1
|
Tian J, Chen M, Wang X, Chen X, Shao C, Xiong Y, Liu Y, Sang D. One-pot synthesis of N-sulfonylamidines from N-acylsulfonamides enabled by a metal triflate-mediated nonhydrolytic N-deacylation. Org Biomol Chem 2024; 22:8663-8668. [PMID: 39382477 DOI: 10.1039/d4ob01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A triflate salt-catalyzed nonhydrolytic method for the deacylation of N-acylsulfonamides and subsequent one-pot condensation of the newly formed sulfonamides with N,N-dimethylformamide dimethyl acetal to provide N-sulfonylamidines is presented. A range of aliphatic and aromatic N-acylsulfonamides bearing various N-acyl groups such as acetyl, propionyl, butyrl, isobutyryl, octanoyl, benzoyl, 2-phenylacetyl, and sterically hindered pivaloyl are readily transformed into the corresponding N-sulfonylamidines in good to excellent yields. A variety of functional groups including halogeno, keto, nitro, cyano, hydroxyl, ether, and carboxylic ester are tolerated intact.
Collapse
Affiliation(s)
- Juan Tian
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization, Jingmen, Hubei 448000, P. R. China
| | - Mengyun Chen
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| | - Xinyi Wang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| | - Xin Chen
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| | - Chengya Shao
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| | - Yiting Xiong
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| | - Yunfeng Liu
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| | - Dayong Sang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China.
| |
Collapse
|
2
|
Chevrier Q, Pierru T, Craquelin A, Maitrejean P, Jean A, Bettoni L. Synthesis of N-Sulfonyl Formamidines by Direct Condensation between Sulfonamide and Formamide Enabled by a Photogenerated Vilsmeier-Type Reagent. J Org Chem 2024; 89:15282-15288. [PMID: 39376055 DOI: 10.1021/acs.joc.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Herein, we report the synthesis of N-sulfonyl formamidines from carbon tetrabromide and formamide under UVA irradiation without any additional catalysts. This approach represents a straightforward methodology for accessing this class of structural units and has been applied to a wide range of readily available sulfonamides and formamides, providing the corresponding products in moderate to excellent yields (30 examples, 16-99% yields). Mechanistic investigations associated with previous reports suggest the implication of an activated iminium intermediate (Vilsmeier-Haack reagent derivatives), obtained by the photoinduced reaction between carbon tetrabromide and formamides.
Collapse
Affiliation(s)
- Quentin Chevrier
- CHemical and Analytical Development (CHAD), Oril Industrie, 76210 Bolbec, France
| | - Théo Pierru
- CHemical and Analytical Development (CHAD), Oril Industrie, 76210 Bolbec, France
| | - Anthony Craquelin
- CHemical and Analytical Development (CHAD), Oril Industrie, 76210 Bolbec, France
| | - Perrine Maitrejean
- CHemical and Analytical Development (CHAD), Oril Industrie, 76210 Bolbec, France
| | - Alexandre Jean
- CHemical and Analytical Development (CHAD), Oril Industrie, 76210 Bolbec, France
| | - Léo Bettoni
- CHemical and Analytical Development (CHAD), Oril Industrie, 76210 Bolbec, France
| |
Collapse
|
3
|
Zhang Z, Meng XJ, Cui FH, Tang HT, Wang YC, Huang GB, Pan YM. Electrochemically Promoted Three-Component Reaction to N-Sulfonyl Amidines. Org Lett 2024; 26:193-197. [PMID: 38147844 DOI: 10.1021/acs.orglett.3c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In this study, a multicomponent reaction via the Mannich intermediate was developed using methanol, secondary amine, and sulfonamide as starting materials. This method uses methanol as a green C1 source. The substrate scope is wide, and the yield is good. The mechanistic study shows that methanol generates formaldehyde under electrochemical conditions, and sulfonyl amidine as a nucleophile reacts with Schiff base intermediates to form N-sulfonyl amidine in a single step.
Collapse
Affiliation(s)
- Zhang Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Xiu-Jin Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fei-Hu Cui
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Guo-Bao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
4
|
Escandón-Mancilla FM, González-Rivas N, Unnamatla MVB, García-Eleno MA, Corona-Becerril D, Frontana-Uribe BA, Cuevas-Yañez E. Beyond 1,2,3-triazoles: Formation and Applications of Ketemines Derived from Copper Catalyzed Azide Alkyne Cycloaddition. Curr Org Synth 2024; 21:359-379. [PMID: 36177624 DOI: 10.2174/1570179420666220929152449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Ketemines represent an interesting class of organic intermediates that has undergone a regrowth as a consequence of recent extensions of copper catalyzed azide alkyne cycloaddition (Cu- AAC) to other synthetic fields. This review summarizes the most recent generation methods of ketimines from CuAAC reaction, highlighting chemical properties focused on the synthesis of cyclic compounds, among others, affording a general outlook towards the development of new biologically active compounds.
Collapse
Affiliation(s)
- Flor M Escandón-Mancilla
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
| | - Nelly González-Rivas
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Murali V Basavanag Unnamatla
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Marco A García-Eleno
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - David Corona-Becerril
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Erick Cuevas-Yañez
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| |
Collapse
|
5
|
Chou YC, Lin WH, Lin XY, Kuo CL, Zeng WQ, Lu IC, Liang CF. Hexamethyldisilazane-Mediated Amidination of Sulfonamides and Amines with Formamides. J Org Chem 2022; 87:15327-15332. [PMID: 36302512 DOI: 10.1021/acs.joc.2c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hexamethyldisilazane was reacted with formamides to generate N,N-disubstituent formimidamide, after which a reaction with sulfonamides was induced to form sulfonylformamidines. This protocol can be applied for arylformamidine formation in which anilines are used as substrates under optimized conditions. The advantages of this method are high efficiency, structural diversity in products with good yields, and applicability in large-scale operations.
Collapse
Affiliation(s)
- Yu-Chen Chou
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Han Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiu-Yi Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chin-Ling Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Qin Zeng
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Luo X, Yang Z, Zheng J, Liang G, Luo H, Yang W. CuX Dual Catalysis: Construction of Oxazolo[2,3- b][1,3]oxazines via a Tandem CuAAC/Ring Cleavage/[4+2+3] Annulation Reaction. Org Lett 2022; 24:7300-7304. [PMID: 36178978 DOI: 10.1021/acs.orglett.2c02705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuX as a simple dual catalyst strategy that promotes the tandem transformations of fused oxazolo[2,3-b][1,3]oxazines has been developed. Copper catalyzed terminal ynones, sulfonyl azides, and nitriles for the CuAAC/ring cleavage/[4+2] annulation reaction, while the halogen catalyzed ring cleavage and [2+3] annulation of oxiranes to form the final fused products. This study provides a four-component, one-pot strategy for synthesizing complex fused heterocycles from simple ingredients and expands the application of CuAAC in organic synthesis.
Collapse
Affiliation(s)
- Xiai Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Jia Zheng
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Gang Liang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hui Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Li TP, Li RS, Hu W, Xie JX, Xu M, Feng C, Ni HL, Yu WH, Hu P, Wang BQ, Cao P. Modular Synthesis of Enantioenriched α-Chiral Homoallylic Amidines Enabled by Relay Ir/Cu Catalysis. Org Lett 2022; 24:6783-6788. [PMID: 36074995 DOI: 10.1021/acs.orglett.2c02655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cascade of Ir-catalyzed enantioselective allylic amination and Cu-catalyzed alkyne-azide cycloaddition was designed for the asymmetric synthesis of homoallylic amidines. The nucleophilic addition of an in situ-generated enantioenriched tertiary allylamine to a ketenimine intermediate triggers a rapid and stereospecific zwitterionic aza-Claisen rearrangement in a 1,3-chiral transfer manner. The approach allows modular access to enantioenriched α-chiral homoallylic amidines in high yields with a high level of enantiomeric purity.
Collapse
Affiliation(s)
- Ting-Peng Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ren-Sha Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Wei Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jia-Xin Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Minghui Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| |
Collapse
|
8
|
Nishad CS, Haldar KK, Banerjee B. Metal-Free Direct Access to N-Sulfonyl Amidines from Sulfonamides and Secondary Amines Involving Tandem C-N Bond Formations. J Org Chem 2022; 87:11644-11655. [PMID: 35977049 DOI: 10.1021/acs.joc.2c01292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a mild and efficient metal-free one-pot procedure for the synthesis of N-sulfonyl amidines via the direct reaction of sulfonamides with secondary amines without using any additives. A wide range of substrates with variety of functional groups is well tolerated under the reaction conditions. Preliminary mechanistic studies indicate that the secondary amine plays a dual role as a C1 source of the amidine group and an aminating agent. Synthetic utility of this method is shown in the late-stage functionalization of drug molecules on the gram scale.
Collapse
Affiliation(s)
| | | | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
9
|
Wang X, Zhao Q, Fang Y, Cai M, Chen Y, Dai L. Copper-Catalyzed C-N Bond Cleavage: Synthesis of N-Sulfonylformamidines from N-( 2-pyridinylmethyl)benzenesulfonamides. Curr Org Synth 2022; 19:797-807. [PMID: 35400320 DOI: 10.2174/1570179419666220408000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
AIMS Find an innovative approach to synthesizing N-sulfonylformamidines from new N source. BACKGROUND N-sulfonylamidines have gained considerable attention from school and industry because of unique bioactivity. Since Pinner's strategy, expanding the synthesis methods of N-sulfonylamidines has been the goal of many organic chemists over the past decades. Beside of the crash reaction conditions and the participation of undesirable reagents, the production of N-sulfonylamidines commonly required unstable ammonia and azides as the source of nitrogen which hindered the further development and application of N-sulfonylamidine derivatives. OBJECTIVE Find a stable N source to replace NaN3 or NH3 to synthesis N-sulfonylamidines. METHOD Firstly, N-( 2-pyridinylmethyl)benzenesulfonamides were smoothly synthesized via 2-pyridinemethanamine and sulfonyl chlorides. Then the reaction conditions of N-(2-pyridinylmethyl)benzenesulfonamides and N,N-dimethylformamide dimethyl acetal(DMF-DMA) were screened and optimized: the reaction was processed in glycol at 80 ℃ for 8 hours with the addition of 5 mol% Cu(OAc)2·H2O as catalyst. RESULT Taking the advantage of pyridin-2-ylmethyl, a scope of N-Sulfonylformamidines were synthesized from those N-(2-pyridinylmethyl)benzenesulfonamides under copper-catalyzed C-N bond cleavage. CONCLUSION This ready synthetic method will be more a promising inspiration of bioactive compound synthesis and drug development than of an innovative approach to synthesizing N-sulfonylformamidines.
Collapse
Affiliation(s)
- Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| | - Qihang Zhao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| | - Yangyang Fang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yingqi Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University - Quzhou, Quzhou, China
| |
Collapse
|
10
|
Li F, Wu Z, Wang J, Zhang S, Yu J, Yuan Z, Liu J, Shen R, Zhou Y, Liu L. Metal-free synthesis of N-sulfonylformamidines via skeletal reconstruction of sulfonyl oximonitriles. Org Chem Front 2022. [DOI: 10.1039/d1qo01665b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We firstly develop an unprecedented domino reaction of sulfonyl oximonitriles with secondary amines to streamline synthesis of N-sulfonylformamidines in decent to high yields under mild reaction conditions.
Collapse
Affiliation(s)
- Feng Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ziyan Wu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingjing Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Siyuan Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jiaxin Yu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Zhen Yuan
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jingya Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Renzeng Shen
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
11
|
Zhou Z, Luo D, Li G, Yang Z, Cui L, Yang W. Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2- a]pyridines. RSC Adv 2022; 12:20199-20205. [PMID: 35919587 PMCID: PMC9280286 DOI: 10.1039/d2ra02722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
An efficient three-component one-pot and operationally simple cascade of 2-aminopyridines with sulfonyl azides and terminal ynones is reported, providing a variety of polysubstituted imidazo[1,2-a]pyridine derivatives in moderate to excellent yields. In particular, the reaction goes a through CuAAC/ring-cleavage process and forms a highly active intermediate α-acyl-N-sulfonyl ketenimine with base free. Three-component one-pot synthesis of polysubstituted imidazo[1,2-a]pyridine derivatives through a base free CuAAC/ring-cleavage process.![]()
Collapse
Affiliation(s)
- Zitong Zhou
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Danyang Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Guanrong Li
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongtao Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Liao Cui
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
12
|
Yang W, Zhao Y, Bu Q, Li L, Zhou B, Huang Z. Tandem CuAAC/Ring Cleavage/[4 + 2] Annulation Reaction to Synthesize Dihydrooxazines and Conversion to 2-Aminopyrimidines. Org Lett 2021; 24:457-461. [PMID: 34935394 DOI: 10.1021/acs.orglett.1c04179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A tandem CuAAC/ring cleavage/[4 + 2] annulation reaction of terminal ynones, sulfonyl azides, and oximes has been developed to synthesize functionalized dihydrooxazines under mild conditions. In particular, intermediate N-sulfonyl acylketenimines are the first example of a 4π-system participating in [4 + 2] cycloadditions, and dihydrooxazines can convert to 2-aminopyridines through ring cleavage under basic conditions.
Collapse
Affiliation(s)
- Weiguang Yang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Qingxia Bu
- Department of Chemistry, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210009, China
| | - Li Li
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Baojing Zhou
- Department of Chemistry, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210009, China
| | - Zunnan Huang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
13
|
Zhou Z, Zhao Y, Zhou D, Li L, Luo H, Cui L, Yang W. Rapid and efficient synthesis of formamidines in a catalyst-free and solvent-free system. RSC Adv 2021; 11:33868-33871. [PMID: 35497291 PMCID: PMC9042323 DOI: 10.1039/d1ra06809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
An operationally rapid and efficient synthesis of N-sulfonyl formamidines that proceeds under mild conditions was achieved by reaction of a mixture of an amine, a sulfonyl azide, and a terminal ynone under catalyst-free and solvent-free conditions. Terminal ynones provide the C source to formamidines via complete cleavage of C[triple bond, length as m-dash]C.
Collapse
Affiliation(s)
- Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Donghua Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| |
Collapse
|
14
|
Luo X, Zhao Y, Tao S, Yang ZT, Luo H, Yang W. A simple and efficient copper-catalyzed three-component reaction to synthesize ( Z)-1,2-dihydro-2-iminoquinolines. RSC Adv 2021; 11:31152-31158. [PMID: 35496874 PMCID: PMC9041411 DOI: 10.1039/d1ra06330h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
A operationally simple synthesis of (Z)-1,2-dihydro-2-iminoquinolines that proceeds under mild conditions is achieved by copper-catalyzed reaction of 1-(2-aminophenyl)ethan-1-ones, sulfonyl azides and terminal ynones. In particular, the reaction goes through a base-free CuAAC/ring-opening process to obtain the Z-configured products due to hydrogen bonding.
Collapse
Affiliation(s)
- Xiai Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Department of Pharmacy, Hunan University of Medicine Huaihua 418000 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Susu Tao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zhong-Tao Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
15
|
Wang F, Yumaier A, Wusiman A. Facile one-pot synthesis of tetrasubstituted N-sulfonylguanidines from sulfonamides and ureas. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhao Y, Zhou Z, Chen M, Yang W. Copper-Catalyzed One-Pot Synthesis of N-Sulfonyl Amidines from Sulfonyl Hydrazine, Terminal Alkynes and Sulfonyl Azides. Molecules 2021; 26:3700. [PMID: 34204392 PMCID: PMC8235413 DOI: 10.3390/molecules26123700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
N-Sulfonyl amidines are developed from a Cu-catalyzed three-component reaction from sulfonyl hydrazines, terminal alkynes and sulfonyl azides in toluene at room temperature. Particularly, the intermediate N-sulfonylketenimines was generated via a CuAAC/ring-opening procedure and took a nucleophilic addition with the weak nucleophile sulfonyl hydrazines. In addition, the stability of the product was tested by a HNMR spectrometer.
Collapse
Affiliation(s)
| | | | | | - Weiguang Yang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (Y.Z.); (Z.Z.); (M.C.)
| |
Collapse
|
17
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
18
|
Bahadorikhalili S, Divar M, Damghani T, Moeini F, Ghassamipour S, Iraji A, Miller MA, Larijani B, Mahdavi M. N-sulfonyl ketenimine as a versatile intermediate for the synthesis of heteroatom containing compounds. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Liu AR, Zhang L, Li J, Wusiman A. Catalyst-free one-pot, four-component approach for the synthesis of di- and tri-substituted N-sulfonyl formamidines. RSC Adv 2021; 11:15161-15166. [PMID: 35424053 PMCID: PMC8698225 DOI: 10.1039/d1ra00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
A straightforward one-pot, multicomponent approach was developed to synthesize di- and tri-substituted N-sulfonyl formamidines from sulfonyl chlorides, NaN3, ethyl propiolate, and primary/secondary amines under mild conditions without catalysts or additives. Structural analysis of the di-substituted sulfonyl formamidines indicated formation of the E-syn/anti isomeric form. Tri-substituted analogues only formed E-isomers.
Collapse
Affiliation(s)
- Ai-Ran Liu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
| | - Jiao Li
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
| | - Abudureheman Wusiman
- School of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi Xinjiang 830054 P. R China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Urumqi 830054 China
| |
Collapse
|
20
|
Yang W, Zhao Y, Zhou Z, Li L, Cui L, Luo H. Preparation of 1,2-substituted benzimidazoles via a copper-catalyzed three component coupling reaction. RSC Adv 2021; 11:8701-8707. [PMID: 35423384 PMCID: PMC8695204 DOI: 10.1039/d1ra00650a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
1,2-Substituted benzimidazoles were prepared by simply stirring a mixture of copper catalysts, N-substituted o-phenylenediamines, sulfonyl azides and terminal alkynes. Particularly, the intermediate N-sulfonylketenimine occurred with two nucleophilic addition and the sulfonyl group was eliminated via cyclization. In a way, sulfonyl azides and copper catalysts activated the terminal alkynes to synthesize benzimidazoles.
Collapse
Affiliation(s)
- Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
21
|
Liu H, Pang Z, Hao L, Sun J, Zhang Z, Wen F, Xia C. Sulfonylimination of Proline with Sulfonylazides Involving Aldehyde-Induced Decarboxylation Coupling. Org Lett 2021; 23:1234-1238. [PMID: 33560135 DOI: 10.1021/acs.orglett.0c04187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the presence of aldehyde, a facile method was developed to obtain N-sulfonyl amidines under metal- and oxidant-free conditions by the decarboxylative of proline. This transformation features a double C-N bond formation and allows for the green synthesis of the N-sulfonyl amidines on the basis of mild conditions.
Collapse
Affiliation(s)
- Hongyan Liu
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zengfen Pang
- Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Liqiang Hao
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Jian Sun
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Zheng Zhang
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Fuqiang Wen
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chengcai Xia
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
22
|
Gou Q, Tan Q, Chen Q, Tan J, Wang K, Xie J. Copper-Catalyzed Regioselective C(sp 3)—H Sulfonimidization of Aliphatic Cyclic Tertiary Amines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Wang CG, Wu R, Li TP, Jia T, Li Y, Fang D, Chen X, Gao Y, Ni HL, Hu P, Wang BQ, Cao P. Copper(I)-Catalyzed Ketenimine Formation/Aza-Claisen Rearrangement Cascade for Stereoselective Synthesis of α-Allylic Amidines. Org Lett 2020; 22:3234-3238. [PMID: 32233500 DOI: 10.1021/acs.orglett.0c01012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper-catalyzed three-component reaction of terminal alkynes, TsN3, and tertiary allylic amines is developed toward the one-pot synthesis of α-allylic amidines. The product was synthesized on gram scale under 1 mol % of catalyst loading. Transformations of products into alkenyl amine and other nitrogen-containing compounds are demonstrated without any loss of stereochemical information.
Collapse
Affiliation(s)
- Cheng-Gang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Rui Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ting-Peng Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Tao Jia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Dongmei Fang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaozhen Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
24
|
Wang ZY, Wang KK, Chen R, Liu H, Chen K. Ynones in Reflex-Michael Addition, CuAAC, and Cycloaddition, as Well as their Use as Nucleophilic Enols, Electrophilic Ketones, and Allenic Precursors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhan-Yong Wang
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Kai-Kai Wang
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Rongxiang Chen
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Huan Liu
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Kaijun Chen
- Department of Chemistry; Lishui University; No. 1, Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| |
Collapse
|
25
|
Gou Q, Liu Z, Cao T, Tan X, Shi W, Ran M, Cheng F, Qin J. Copper-Catalyzed Coupling of Sulfonamides with Alkylamines: Synthesis of ( E)- N-Sulfonylformamidines. J Org Chem 2020; 85:2092-2102. [PMID: 31876415 DOI: 10.1021/acs.joc.9b02860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe an efficient copper-catalyzed coupling of sulfonamides with alkylamines to synthesize (E)-N-sulfonylformamidines. The reaction is accomplished under mild conditions without the use of a corrosive acid or base as an additive. It tolerates a broad scope of substrates and generates the products with exclusive (E)-stereoselectivity.
Collapse
Affiliation(s)
- Quan Gou
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Zining Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control , Qujing Normal University , Qujing 655011 , China
| | - Tuanwu Cao
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Xiaoping Tan
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Wenbing Shi
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Man Ran
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Feixiang Cheng
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control , Qujing Normal University , Qujing 655011 , China
| | - Jun Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
26
|
Xuan-Wu Y, Wusiman A. Facile synthesis of novel Mono- and Bis- N-sulfamoylamidines. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2019.1653870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ye Xuan-Wu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University , Urumqi , People’s Republic of China
| | - Abudureheman Wusiman
- School of Chemistry and Chemical Engineering, Xinjiang Normal University , Urumqi , People’s Republic of China
| |
Collapse
|
27
|
Huang B, Yang C, Zhou J, Xia W. Electrochemically generated N-iodoaminium species as key intermediates for selective methyl sulphonylimination of tertiary amines. Chem Commun (Camb) 2020; 56:5010-5013. [DOI: 10.1039/c9cc09869k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents a straightforward protocol for approaching N-sulphonylamidines via an electricity-driven, iodine-mediated cross dehydrogenative condensation (CDC) between sulphonamides and tertiary amines.
Collapse
Affiliation(s)
- Binbin Huang
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| | - Jia Zhou
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment
- School of Science, Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
| |
Collapse
|
28
|
Zheng X, Wan J. The C=C Bond Decomposition Initiated by Enamine‐Azide Cycloaddition for Catalyst‐ and Additive‐Free Synthesis of
N
‐Sulfonyl Amidines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xixi Zheng
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
29
|
Han J, Zhou R, Huang C, Zeng Q, Long Q, Zhang Q, Cong H, Zhou Q, Wei G, Liu M. Efficient synthesis of sulfonylguanidines via reaction of tetra-substituted urine with ArSO2NCO. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Aswad M, Chiba J, Hatanaka Y, Tomohiro T. Novel coupling reaction between sulfonyl azide and N,N,N',N'-tetramethylthiourea. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yang W, Huang D, Zeng X, Zhang J, Wang X, Hu Y. N-Sulfonyl acetylketenimine as a highly reactive intermediate for synthesis of N-Aroylsulfonamides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Guo S, Dong P, Chen Y, Feng X, Liu X. Chiral Guanidine/Copper Catalyzed Asymmetric Azide‐Alkyne Cycloaddition/[2+2] Cascade Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Songsong Guo
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Pei Dong
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
33
|
Guo S, Dong P, Chen Y, Feng X, Liu X. Chiral Guanidine/Copper Catalyzed Asymmetric Azide‐Alkyne Cycloaddition/[2+2] Cascade Reaction. Angew Chem Int Ed Engl 2018; 57:16852-16856. [DOI: 10.1002/anie.201810679] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/21/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Songsong Guo
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Pei Dong
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & TechnologyMinistry of EducationCollege of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
34
|
Sun J, Cheng X, Mansaray JK, Fei W, Wan J, Yao W. A copper-catalyzed three component reaction of aryl acetylene, sulfonyl azide and enaminone to form iminolactone via 6π electrocyclization. Chem Commun (Camb) 2018; 54:13953-13956. [DOI: 10.1039/c8cc06868b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We developed a copper-catalyzed three component reaction of aryl acetylene, enaminone and sulfonyl azide to construct iminolactone via copper-catalyzed alkyne–azide cycloaddition (CuAAC), Michael addition of metalated ketenimine followed by elimination and 6π electrocyclization.
Collapse
Affiliation(s)
- Jiarui Sun
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | - Xiangsheng Cheng
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | | | - Weihong Fei
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| | - Jieping Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Weijun Yao
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- P. R. China
| |
Collapse
|