1
|
Simms CH, Kovacs D, Hacker L, Sarson ET, Sokolova D, Christensen KE, Khrapichev A, Martin LAW, Vincent K, Conway SJ, Hammond EM, Langton MJ, Faulkner S. Binuclear Lanthanide Complexes as Magnetic Resonance and Optical Imaging Probes for Redox Sensing. Chemistry 2025:e202404748. [PMID: 40226941 DOI: 10.1002/chem.202404748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/15/2025]
Abstract
We report a family of lanthanide(III) complexes that act as redox probes via both magnetic resonance (MR) and luminescence outputs. The ligands are functionalized with nitro, azobenzene and azide groups which are reduced to a common aniline product, and each responds to both chemical and biocatalytic reductive conditions at different cathodic onset potentials. By judicious choice of complexed Ln(III), the probes can be optimized either for use in MR imaging (Ln = Gd), or as highly efficient turn-on luminescence probes (Ln = Tb). The Tb(III) analogues are essentially nonemissive, until reductive generation of the aniline affords a complex which when excited by visible light (488 nm) emits green light with a quantum yield of 45% and millisecond long luminescent lifetimes (ms). The tunable redox response and imaging modalities of these versatile complexes have the potential to open up new approaches to redox sensing, such as the imaging of hypoxic environments in biology.
Collapse
Affiliation(s)
- Charlie H Simms
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Daniel Kovacs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Lina Hacker
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Euan T Sarson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Daria Sokolova
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | - Kylie Vincent
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Stuart J Conway
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, CA, 90095-1569, USA
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Matthew J Langton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen Faulkner
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
2
|
Bodman SE, Stachelek P, Rehman U, Plasser F, Pal R, Butler SJ. A switch-on luminescent europium(iii) probe for selective and time-resolved detection of adenosine diphosphate (ADP). Chem Sci 2025; 16:5602-5612. [PMID: 40028620 PMCID: PMC11868914 DOI: 10.1039/d4sc07188c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Adenosine diphosphate (ADP) is a key product of two essential classes of biological reactions, catalysed by ATPases and kinases. This makes ADP a highly appealing target for supramolecular detection. However, doing so selectively is exceedingly difficult due to ADP's lower overall charge and similar structure to ATP and the need for compatibility with biological media. Overcoming this challenge, here we present a water-soluble, ADP-selective, luminescent europium(iii) probe suitable for use in vitro and in cellular microscopy. This negatively charged Eu(iii) complex binds ADP reversibly and responds by switching on its luminescence, whilst showing minimal interference from ATP, pyrophosphate and a wide range of biological anions. The probe is equipped with two π-conjugated quinolyl-phenoxyacetate antennae, facilitating excitation at 355 nm in fluorescence microscopy. The ancillary carboxylate groups ensure high water solubility and suppress non-specific binding to albumin protein. Our novel probe demonstrates a level of sensing selectivity for ADP that is unrivaled, producing a linear emission response across the physiologically relevant concentration range (10-400 μM), even in the presence of excess millimolar ATP. We demonstrate that this amphiphilic Eu(iii) probe permeates mammalian cells and localises within the mitochondria and lysosomes. The low background emission of the probe combined with its excellent ADP selectivity and long-lived luminescence makes it a promising tool for visualising ADP levels in living cells.
Collapse
Affiliation(s)
- Samantha E Bodman
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE113TU UK
| | | | - Umatur Rehman
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE113TU UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE113TU UK
| | - Robert Pal
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE113TU UK
| |
Collapse
|
3
|
Melo LLS, Castro GP, Navarro M, Gonçalves SMC, Simas AM. Unmasking the UV Photobleaching of β-Diketonate [Eu(BTFA) 4] - Complexes as an Energy-Driven Photoreduction Process. Inorg Chem 2025; 64:3842-3856. [PMID: 39962985 PMCID: PMC11881040 DOI: 10.1021/acs.inorgchem.4c05014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
We elucidate the nature of the gradual attenuation of luminescence under sustained ultraviolet (UV) radiation exposure in europium [Eu(BTFA)4]- complexes, revealing that it originates from a nonlinear energy-driven process, wherein Eu(III) is irreversibly reduced to Eu(II). This photoreduction was confirmed via the electrochemical techniques cyclic voltammetry and chronoamperometry, which, coupled with luminescence experiments, provided direct evidence of the Eu3+/Eu2+ reduction and the disappearance of Eu(III) after UV exposure. Indeed, extended UV exposure induces a gradual decrease in Eu(III) luminescence, paired with an increased intensity of Eu(II) luminescence, upon direct excitation of the metal ion. To provide an adequate description of this process, we advanced a photochemical law in the energy domain (rather than the time domain) and introduced the concept of photobleaching energy to facilitate comparisons of photostability among various complexes in different solvents. The nonlinearities detected in the energy domain suggest an underlying multiphoton process. As a consequence, we uncovered a trade-off between photostability and luminescence: enhancing one implies diminishing the other. Specifically, the proximity between the complex and cation in nonpolar solvents induces asymmetry in the complex, enhancing luminescence but reducing photostability. Conversely, distancing the cation leaves the complex within a more symmetrical solvent enclosure, decreasing luminescence and increasing photostability. Our findings also indicate that exposing Eu(III) complexes to UV light can function as a method for the photochemical synthesis of Eu(II) complexes, a process further substantiated by our electrochemical experiments.
Collapse
Affiliation(s)
- Lizandra
L. L. S. Melo
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Gerson P. Castro
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Marcelo Navarro
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Simone M. C. Gonçalves
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Alfredo M. Simas
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
4
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Zheng F, Li C, Huang Y, Lu Z, Hou X, Luo Y. Recent advances in optical heavy water sensors. Chem Commun (Camb) 2025; 61:3283-3300. [PMID: 39868706 DOI: 10.1039/d4cc06277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
D2O and H2O, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, D2O and H2O are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of H2O in heavy water or vice versa, mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules. The whole article is divided into several sub-sections based on multiple mechanisms underlying the design of heavy water optical sensors, i.e., the difference in binding energy, the difference in quenching efficacy of oscillator types and the difference in acid-base of H2O and D2O. The working mechanism, advantages and disadvantages, analytical performance and applications of the reported sensors in recent years were analyzed in detail, and the future development is envisioned for the optical sensors towards distinguishing D2O and H2O.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yanju Luo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
6
|
Choi JH, Nhari A, Charnay T, Chartier B, Bridou L, Micouin G, Maury O, Banyasz A, Erbek S, Grichine A, Martel-Frachet V, Thomas F, Molloy JK, Sénèque O. Carbazole-Based Eu 3+ Complexes for Two-Photon Microscopy Imaging of Live Cells. Inorg Chem 2025; 64:2006-2019. [PMID: 39835405 DOI: 10.1021/acs.inorgchem.4c04806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu3+ complexes, mTAT[Eu·L-CC-Ar-Cz] and mTAT[Eu·L-Ar-Cz], with (N-carbazolyl)-aryl-alkynyl-picolinamide and (N-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu3+ complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (ΦEu < 0.002) in purely aqueous buffers. A detailed spectroscopic study on mTAT[Eu·L-Ar-Cz] reveals that the quantum yield of emission is strongly polarity dependent─the less polar the medium, the higher the quantum yield─and that the emission quenching in water is likely due to a photoinduced electron transfer between the excited carbazole-based antenna and Eu3+ that efficiently competes with the energy transfer process. Nevertheless, mTAT[Eu·L-Ar-Cz] shows a significant two-photon cross-section of 100 GM at 750 nm, which is interesting for two-photon microscopy. The live cell imaging properties of mTAT[Eu·L-Ar-Cz] and the two other conjugates were investigated. Cytosolic delivery was clearly evidenced in the case of mTAT[Eu·L-Ar-Cz] when cells are coincubated with this compound and a nonluminescent dimeric TAT derivative, dFFLIPTAT.
Collapse
Affiliation(s)
- Ji-Hyung Choi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Adam Nhari
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Thibault Charnay
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Baptiste Chartier
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Lucile Bridou
- CNRS, ENS de Lyon, LCH, UMR 5182, Lyon F-69342, France
| | | | - Olivier Maury
- CNRS, ENS de Lyon, LCH, UMR 5182, Lyon F-69342, France
| | - Akos Banyasz
- CNRS, ENS de Lyon, LCH, UMR 5182, Lyon F-69342, France
| | - Sule Erbek
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 rue Ferrus, Paris 75014, France
| | - Alexei Grichine
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble F-38000, France
| | - Véronique Martel-Frachet
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 rue Ferrus, Paris 75014, France
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Jennifer K Molloy
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| |
Collapse
|
7
|
Wen X, Li H, Ju Z, Deng R, Parker D. Mechanism of action and evaluation of ratiometric probes for uric acid using lanthanide complexes with tetraazatriphenylene sensitisers. Chem Sci 2024; 15:19944-19951. [PMID: 39568872 PMCID: PMC11575574 DOI: 10.1039/d4sc05743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
A series of new ligands has been prepared that incorporate electron-poor aromatic moieties (dpqMe2 and dpqPh2 chromophores) into tetraazacyclododecane or triazacyclononane based complex structures, and the time-dependent photophysical properties of their Eu(iii) and Tb(iii) complexes evaluated for the selective and rapid ratiometric analysis of urate in diluted serum solution, together with mechanistic studies probing the nature of the intermediate exciplex and the excited state dynamics using transient absorption spectroscopy.
Collapse
Affiliation(s)
- Xinyi Wen
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong 999077 Hong Kong China
| | - Huishan Li
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong 999077 Hong Kong China
| | - Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China
| | - David Parker
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong 999077 Hong Kong China
| |
Collapse
|
8
|
Sánchez-Fernández R, Obregon-Gomez I, Sarmiento A, Vázquez ME, Pazos E. Luminescent lanthanide metallopeptides for biomolecule sensing and cellular imaging. Chem Commun (Camb) 2024; 60:12650-12661. [PMID: 39327864 PMCID: PMC11427887 DOI: 10.1039/d4cc03205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Lanthanide ions display unique luminescent properties that make them particularly attractive for the development of bioprobes, including long-lived excited states that allow the implementation of time-gated experiments and the elimination of background fluorescence associated with biological media, as well as narrow emission bands in comparison with typical organic fluorophores, which allow ratiometric and multiplex assays. These luminescent complexes can be combined with peptide ligands to endow them with additional targeting, responsiveness, and selectivity, thus multiplying the opportunities for creative probe design. In this feature article we will present some of the main strategies that researchers have used to develop lanthanide metallopeptide probes for the detection of proteins and nucleic acids, as well as for monitoring enzymatic activity and cellular imaging.
Collapse
Affiliation(s)
- Rosalía Sánchez-Fernández
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| | - Ines Obregon-Gomez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| | - Axel Sarmiento
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
9
|
Malikidogo KP, Charnay T, Ndiaye D, Choi JH, Bridou L, Chartier B, Erbek S, Micouin G, Banyasz A, Maury O, Martel-Frachet V, Grichine A, Sénèque O. Efficient cytosolic delivery of luminescent lanthanide bioprobes in live cells for two-photon microscopy. Chem Sci 2024; 15:9694-9702. [PMID: 38939128 PMCID: PMC11206396 DOI: 10.1039/d4sc00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
Lanthanide(iii) (Ln3+) complexes have desirable photophysical properties for optical bioimaging. However, despite their advantages over organic dyes, their use for microscopy imaging is limited by the high-energy UV excitation they require and their poor ability to cross the cell membrane and reach the cytosol. Here we describe a novel family of lanthanide-based luminescent probes, termed dTAT[Ln·L], based on (i) a DOTA-like chelator with a picolinate moiety, (ii) a two-photon absorbing antenna to shift the excitation to the near infrared and (ii) a dimeric TAT cell-penetrating peptide for cytosolic delivery. Several Tb3+ and Eu3+ probes were prepared and characterized. Two-photon microscopy of live cells was attempted using a commercial microscope with the three probes showing the highest quantum yields (>0.15). A diffuse Ln3+ emission was detected in most cells, which is characteristic of cytosolic delivery of the Ln3+ complex. The cytotoxicity of these three probes was evaluated and the IC50 ranged from 7 μM to >50 μM. The addition of a single positive or negative charge to the antenna of the most cytotoxic compound was sufficient to lower significantly or suppress its toxicity under the conditions used for two-photon microscopy. Therefore, the design reported here provides excellent lanthanide-based probes for two-photon microscopy of living cells.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250) F-38000 Grenoble France
| | - Thibault Charnay
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250) F-38000 Grenoble France
| | - Daouda Ndiaye
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| | - Ji-Hyung Choi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| | - Lucile Bridou
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Baptiste Chartier
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| | - Sule Erbek
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences F-38000 Grenoble France
- EPHE, PSL Research University 4-14 rue Ferrus 75014 Paris France
| | - Guillaume Micouin
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Akos Banyasz
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie Lyon F-69342 France
| | - Véronique Martel-Frachet
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences F-38000 Grenoble France
- EPHE, PSL Research University 4-14 rue Ferrus 75014 Paris France
| | - Alexei Grichine
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences F-38000 Grenoble France
| | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249) F-38000 Grenoble France
| |
Collapse
|
10
|
Svítok A, Blahut J, Urbanovský P, Hermann P. Dynamics of Coordinated Phosphonate Group Directly Observed by 17O-NMR in Lanthanide(iii) Complexes of a Mono(ethyl phosphonate) DOTA Analogue. Chemistry 2024; 30:e202400970. [PMID: 38624256 DOI: 10.1002/chem.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Biological phosphates can coordinate metal ions and their complexes are common in living systems. Dynamics of mutual oxygen atom exchange in the tetrahedral group in complexes has not been investigated. Here, we present a direct experimental proof of exchange ("phosphonate rotation") in model Ln(III) complexes of monophosphonate H4dota analogue which alters phosphorus atom chirality of coordinated phosphonate monoester. Combination of macrocycle-based isomerism with P-based chirality leads to several diastereoisomers. (Non)-coordinated oxygen atoms were distinguished through 17O-labelled phosphonate group and their mutual exchange was followed by various NMR techniques and DFT calculations. The process is sterically demanding and occurs through bulky bidentate (κ2-PO2)- coordination and was observed only in twisted-square antiprism (TSA) diastereoisomer of large Ln(III) ions. Its energy demands increase for smaller Ln(III) ions (298ΔG≠(exp./DFT)=51.8/52.1 and 61.0/71.5 kJ mol-1 for La(III) and Eu(III), respectively). These results are helpful in design of such complexes as MRI CA and for protein paramagnetic NMR probes. It demonstrates usefulness of 17O NMR to study solution dynamics in complexes involving phosphorus acid derivatives and it may inspire use of this method to study dynamics of phosphoric acid derivatives (as e. g. phosphorus acid-based inhibitors of metalloenzymes) in different areas of chemistry.
Collapse
Affiliation(s)
- Adam Svítok
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo náměstí 2, 16000, Prague 6, Czech Republic
| | - Peter Urbanovský
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Petr Hermann
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| |
Collapse
|
11
|
Lengacher R, Martin KE, Śmiłowicz D, Esseln H, Lotlikar P, Grichine A, Maury O, Boros E. Targeted, Molecular Europium (III) Probes Enable Luminescence-Guided Surgery and 1 Photon Post-Surgical Luminescence Microscopy of Solid Tumors. J Am Chem Soc 2023; 145:24358-24366. [PMID: 37869897 PMCID: PMC10670433 DOI: 10.1021/jacs.3c09444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Discrete luminescent lanthanide complexes represent a potential alternative to organic chromophores due to their tunability of optical properties, insensitivity to photobleaching, and large pseudo-Stokes shifts. Previously, we demonstrated that the lack of depth penetration of UV excitation required to sensitize discrete terbium and europium complexes can be overcome using Cherenkov radiation emitted by clinically employed radioisotopes in situ. Here, we show that the second-generation europium complexes [Eu(III)(pcta-PEPA2)] and [Eu(III)(tacn-pic-PEPA2)] (Φ = 57% and 76%, respectively) lower the limit of detection (LoD) to 1 nmol in the presence of 10 μCi of Cherenkov emitting isotopes, 18F and 68Ga. Bifunctionalization provides access to cysteine-linked peptide conjugates with comparable brightness and LoD. The conjugate, [Eu(tacn-(pic-PSMA)-PEPA2)], displays high binding affinity to prostate-specific membrane antigen (PSMA)-expressing PC-3 prostate cancer cells in vitro and can be visualized in the membrane-bound state using confocal microscopy. Biodistribution studies with the [86Y][Y(III)(tacn-(pic-PSMA)-PEPA2)] analogue in a mouse xenograft model were employed to study pharmacokinetics. Systemic administration of the targeted Cherenkov emitter, [68Ga][Ga(III)(PSMA-617)], followed by intratumoral injection or topical application of 20 or 10 nmol [Eu(III)(tacn-(pic-PSMA)-PEPA2)], respectively, in live mice resulted in statistically significant signal enhancement using conventional small animal imaging (620 nm bandpass filter). Optical imaging informed successful tumor resection. Ex vivo imaging of the fixed tumor tissue with 1 and 2 photon excitation further reveals the accumulation of the administered Eu(III) complex in target tissues. This work represents a significant step toward the application of luminescent lanthanide complexes for optical imaging in a clinical setting.
Collapse
Affiliation(s)
- Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helena Esseln
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Piyusha Lotlikar
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Alexei Grichine
- Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, CNRS, UMR 5309, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Olivier Maury
- Université Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Hegarty IN, Henwood AF, Bradberry SJ, Gunnlaugsson T. Generating water/MeOH-soluble and luminescent polymers by grafting 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligands onto a poly(ethylene- alt-maleic anhydride) polymer and cross-linking with terbium(III). Org Biomol Chem 2023; 21:1549-1557. [PMID: 36723129 DOI: 10.1039/d2ob02259a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of two new polymers made from P(E-alt-MA) (poly(ethylene-alt-maleic anhydride) and possessing 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligand side chains in 3 and 6 mol%, respectively (P1 and P2, respectively) is described. These polymers were shown to be soluble in MeOH solution and, in the case of P1, also in water, while P2 needed prolonged heating to enable water dissolution. Btp ligands are known for coordinating both d- and f-metal ions and so, herein, we demonstrate by using both UV-Vis absorption, fluorescence emission, as well as time-gated phosphorescence spectroscopies, that both P1 and P2 can bind to Tb(III) ions to give rise to luminescent polymers. From the analysis of the titration data, which demonstrated large changes in the emission intensity properties of the polymer upon Tb(III) binding (ground state changes were also clearly observed, with the absorption being red-shifted at lower energy), we show that the dominant stoichiometry in solution is 1 : 2 (M : L; Tb(III) : btp ratio) which implies that two btp ligands from the polymer background are able to crosslink through lanthanide coordination and that the backbone of the polymer is very likely to aid in coordinating the ions.
Collapse
Affiliation(s)
- Isabel N Hegarty
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Adam F Henwood
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Samuel J Bradberry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Choi JH, Fremy G, Charnay T, Fayad N, Pécaut J, Erbek S, Hildebrandt N, Martel-Frachet V, Grichine A, Sénèque O. Luminescent Peptide/Lanthanide(III) Complex Conjugates with Push–Pull Antennas: Application to One- and Two-Photon Microscopy Imaging. Inorg Chem 2022; 61:20674-20689. [DOI: 10.1021/acs.inorgchem.2c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ji-Hyung Choi
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Guillaume Fremy
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
- Université Grenoble Alpes, CNRS, DCM (UMR 5250), Grenoble F-38000, France
| | - Thibault Charnay
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| | - Nour Fayad
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, Mont-Saint-Aignan Cedex 76821, France
| | - Jacques Pécaut
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38000, France
| | - Sule Erbek
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 Rue Ferrus, Paris 75014, France
| | - Niko Hildebrandt
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, Mont-Saint-Aignan Cedex 76821, France
| | - Véronique Martel-Frachet
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
- EPHE, PSL Research University, 4-14 Rue Ferrus, Paris 75014, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble F-38000, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), Grenoble F-38000, France
| |
Collapse
|
14
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 PMCID: PMC12005637 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
15
|
Parker D, Fradgley JD, Delbianco M, Starck M, Walton JW, Zwier JM. Comparative analysis of lanthanide excited state quenching by electronic energy and electron transfer processes. Faraday Discuss 2022; 234:159-174. [PMID: 35147141 DOI: 10.1039/d1fd00059d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The relative sensitivities of structurally related Eu(III) complexes to quenching by electron and energy transfer processes have been compared. In two sets of 9-coordinate complexes based on 1,4,7-triazacyclononane, the Eu emission lifetime decreased as the number of conjugated sensitising groups and the number of unbound ligand N atoms increased, consistent with photoinduced electron transfer to the excited Eu(III) ion that is suppressed by N-protonation. Quenching of the Eu 5D0 excited state may also occur by electronic energy transfer, and the quenching of a variety of 9-coordinate complexes by a cyanine dye with optimal spectral overlap occurs by an efficient FRET process, defined by a Förster radius (R0) value of 68 Å and characterised by second rate constants in the order of 109 M-1 s-1; these values were insensitive to changes in the ligand structure and to the overall complex hydrophilicity. Quenching of the Eu and Tb excited states by energy transfer to Mn(II) and Cu(II) aqua ions occurred over much shorter distances, with rate constants of around 106 M-1 s-1, owing to the much lower spectral overlap integral. The calculated R0 values were estimated to be between 2.5 to 4 Å in the former case, suggesting the presence of a Dexter energy transfer mechanism that requires much closer contact, consistent with the enhanced sensitivity of the rate of quenching to the degree of steric shielding of the lanthanide ion provided by the ligand.
Collapse
Affiliation(s)
- David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK. .,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jack D Fradgley
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Martina Delbianco
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - James W Walton
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
16
|
Wheeler S, Breen C, Li Y, Hewitt SH, Robertson E, Yates EA, Barsukov IL, Fernig DG, Butler SJ. Anion binding to a cationic europium(III) probe enables the first real-time assay of heparan sulfotransferase activity. Org Biomol Chem 2022; 20:596-605. [PMID: 34951618 PMCID: PMC8767414 DOI: 10.1039/d1ob02071d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Sulfotransferases constitute a ubiquitous class of enzymes which are poorly understood due to the lack of a convenient tool for screening their activity. These enzymes use the anion PAPS (adenosine-3'-phosphate-5'-phosphosulfate) as a donor for a broad range of acceptor substrates, including carbohydrates, producing sulfated compounds and PAP (adenosine-3',5'-diphosphate) as a side product. We present a europium(III)-based probe that binds reversibly to both PAPS and PAP, producing a larger luminescence enhancement with the latter anion. We exploit this greater emission enhancement with PAP to demonstrate the first direct real-time assay of a heparan sulfate sulfotransferase using a multi-well plate format. The selective response of our probe towards PAP over structurally similar nucleoside phosphate anions, and over other anions, is investigated and discussed. This work opens the possibility of investigating more fully the roles played by this enzyme class in health and disease, including operationally simple inhibitor screening.
Collapse
Affiliation(s)
- Simon Wheeler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Colum Breen
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Yong Li
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Sarah H Hewitt
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Erin Robertson
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Edwin A Yates
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Igor L Barsukov
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| |
Collapse
|
17
|
Matsumoto M, Reid J, Byeman C, Evbuomwan O. Supramolecular Enhancement of Antenna‐sensitized Europium(III) Luminescence by Cucurbit[7]uril Complexation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaomi Matsumoto
- Department of Chemistry and Biochemistry Gonzaga University WA, 99258 Spokane United States
| | - Jon Reid
- Department of Chemistry and Biochemistry Gonzaga University WA, 99258 Spokane United States
| | - Connor Byeman
- Department of Chemistry and Biochemistry Gonzaga University WA, 99258 Spokane United States
| | - Osasere Evbuomwan
- Department of Chemistry University of San Francisco CA, 94117 San Francisco United States
| |
Collapse
|
18
|
Synthesis, structure, phase controlled colour tuning of dinuclear Pr(III) and Tb(III) complexes with fluorinated β-diketone and heterocyclic Lewis base as UV light converters. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Starck M, Fradgley JD, De Rosa DF, Batsanov AS, Papa M, Taylor MJ, Lovett JE, Lutter JC, Allen MJ, Parker D. Versatile Para-Substituted Pyridine Lanthanide Coordination Complexes Allow Late Stage Tailoring of Complex Function. Chemistry 2021; 27:17921-17927. [PMID: 34705302 PMCID: PMC8688332 DOI: 10.1002/chem.202103243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/28/2022]
Abstract
A series of cationic and neutral p-Br and p-NO2 pyridine substituted Eu(III) and Gd(III) coordination complexes serve as versatile synthetic intermediates. Nucleophilic aromatic substitution occurs readily at the para position under mild conditions, allowing C-N and C-C bond forming reactions to take place, permitting the introduction of azide, amino and alkynyl substituents. For Eu(III) complexes, this approach allows late stage tuning of absorption and emission spectral properties, exemplified by the lowering of the energy of an LMCT transition accompanied by a reduction in the Eu-Npy bond length. Additionally, these complexes provide direct access to the corresponding Eu(II) analogues. With the Gd(III) series, the nature of the p-substituent does not significantly change the EPR properties (linewidth, relaxation times), as required for their development as EPR spin probes that can be readily conjugated to biomolecules under mild conditions.
Collapse
Affiliation(s)
- Matthieu Starck
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Jack D. Fradgley
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | | | - Maria Papa
- SUPASchool of Physics and Astronomy and BSRCUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Michael J. Taylor
- SUPASchool of Physics and Astronomy and BSRCUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Janet E. Lovett
- SUPASchool of Physics and Astronomy and BSRCUniversity of St AndrewsNorth HaughSt AndrewsKY16 9SSUK
| | - Jacob C. Lutter
- Department of ChemistryWayne State University5101 Cass AvenueDetroitMI 48202USA
| | - Matthew J. Allen
- Department of ChemistryWayne State University5101 Cass AvenueDetroitMI 48202USA
| | - David Parker
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
21
|
Featherston ER, Issertell EJ, Cotruvo JA. Probing Lanmodulin's Lanthanide Recognition via Sensitized Luminescence Yields a Platform for Quantification of Terbium in Acid Mine Drainage. J Am Chem Soc 2021; 143:14287-14299. [PMID: 34432449 DOI: 10.1021/jacs.1c06360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lanmodulin is the first natural, selective macrochelator for f elements-a protein that binds lanthanides with picomolar affinity at 3 EF hands, motifs that instead bind calcium in most other proteins. Here, we use sensitized terbium luminescence to probe the mechanism of lanthanide recognition by this protein as well as to develop a terbium-specific biosensor that can be applied directly in environmental samples. By incorporating tryptophan residues into specific EF hands, we infer the order of metal binding of these three sites. Despite lanmodulin's remarkable lanthanide binding properties, its coordination of approximately two solvent molecules per site (by luminescence lifetime) and metal dissociation kinetics (koff = 0.02-0.05 s-1, by stopped-flow fluorescence) are revealed to be rather ordinary among EF hands; what sets lanmodulin apart is that metal association is nearly diffusion limited (kon ≈ 109 M-1 s-1). Finally, we show that Trp-substituted lanmodulin can quantify 3 ppb (18 nM) terbium directly in acid mine drainage at pH 3.2 in the presence of a 100-fold excess of other rare earths and a 100 000-fold excess of other metals using a plate reader. These studies not only yield insight into lanmodulin's mechanism of lanthanide recognition and the structures of its metal binding sites but also show that this protein's unique combination of affinity and selectivity outperforms synthetic luminescence-based sensors, opening the door to rapid and inexpensive methods for selective sensing of individual lanthanides in the environment and in-line monitoring in industrial operations.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward J Issertell
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Ganaie A, Iftikhar K. Theoretical Modeling (Sparkle RM1 and PM7) and Crystal Structures of the Luminescent Dinuclear Sm(III) and Eu(III) Complexes of 6,6,7,7,8,8,8- Heptafluoro-2,2-dimethyl-3,5-octanedione and 2,3-Bis(2-pyridyl)pyrazine: Determination of Individual Spectroscopic Parameters for Two Unique Eu 3+ Sites. ACS OMEGA 2021; 6:21207-21226. [PMID: 34471726 PMCID: PMC8387994 DOI: 10.1021/acsomega.0c05976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Heteroleptic homo dinuclear complexes [Sm(fod)3(μ-bpp)Sm(fod)3] and [Eu(fod)3(μ-bpp)Eu(fod)3] and their diamagnetic analogue [Lu(fod)3(μ-bpp)Lu(fod)3] (fod is the anion of 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedione (Hfod) and bpp is 2,3-bis(2-pyridyl)pyrazine) are synthesized and thoroughly characterized. The lanthanum gave a 1:1 adduct of La(fod)3 and bpp with the molecular formula of [La(fod)3bpp]. The 1H NMR and 1H-1H COSY spectra of the complexes were used to assign the proton resonances. In the case of paramagnetic Sm3+ and Eu3+ complexes, the methine (of the fod moiety) and the bpp resonances are shifted in the opposite direction and the paramagnetic shifts are dipolar in nature, which decrease with increasing distance of the proton from the metal ion. The single-crystal X-ray analyses reveal that the complexes (Sm3+ and Eu3+) are dinuclear and crystallize in the triclinic P1 space group. Each metal in a given complex is eight coordinate by coordinating with six oxygen atoms of three fod moieties and two nitrogen atoms of the bpp. Of the two metal centers, in a given complex, one has a distorted square antiprism arrangement and the other acquires a distorted dodecahedron geometry. The Sparkle RM1 and PM7 optimized structures of the complexes are also presented and compared with the crystal structure. Theoretically observed bond distances are in excellent agreement with the experimental values, and the RMS deviations for the optimized structures are 2.878, 2.217, 2.564, and 2.675 Å. The photophysical properties of Sm3+ and Eu3+ complexes are investigated in different solvents, solid, and PMMA-doped thin hybrid films. The spectroscopic parameters (the Judd-Ofelt intensity parameters, radiative parameters, and intrinsic quantum yield) of each Eu3+ sites are calculated using the overlap polyhedra method. The theoretically obtained parameters are close to the experimental results. The lifetime of the excited state is 38.74 μs for Sm3+ and 713.62 μs for the Eu3+ complex in the solid state.
Collapse
|
23
|
Zhu J, Yeo JH, Bowyer AA, Proschogo N, New EJ. Studies of the labile lead pool using a rhodamine-based fluorescent probe. Metallomics 2021; 12:644-648. [PMID: 32342963 DOI: 10.1039/d0mt00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead is a heavy metal which has long been known to have toxic effects on the body. However, much remains to be learnt about the labile lead pool and cellular uptake of lead. We report here RPb1 that undergoes a 100-fold increase in fluorescence emission in the presence of Pb2+, and which can be applied to study the labile lead pool within cells. We demonstrate the capacity of RPb1 for investigating labile lead pool in DLD-1 cells and changes in labile lead during differentiation of K562 cells.
Collapse
Affiliation(s)
- Jianping Zhu
- University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
24
|
Yao K, Karunanithy G, Howarth A, Holdship P, Thompson AL, Christensen KE, Baldwin AJ, Faulkner S, Farrer NJ. Cell-permeable lanthanide-platinum(IV) anti-cancer prodrugs. Dalton Trans 2021; 50:8761-8767. [PMID: 34080595 PMCID: PMC8237448 DOI: 10.1039/d1dt01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Platinum compounds are a vital part of our anti-cancer arsenal, and determining the location and speciation of platinum compounds is crucial. We have synthesised a lanthanide complex bearing a salicylic group (Ln = Gd, Eu) which demonstrates excellent cellular accumulation and minimal cytotoxicity. Derivatisation enabled access to bimetallic lanthanide-platinum(ii) and lanthanide-platinum(iv) complexes. Luminescence from the europium-platinum(iv) system was quenched, and reduction to platinum(ii) with ascorbic acid resulted in a "switch-on" luminescence enhancement. We used diffusion-based 1H NMR spectroscopic methods to quantify cellular accumulation. The gadolinium-platinum(ii) and gadolinium-platinum(iv) complexes demonstrated appreciable cytotoxicity. A longer delay following incubation before cytotoxicity was observed for the gadolinium-platinum(iv) compared to the gadolinium-platinum(ii) complex. Functionalisation with octanoate ligands resulted in enhanced cellular accumulation and an even greater latency in cytotoxicity.
Collapse
Affiliation(s)
- Kezi Yao
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Gogulan Karunanithy
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Alison Howarth
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Philip Holdship
- Department of Earth Sciences, University of Oxford, OX1 3AN, UK
| | - Amber L Thompson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | | | - Andrew J Baldwin
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Nicola J Farrer
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| |
Collapse
|
25
|
Zhao L, Song X, Ren X, Wang H, Fan D, Wu D, Wei Q. Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS 2 hollow triple shelled nanoboxes for procalcitonin. Biosens Bioelectron 2021; 191:113409. [PMID: 34146971 DOI: 10.1016/j.bios.2021.113409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
In this paper, we report a novel multiple amplification strategy for ultrasensitive near-infrared electrochemiluminescence (ECL) immunoassay in K2S2O8 solution. The realization of this strategy is based on the antenna effect of Eu-MOF (EuBTC) and a high efficiency catalysis of CoS2 hollow triple shelled nanoboxes (TSNBs). The H3BTC ligand in the antenna effect first undergoes π-π* absorption and a singlet-singlet electronic transition. Its energy passes through the intersystem to the triplet state, next transfers from the lowest excited triplet state to the vibrational energy level of the rare earth ion, finally realizing sensitizing center ion luminescence. Moreover, ionic reaction and structural advantages endow CoS2 TSNBs a dual signal enhancement effect. This sandwich-type ECL biosensor has a near-infrared luminescence in 800-900 nm, thus avoiding damage to the sample in the meantime. In practical diagnosis, the normal critical value of procalcitonin (PCT) (<0.5 ng/mL) is much higher than the detection limit (3.65 fg/mL) and is in the detection range (10 fg/mL-100 ng/mL), which means that the ECL biosensor has a high sensitivity in the detection of PCT and meet the requirement for diagnosis of disease completely. Therefore, the strategy provides a feasible method for efficient and stable analysis of systemic inflammatory response such as fearful bacterial infection, hepatitis B, and peritonitis.
Collapse
Affiliation(s)
- Lu Zhao
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Xianzhen Song
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| |
Collapse
|
26
|
Parker D, Fradgley JD, Wong KL. The design of responsive luminescent lanthanide probes and sensors. Chem Soc Rev 2021; 50:8193-8213. [PMID: 34075982 DOI: 10.1039/d1cs00310k] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The principles of the design of responsive luminescent probes and sensors based on lanthanide emission are summarised, based on a mechanistic understanding of their mode of action. Competing kinetic pathways for deactivation of the excited states that occur are described, highlighting the need to consider each of the salient quenching processes. Such an analysis dictates the choice of both the ligand and its integral sensitising moiety for the particular application. The key aspects of quenching involving electron transfer and vibrational and electronic energy transfer are highlighted and exemplified. Responsive systems for pH, pM, pX and pO2 and selected biochemical analytes are distinguished, according to the nature of the optical signal observed. Signal changes include both simple and ratiometric intensity measurements, emission lifetime variations and the unique features associated with the observation of circularly polarised luminescence (CPL) for chiral systems. A classification of responsive lanthanide probes is introduced. Examples of the operation of probes for reactive oxygen species, citrate, bicarbonate, α1-AGP and pH are used to illustrate reversible and irreversible transformations of the ligand constitution, as well as the reversible changes to the metal primary and secondary coordination sphere that sensitively perturb the ligand field. Finally, systems that function by modulation of dynamic quenching of the ligand or metal excited states are described, including real time observation of endosomal acidification in living cells, rapid urate analysis in serum, accurate temperature assessment in confined compartments and high throughput screening of drug binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
27
|
Jiao J, Lu H, Wang S. Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer. Acta Biomater 2021; 126:421-432. [PMID: 33774201 DOI: 10.1016/j.actbio.2021.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) have been considered as the most malignant subtype of breast cancer with leading incidence and mortality among females. Herein, photo-responsive prodrug nanoparticles (AlP/CPT-NPs) were designed with efficient cytoplasmic delivery of anti-cancer agent for cooperative photodynamic-chemotherapy. AlP/CPT-NPs were prepared using photosensitizer Al(III) phthalocyanine chloride disulfonic acid (AlP) and ROS-activatable camptothecin prodrug (CPT-PD). AlP/CPT-NPs could induce intracellular 1O2 generation upon light exposure, which not only initiate immediate disassembly of AlP/CPT-NPs but also promote cytoplasmic delivery of CPT through 1O2-mediated lysosomal rupture. The released intracellular CPT could be translocated into nuclei in only 5 min post-irradiation. Consequently, AlP/CPT-NPs efficiently suppressed the tumor growth and metastasis of TNBC in a spatiotemporally controlled manner, providing a promising option for effective treatment of metastatic TNBC. STATEMENT OF SIGNIFICANCE: Breast cancer is a complex disease with leading incidence among females, in which triple-negative breast cancer (TNBC) is considered as the most malignant subtype with increased risk of resistance, recurrence and metastasis. Herein, we designed photo-responsive prodrug nanoparticles (AlP/CPT-NPs) for synergistic treatment of metastatic TNBC. Upon 660 nm light exposure, the 1O2 generated by AlP/CPT-NPs could initiate immediate disassembly of AlP/CPT-NPs and further promote cytoplasmic delivery of the therapeutic payloads (camptothecin, CPT). The prepared AlP/CPT-NPs induced potent in vivo phototherapeutic damage through photodynamic-chemotherapy, resulting in complete tumor ablation with metastasis suppression.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
28
|
Kovalenko AD, Pavlov AA, Ustinovich ID, Kalyakina AS, Goloveshkin AS, Marciniak Ł, Lepnev LS, Burlov AS, Schepers U, Bräse S, Utochnikova VV. Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)-N-benzoylhydrazone anions: structure in solution and use for bioimaging. Dalton Trans 2021; 50:3786-3791. [PMID: 33704306 DOI: 10.1039/d0dt03913f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution behaviour in DMSO using 1D and 2D NMR spectroscopy was performed for lanthanide complexes Ln(L)(HL) and Ln(HL)2Cl, containing non-macrocyclic 2-(tosylamino)-benzylidene-N-benzoylhydrazone (H2L), and the structure of [Yb(L)]+ cation in solution was determined. Based on the NMR data, the possibility to obtain novel complexes containing [Ln(L)2]- was predicted, which was successfully synthesized, and the crystal structure of K(C2H5OH)3[Yb(L)2] was determined. Thanks to its high quantum yield of NIR luminescence (1.3 ± 0.2%), high absorption, low toxicity, and the stability of its anion against dissociation in DMSO, K(H2O)3[Yb(L)2] was successfully used for bioimaging.
Collapse
Affiliation(s)
- Anton D Kovalenko
- Department of Material Sciences, Lomonosov Moscow State University, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rucki M, Kejlova K, Vlkova A, Jirova D, Dvorakova M, Svobodova L, Kandarova H, Letasiova S, Kolarova H, Mannerstrom M, Heinonen T. Evaluation of toxicity profiles of rare earth elements salts (lanthanides). J RARE EARTH 2021; 39:225-232. [DOI: 10.1016/j.jre.2020.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Bodman SE, Butler SJ. Advances in anion binding and sensing using luminescent lanthanide complexes. Chem Sci 2021; 12:2716-2734. [PMID: 34164038 PMCID: PMC8179419 DOI: 10.1039/d0sc05419d] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Luminescent lanthanide complexes have been actively studied as selective anion receptors for the past two decades. Ln(iii) complexes, particularly of europium(iii) and terbium(iii), offer unique photophysical properties that are very valuable for anion sensing in biological media, including long luminescence lifetimes (milliseconds) that enable time-gating methods to eliminate background autofluorescence from biomolecules, and line-like emission spectra that allow ratiometric measurements. By careful design of the organic ligand, stable Ln(iii) complexes can be devised for rapid and reversible anion binding, providing a luminescence response that is fast and sensitive, offering the high spatial resolution required for biological imaging applications. This review focuses on recent progress in the development of Ln(iii) receptors that exhibit sufficiently high anion selectivity to be utilised in biological or environmental sensing applications. We evaluate the mechanisms of anion binding and sensing, and the strategies employed to tune anion affinity and selectivity, through variations in the structure and geometry of the ligand. We highlight examples of luminescent Ln(iii) receptors that have been utilised to detect and quantify specific anions in biological media (e.g. human serum), monitor enzyme reactions in real-time, and visualise target anions with high sensitivity in living cells.
Collapse
Affiliation(s)
- Samantha E Bodman
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
31
|
Salerno EV, Eliseeva SV, Schneider BL, Kampf JW, Petoud S, Pecoraro VL. Visible, Near-Infrared, and Dual-Range Luminescence Spanning the 4f Series Sensitized by a Gallium(III)/Lanthanide(III) Metallacrown Structure. J Phys Chem A 2020; 124:10550-10564. [DOI: 10.1021/acs.jpca.0c08819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elvin V. Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Bernadette L. Schneider
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071, Orleans Cedex 2, France
| | - Vincent L. Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Smrčka F, Lubal P. Luminescent Sensor Based on Ln(III) Ternary Complexes for NAD(P)H Detection. Molecules 2020; 25:E4164. [PMID: 32932963 PMCID: PMC7571129 DOI: 10.3390/molecules25184164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Ln(III) complexes of macrocyclic ligands are used in medicinal chemistry, for example as contrast agents in MRI or radiopharmaceutical compounds, and in diagnostics using fluorescence imaging. This paper is devoted to a spectroscopic study of Ln(III) ternary complexes consisting of macrocyclic heptadentate DO3A and bidentate 3-isoquinolinate (IQCA) ligands. IQCA serves as an efficient antenna ligand, leading to a higher quantum yield and Stokes shift (250-350 nm for Eu, Tb, Sm, Dy in VIS region, 550-650 nm for Yb, Nd in NIR region). The shielding-quenching effect of NAD(P)H on the luminescence of the Ln(III) ternary complexes was investigated in detail and this phenomenon was utilized for the analytical determination of this compound. This general approach was verified through an enzymatic reaction during which the course of ethanol transformation catalyzed by alcohol-dehydrogenase (ADH) was followed by luminescence spectroscopy. This method can be utilized for selective and sensitive determination of ethanol concentration and/or ADH enzyme activity. This new analytical method can also be used for other enzyme systems coupled with NAD(P)H/NAD(P)+ redox pairs.
Collapse
Affiliation(s)
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| |
Collapse
|
33
|
Chen T, Pham H, Mohamadi A, Miller LW. Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions. iScience 2020; 23:101533. [PMID: 33083762 PMCID: PMC7509216 DOI: 10.1016/j.isci.2020.101533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022] Open
Abstract
Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1–92) and HDM2 (1–128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z′-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs. Non-invasive, microscopic imaging or screening of protein-protein interactions Intracellular assembly of sensor polypeptides with luminescent Tb(III) complexes High dynamic range with time-gated detection of Tb(III)-to-GFP sensitized emission
Collapse
Affiliation(s)
- Ting Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ha Pham
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Mohamadi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author
| |
Collapse
|
34
|
Bhuckory S, Wegner KD, Qiu X, Wu YT, Jennings TL, Incamps A, Hildebrandt N. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules 2020; 25:molecules25163679. [PMID: 32806745 PMCID: PMC7464126 DOI: 10.3390/molecules25163679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostate-specific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb–IgG antibody donor conjugates were combined with compact QD-F(ab’)2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody–antigen–antibody sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 µL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics.
Collapse
Affiliation(s)
- Shashi Bhuckory
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
| | - K. David Wegner
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany;
| | - Xue Qiu
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
- School of Medicine and Pharmacy, Ocean University of China. 5, Yushan Road, Qingdao 266003, Shandong, China
| | - Yu-Tang Wu
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
| | | | - Anne Incamps
- Thermo Fisher Scientific Cezanne SAS, Clinical Diagnostic Division, 30000 Nimes, France;
| | - Niko Hildebrandt
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (S.B.); (X.Q.); (Y.-T.W.)
- Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
35
|
Dasari S, Maparu AK, Abbas Z, Kumar P, Birla H, Sivakumar S, Patra AK. Bimetallic Europium and Terbium Complexes Containing Substituted Terpyridines and the NSAID Drug Tolfenamic Acid: Structural Differences, Luminescence Properties, and Theranostic Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Auhin Kumar Maparu
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Zafar Abbas
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Priyaranjan Kumar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Hariom Birla
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Sri Sivakumar
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Ashis K. Patra
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| |
Collapse
|
36
|
Li X, Lu S, Tu D, Zheng W, Chen X. Luminescent lanthanide metal-organic framework nanoprobes: from fundamentals to bioapplications. NANOSCALE 2020; 12:15021-15035. [PMID: 32644078 DOI: 10.1039/d0nr03373a] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs), a unique type of porous material characterized by high porosity, large internal surface area and remarkable structural tunability, have emerged as very attractive functional materials for a variety of applications. As a promising subclass of MOFs, lanthanide metal-organic frameworks (Ln-MOFs) integrate the unique advantages of MOFs and the intrinsic features of lanthanide ions, such as sharp emission bands, long luminescent lifetimes, large Stokes shifts, high color purity and high resistance to photobleaching. In this minireview, we provide a brief overview of the most recent advances in luminescent Ln-MOF nanoprobes, which covers from their chemical and physical fundamentals to bioapplications, including their synthetic strategies, optical properties and promising bioapplications in biodetection, bioimaging and therapy. Finally, some of the most important emerging trends and future efforts toward this rapidly evolving field are also envisioned.
Collapse
Affiliation(s)
- Xingjun Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Shan Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
37
|
Blahut J, Benda L, Kotek J, Pintacuda G, Hermann P. Paramagnetic Cobalt(II) Complexes with Cyclam Derivatives: Toward 19F MRI Contrast Agents. Inorg Chem 2020; 59:10071-10082. [DOI: 10.1021/acs.inorgchem.0c01216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Ladislav Benda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Guido Pintacuda
- High-Field NMR Centre, CNRS FRE2034/UCB de Lyon 1/ENS de Lyon, 5 rue de la Doua, 69100 Lyon-Villeurbanne, France
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| |
Collapse
|
38
|
Kovacs D, Mathieu E, Kiraev SR, Wells JAL, Demeyere E, Sipos A, Borbas KE. Coordination Environment-Controlled Photoinduced Electron Transfer Quenching in Luminescent Europium Complexes. J Am Chem Soc 2020; 142:13190-13200. [DOI: 10.1021/jacs.0c05518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ellen Demeyere
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Agnès Sipos
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
39
|
Evans NH. Lanthanide-Containing Rotaxanes, Catenanes, and Knots. Chempluschem 2020; 85:783-792. [PMID: 32319722 DOI: 10.1002/cplu.202000135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Indexed: 12/22/2022]
Abstract
The valuable luminescence, magnetic, and catalytic properties of lanthanide cations are beginning to be exploited in conjunction with structurally exotic mechanically interlocked molecules (MIMs) such as rotaxanes, catenanes and knots. This Minireview provides an account of this rapidly developing research area commencing with the use of lanthanides in extended MIM-containing frameworks. Then, attention turns to discrete lanthanide-containing pseudorotaxanes, followed by fully interlocked rotaxanes, catenanes and knots - where lanthanides have not only been incorporated into MIM architectures but have also been used to template formation of the interlocked structure. Particular focus is paid to examples where the lanthanide MIMs have been put to useful applications, in what is still a relatively youthful avenue of research in both lanthanide coordination chemistry and the chemistry of mechanically interlocked molecules.
Collapse
Affiliation(s)
- Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| |
Collapse
|
40
|
Breen C, Pal R, Elsegood MRJ, Teat SJ, Iza F, Wende K, Buckley BR, Butler SJ. Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chem Sci 2020; 11:3164-3170. [PMID: 34122821 PMCID: PMC8157329 DOI: 10.1039/c9sc06053g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxynitrite (ONOO-) is a powerful and short-lived oxidant formed in vivo, which can react with most biomolecules directly. To fully understand the roles of ONOO- in cell biology, improved methods for the selective detection and real-time analysis of ONOO- are needed. We present a water-soluble, luminescent europium(iii) probe for the rapid and sensitive detection of peroxynitrite in human serum, living cells and biological matrices. We have utilised the long luminescence lifetime of the probe to measure ONOO- in a time-resolved manner, effectively avoiding the influence of autofluorescence in biological samples. To demonstrate the utility of the Eu(iii) probe, we monitored the production of ONOO- in different cell lines, following treatment with a cold atmospheric plasma device commonly used in the clinic for skin wound treatment.
Collapse
Affiliation(s)
- Colum Breen
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Robert Pal
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Mark R J Elsegood
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Simon J Teat
- Advanced Light Source, Berkeley Lab. 1 Cyclotron Road Berkeley CA 94720 USA
| | - Felipe Iza
- Centre for Biological Engineering, Department of Mechanical, Electrical and Manufacturing Engineering, Loughborough University LE11 3TU UK
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology, ZIK plasmatis Felix-Hausdorff-Str.2 17489 Greifswald Germany
| | - Benjamin R Buckley
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| |
Collapse
|
41
|
Monteiro JHSK, Fetto NR, Tucker MJ, de Bettencourt-Dias A. Luminescent Carbazole-Based Eu III and Yb III Complexes with a High Two-Photon Absorption Cross-Section Enable Viscosity Sensing in the Visible and Near IR with One- and Two-Photon Excitation. Inorg Chem 2020; 59:3193-3199. [PMID: 32052955 DOI: 10.1021/acs.inorgchem.9b03561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The newly synthesized EuIII and YbIII complexes with the new carbazole-based ligands CPAD2- and CPAP4- display the characteristic long-lived metal-centered emission upon one- and two-photon excitation. The EuIII complexes show the expected narrow emission bands in the red region, with emission lifetimes between 0.382 and 1.464 ms and quantum yields between 2.7% and 35.8%, while the YbIII complexes show the expected emission in the NIR region, with emission lifetimes between 0.52 and 37.86 μs and quantum yields between 0.028% and 1.12%. Two-photon absorption cross sections (σ2PA) as high as 857 GM were measured for the two ligands. The complexes showed a strong dependence of the one- and two-photon sensitized emission intensity on solvent viscosity in the range of 0.5-200 cP in the visible and NIR region.
Collapse
Affiliation(s)
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | |
Collapse
|
42
|
Leygue N, Galaup C, Lopera A, Delgado-Pinar E, Williams RM, Gornitzka H, Zwier JM, García-España E, Lamarque L, Picard C. Tripyridinophane Platform Containing Three Acetate Pendant Arms: An Attractive Structural Entry for the Development of Neutral Eu(III) and Tb(III) Complexes in Aqueous Solution. Inorg Chem 2020; 59:1496-1512. [PMID: 31913029 DOI: 10.1021/acs.inorgchem.9b03345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a detailed characterization of Eu3+ and Tb3+ complexes derived from a tripyridinophane macrocycle bearing three acetate side arms (H3tpptac). Tpptac3- displays an overall basicity (∑ log KiH) of 24.5, provides the formation of mononuclear ML species, and shows a good binding affinity for Ln3+ (log KLnL = 17.5-18.7). These complexes are also thermodynamically stable at physiological pH (pEu = 18.6, pTb = 18.0). It should be noted that the pGd value of Gd-tpptac (18.4) is only slightly lower than that of commercially available MRI contrast agents such as Gd-dota (pGd = 19.2). Moreover, a very good selectivity for these ions over the endogenous cations (log KCuL = 14.4, log KZnL = 12.9, and log KCaL = 9.3) is observed. The X-ray structure of the terbium complex shows the metal coordinated by the nine N6O3 donor set of the ligand and one inner-sphere water molecule. DFT calculations result in two Eu-tpptac structures with similar bond energies (ΔE = 0.145 eV): one structure in which the water is coordinated to the metal ion and one structure in which the water molecule is farther away from the ion, bound to the ligand with an OH-π bond. By detailed luminescence experiments, we demonstrate that the europium complex in aqueous solution presents a hydration equilibrium between nine-coordinate, dehydrated [Eu-tpptac]0 and ten-coordinate, monohydrated [Eu-tpptac(H2O)]0 species. A similar trend is observed for the terbium complex. Despite the presence of this hydration equilibrium, the H3tpptac ligand sensitizes Eu3+ and Tb3+ luminescence efficiently in buffered water at physiological pH. Particularly, the terbium complex displays a long excited-state lifetime of 2.24 ms and an overall quantum yield of 33% with a brightness of 3600 M-1 cm-1. Such features of Ln3+ complexes of H3tpptac indicate that this platform appears to be particularly appealing for the further development of luminescent lanthanide labels.
Collapse
Affiliation(s)
- Nadine Leygue
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB) , Université Paul Sabatier-Toulouse III/CNRS (UMR5068) , 118 route de Narbonne , F-31062 Toulouse , France
| | - Chantal Galaup
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB) , Université Paul Sabatier-Toulouse III/CNRS (UMR5068) , 118 route de Narbonne , F-31062 Toulouse , France
| | - Alberto Lopera
- Instituto de Ciencia Molecular (ICMOL) , Universitat de València , C/Catedrático José Beltrán 2 , 46980 Paterna , Spain
| | - Estefanía Delgado-Pinar
- Instituto de Ciencia Molecular (ICMOL) , Universitat de València , C/Catedrático José Beltrán 2 , 46980 Paterna , Spain
| | - René M Williams
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands
| | - Heinz Gornitzka
- CNRS, LCC , Université de Toulouse, UPS, INPT , 205 Route de Narbonne , F-31077 Toulouse Cedex 4 , France
| | - Jurriaan M Zwier
- Cisbio bioassays , Parc Marcel Boiteux, BP 84175, 30200 Codolet , France
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMOL) , Universitat de València , C/Catedrático José Beltrán 2 , 46980 Paterna , Spain
| | - Laurent Lamarque
- Cisbio bioassays , Parc Marcel Boiteux, BP 84175, 30200 Codolet , France
| | - Claude Picard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB) , Université Paul Sabatier-Toulouse III/CNRS (UMR5068) , 118 route de Narbonne , F-31062 Toulouse , France
| |
Collapse
|
43
|
Jin GQ, Ning Y, Geng JX, Jiang ZF, Wang Y, Zhang JL. Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01132c] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent developments and prospects of near-infrared molecular probes based on luminescent lanthanide coordination complexes in bioimaging are described, which is important to emphasise the importance of lanthanide chemical biology.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jing-Xing Geng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhi-Fan Jiang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yan Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
44
|
Clerc M, Heinemann F, Spingler B, Gasser G. A Luminescent NOTA-Based Terbium(III) “Turn-Off” Sensor for Copper. Inorg Chem 2019; 59:669-677. [DOI: 10.1021/acs.inorgchem.9b02934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michèle Clerc
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Franz Heinemann
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| |
Collapse
|
45
|
Starck M, Fradgley JD, Di Vita S, Mosely JA, Pal R, Parker D. Targeted Luminescent Europium Peptide Conjugates: Comparative Analysis Using Maleimide and para-Nitropyridyl Linkages for Organelle Staining. Bioconjug Chem 2019; 31:229-240. [DOI: 10.1021/acs.bioconjchem.9b00735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jack D. Fradgley
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Stefania Di Vita
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
46
|
Kovacs D, Kiraev SR, Phipps D, Orthaber A, Borbas KE. Eu(III) and Tb(III) Complexes of Octa- and Nonadentate Macrocyclic Ligands Carrying Azide, Alkyne, and Ester Reactive Groups. Inorg Chem 2019; 59:106-117. [DOI: 10.1021/acs.inorgchem.9b01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Dulcie Phipps
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| |
Collapse
|
47
|
Pelc R, Mašek V, Llopis-Torregrosa V, Bouř P, Wu T. Spectral counterstaining in luminescence-enhanced biological Raman microscopy. Chem Commun (Camb) 2019; 55:8329-8332. [PMID: 31257378 DOI: 10.1039/c9cc03139a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell imaging heavily depends on fluorescent labels typically incompatible with Raman microscopy. The europium(iii) complex based on dipicolinic acid (DPA) presented here is an exception from this rule. Although its luminescence bands are very narrow, their intensity is comparable to the background Raman bands. This makes it complementary to less luminous compounds referred to as Raman tags. Through several examples we show that the complex provides a morphological context in otherwise unstained cells, thus acting as a spectral-counterstaining agent.
Collapse
Affiliation(s)
- Radek Pelc
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | - Vlastimil Mašek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Vicent Llopis-Torregrosa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | - Tao Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| |
Collapse
|