about 67.1% can be achieved by using Na2S2O8, since the oxidation corrosion process of Na2S2O8 does not consume H+, and it also has the strongest oxidizing properties. Furthermore, an appropriate increase in oxidant dosing (0.1-2 mM) could improve the efficiency at which of P is removed. Five batch cycle experiments showed that the oxidant/ZVI system has a higher removal capacity and longer life-span. In the long-term column running, the P removal capacity and operation life of the NaClO/ZVI column are 9.6 times and 3.2 times higher than that of the ZVI column, respectively. This work demonstrates that an oxidant/ZVI system can be an efficient method for P removal in water, which also provides a new idea for solving the problem of ZVI corrosion passivation.
Collapse
Affiliation(s)
- Weilong Zeng
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Bing Li
- School of Light Industry and Materials, Guangdong Polytechnic Foshan 528041 China
| | - Xueying Lin
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Sihao Lv
- College of Chemistry and Environmental Engineering, Dongguan University of Technology Dongguan 523808 China
| | - Weizhao Yin
- School of Environment, Jinan University Guangzhou 510632 China
| | - Ping Li
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Xiangyu Zheng
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China + 86 20 39380569 + 86 20 39380569.,The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education Guangzhou 510006 China.,The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions Guangzhou 510006 China
| |
Collapse
|
4
|
Jiao GJ, Ma J, Li Y, Jin D, Ali Z, Zhou J, Sun R. Recent advances and challenges on removal and recycling of phosphate from wastewater using biomass-derived adsorbents. CHEMOSPHERE 2021; 278:130377. [PMID: 33819886 DOI: 10.1016/j.chemosphere.2021.130377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
As the severe damage of phosphate enrichment in the water ecosystem and the supply shortage of phosphate rock, developing an efficient method for the removal and recycling of phosphate from wastewater is of great significance. To achieve this goal, adsorption technology has been widely investigated, and various adsorbents were developed. Among them, the biomass-derived adsorbents including biomass-derived carbon-based materials, biomass-based anion exchangers and metal-biomass composites have attracted increasing attention over the past years due to the low cost, abundant renewable raw materials and environmental friendliness. However, different adsorbents usually exhibit variable adsorption performances for phosphate, which highly depends on their design strategies, preparation methods and potential adsorption mechanisms. Thus, this review comprehensively summarizes the recent researches on the removal and recycling of phosphate from wastewater using the biomass-derived adsorbents. Especially, the design strategies, preparation methods, adsorption performances and mechanisms of these reported biomass-derived adsorbents are discussed in detail. Moreover, as the significant strategies to recover and recycling phosphate, the elution and direct use of phosphate-loaded adsorbents as fertilizers are also presented. Although the excellent adsorption performance has been obtained, some challenges are still existing, which should be given more attention in the following researches to facilitate the development and industrial application of biomass-derived adsorbents.
Collapse
Affiliation(s)
- Gao-Jie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Zulfiqar Ali
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
5
|
Zhang Z, Gao J, Cai Y. The direct and indirect effects of land use and water quality on phytoplankton communities in an agriculture-dominated basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:760. [PMID: 33184779 DOI: 10.1007/s10661-020-08728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Understanding the factors that control biodiversity in rivers is challenging due to the variety of potential sources, linkages, and processes. This research assesses the effects of land use on phytoplankton communities across water quality gradients. By employing abiotic and biotic datasets of 149 catchments in Lake Chaohu basin, China, and a structural equation model (SEM), the direct and indirect effects of land use and water quality on phytoplankton dynamic were analyzed. Both land use and water quality had statistically significant direct effects on phytoplankton community attribute and diversity, although these effects differed among these indices. For instance, farmland was found to positively affect the abundance and diversity indices, while total nitrogen (TN) had significant positive effects on species richness and abundance. Importantly, the average indirect effects strengthened the effects of land use (e.g., built-up land and woodland) up to 82.4% mainly through nutrients, while the average indirect effects weakened the effects of land use (e.g., farmland) by as much as 49.9% mainly due to nutrients, thus indicating the prevailing role of the effects of land use on phytoplankton based on nutrient concentrations. The results suggest that nutrients can regulate the effect of land use on phytoplankton community attribute and diversity indices. This study highlights the advantages of using an SEM because the potential linkages for phytoplankton diversities are more likely to be identified with this method than with a classical linear regression model. Therefore, SEM has wide application prospects in the field of the conservation of biodiversity in freshwater rivers.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Junfeng Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Yongjiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
6
|
Song Y, Yuan P, Wei Y, Liu D, Tian Q, Zhou J, Du P, Deng L, Chen F, Wu H. Constructing Hierarchically Porous Nestlike Al2O3–MnO2@Diatomite Composite with High Specific Surface Area for Efficient Phosphate Removal. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yaran Song
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Yanfu Wei
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Qian Tian
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junming Zhou
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peixin Du
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Liangliang Deng
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou, 510640, China
| | - Honghai Wu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|