1
|
Horvat S, Yu Y, Manz H, Keller T, Beilhack A, Groll J, Albrecht K. Nanogels as Antifungal‐Drug Delivery System Against
Aspergillus Fumigatus. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sonja Horvat
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Yidong Yu
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Hannah Manz
- Department of Medicine II Center for Experimental Molecular Medicine Würzburg University Hospital 97080 Würzburg Germany
| | - Thorsten Keller
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Andreas Beilhack
- Department of Medicine II Center for Experimental Molecular Medicine Würzburg University Hospital 97080 Würzburg Germany
| | - Jürgen Groll
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| | - Krystyna Albrecht
- Department for functional materials in medicine and dentistry and Bavarian Polymer Institute University of Würzburg Pleicherwall 2 D-97070 Würzburg Germany
| |
Collapse
|
2
|
Feng X, Xu W, Xu X, Li G, Ding J, Chen X. Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. Sci China Chem 2021; 64:293-301. [DOI: 10.1007/s11426-020-9884-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023]
|
3
|
Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules 2020; 11:biom11010047. [PMID: 33396401 PMCID: PMC7824687 DOI: 10.3390/biom11010047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Bio-hybrid hydrogels consist of a water-swollen hydrophilic polymer network encapsulating or conjugating single biomolecules, or larger and more complex biological constructs like whole cells. By modulating at least one dimension of the hydrogel system at the micro- or nanoscale, the activity of the biological component can be extremely upgraded with clear advantages for the development of therapeutic or diagnostic micro- and nano-devices. Gamma or e-beam irradiation of polymers allow a good control of the chemistry at the micro-/nanoscale with minimal recourse to toxic reactants and solvents. Another potential advantage is to obtain simultaneous sterilization when the absorbed doses are within the sterilization dose range. This short review will highlight opportunities and challenges of the radiation technologies to produce bio-hybrid nanogels as delivery devices of therapeutic biomolecules to the target cells, tissues, and organs, and to create hydrogel patterns at the nano-length and micro-length scales on surfaces.
Collapse
|
4
|
Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers (Basel) 2020; 12:E2877. [PMID: 33266261 PMCID: PMC7760743 DOI: 10.3390/polym12122877] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 01/30/2023] Open
Abstract
Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons interaction with polymers display various mechanisms. While the interactions of gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering, and pair-production, the interactions of the high-energy electrons take place through coulombic interactions. Despite the type of radiation used on materials, photons or high energy electrons, in both cases ions and electrons are produced. The interactions between electrons and monomers takes place within less than a nanosecond. Depending on the dose rate (dose is defined as the absorbed radiation energy per unit mass), the kinetic chain length of the propagation can be controlled, hence allowing for some control over the degree of polymerization. When polymers are submitted to high-energy radiation in the bulk, contrasting behaviors are observed with a dominant effect of cross-linking or chain scission, depending on the chemical nature and physical characteristics of the material. Polymers in solution are subject to indirect effects resulting from the radiolysis of the medium. Likewise, for radiation-induced polymerization, depending on the dose rate, the free radicals generated on polymer chains can undergo various reactions, such as inter/intramolecular combination or inter/intramolecular disproportionation, b-scission. These reactions lead to structural or functional polymer modifications. In the presence of oxygen, playing on irradiation dose-rates, one can favor crosslinking reactions or promotes degradations through oxidations. The competition between the crosslinking reactions of C-centered free radicals and their reactions with oxygen is described through fundamental mechanism formalisms. The fundamentals of polymerization reactions are herein presented to meet industrial needs for various polymer materials produced or degraded by irradiation. Notably, the medical and industrial applications of polymers are endless and thus it is vital to investigate the effects of sterilization dose and dose rate on various polymers and copolymers with different molecular structures and morphologies. The presence or absence of various functional groups, degree of crystallinity, irradiation temperature, etc. all greatly affect the radiation chemistry of the irradiated polymers. Over the past decade, grafting new chemical functionalities on solid polymers by radiation-induced polymerization (also called RIG for Radiation-Induced Grafting) has been widely exploited to develop innovative materials in coherence with actual societal expectations. These novel materials respond not only to health emergencies but also to carbon-free energy needs (e.g., hydrogen fuel cells, piezoelectricity, etc.) and environmental concerns with the development of numerous specific adsorbents of chemical hazards and pollutants. The modification of polymers through RIG is durable as it covalently bonds the functional monomers. As radiation penetration depths can be varied, this technique can be used to modify polymer surface or bulk. The many parameters influencing RIG that control the yield of the grafting process are discussed in this review. These include monomer reactivity, irradiation dose, solvent, presence of inhibitor of homopolymerization, grafting temperature, etc. Today, the general knowledge of RIG can be applied to any solid polymer and may predict, to some extent, the grafting location. A special focus is on how ionizing radiation sources (ion and electron beams, UVs) may be chosen or mixed to combine both solid polymer nanostructuration and RIG. LLET ionizing radiation has also been extensively used to synthesize hydrogel and nanogel for drug delivery systems and other advanced applications. In particular, nanogels can either be produced by radiation-induced polymerization and simultaneous crosslinking of hydrophilic monomers in "nanocompartments", i.e., within the aqueous phase of inverse micelles, or by intramolecular crosslinking of suitable water-soluble polymers. The radiolytically produced oxidizing species from water, •OH radicals, can easily abstract H-atoms from the backbone of the dissolved polymers (or can add to the unsaturated bonds) leading to the formation of C-centered radicals. These C-centered free radicals can undergo two main competitive reactions; intramolecular and intermolecular crosslinking. When produced by electron beam irradiation, higher temperatures, dose rates within the pulse, and pulse repetition rates favour intramolecular crosslinking over intermolecular crosslinking, thus enabling a better control of particle size and size distribution. For other water-soluble biopolymers such as polysaccharides, proteins, DNA and RNA, the abstraction of H atoms or the addition to the unsaturation by •OH can lead to the direct scission of the backbone, double, or single strand breaks of these polymers.
Collapse
Affiliation(s)
- Aiysha Ashfaq
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA;
| | - Marie-Claude Clochard
- Laboratoire des Solides Irradiés, CEA/DRF/IRAMIS-CNRS- Ecole Polytechnique UMR 7642, Institut Polytechnique de Paris, 91128 Palaiseau, France;
| | - Xavier Coqueret
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France;
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy;
- Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Mark S. Driscoll
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA;
- UV/EB Technology Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Piotr Ulański
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Mohamad Al-Sheikhly
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Álamo P, Pallarès V, Céspedes MV, Falgàs A, Sanchez JM, Serna N, Sánchez-García L, Voltà-Duràn E, Morris GA, Sánchez-Chardi A, Casanova I, Mangues R, Vazquez E, Villaverde A, Unzueta U. Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12111004. [PMID: 33105866 PMCID: PMC7690626 DOI: 10.3390/pharmaceutics12111004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6). The biodistribution of labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles has been then compared to that of the non-labeled nanoparticle in different CXCR4+ tumor mouse models. We observed that while parental T22-GFP-H6 nanoparticles accumulated mostly and specifically in CXCR4+ tumor cells, labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles showed a dramatic change in the biodistribution pattern, accumulating in non-target organs such as liver or kidney while reducing tumor targeting capacity. Therefore, the use of such labeling molecules should be avoided in target and non-target tissue uptake studies during the design and development of targeted nanoscale drug delivery systems, since their effect over the fate of the nanomaterial can lead to considerable miss-interpretations of the actual nanoparticle biodistribution.
Collapse
Affiliation(s)
- Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Victor Pallarès
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - María Virtudes Céspedes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
| | - Aïda Falgàs
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Julieta M. Sanchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICTA & Cátedra de Química Biológica, Departamento de Química, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET—Universidad Nacional de Córdoba), FCEFyN, UNC. Av. Velez Sarsfield 1611, X 5016GCA Córdoba, Argentina
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eric Voltà-Duràn
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Gordon A. Morris
- Department of Chemical Sciences, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain; (P.Á.); (V.P.); (M.V.C.); (A.F.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3–5, 28029 Madrid, Spain; (N.S.); (L.S.-G.); (E.V.-D.); (E.V.)
- Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), 08025 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (R.M.); or (A.V.); (U.U.)
| |
Collapse
|
6
|
Horvat S, Yu Y, Böjte S, Teßmer I, Lowman DW, Ma Z, Williams DL, Beilhack A, Albrecht K, Groll J. Engineering Nanogels for Drug Delivery to Pathogenic Fungi Aspergillus fumigatus by Tuning Polymer Amphiphilicity. Biomacromolecules 2020; 21:3112-3121. [PMID: 32603103 DOI: 10.1021/acs.biomac.0c00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Invasive aspergillosis is a serious threat to immunodeficient and critically ill patients caused mainly by the fungus Aspergillus fumigatus. Here, poly(glycidol)-based nanogels (NGs) are proposed as delivery vehicles for antifungal agents for sustained drug release. NGs are formed by simple self-assembly of random copolymers, followed by oxidative cross-linking of thiol functionalities. We investigate the impact of copolymer amphiphilicity on NG interaction with mature fungal hyphae in order to select the optimal drug delivery system for model antifungal drug amphotericin B. The results show that drug-loaded NGs decrease minimal inhibitory concentration (MIC) for around four times and slow down the fungal biofilm synthesis at concentrations lower than MIC. Our results suggest that amphiphilicity of nanoparticle's polymer matrix is an important factor in understanding the action of nanocarriers toward fungal cells and should be considered in the development of nanoparticle-based antifungal therapy.
Collapse
Affiliation(s)
- Sonja Horvat
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Yidong Yu
- Department of Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Zinklesweg 10, 97078 Würzburg, Germany
| | - Szalbolcs Böjte
- Ingrid Tessmer's Lab, Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany
| | - Ingrid Teßmer
- Ingrid Tessmer's Lab, Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany
| | - Douglas W Lowman
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - Zuchao Ma
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee 37614-0575, United States
| | - Andreas Beilhack
- Department of Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Zinklesweg 10, 97078 Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
7
|
Huang K, He Y, Zhu Z, Guo J, Wang G, Deng C, Zhong Z. Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22171-22180. [PMID: 31190543 DOI: 10.1021/acsami.9b05827] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanogels (NG) are among the most ideal cytoplasmic protein delivery vehicles; however, their performance is suboptimal, partly owing to relatively big size, poor cell uptake, and endosomal entrapment. Here, we developed small, traceable, endosome-disrupting, and bioresponsive hyaluronic acid NG (HA-NG) for CD44-targeted intracellular delivery of therapeutic proteins. With microfluidics and catalyst-free photo-click cross-linking, HA-NG with hydrodynamic diameters of ca. 80 and 150 nm, strong green fluorescence and efficient loading of various proteins including saporin (Sap), cytochrome C, herceptin, immunoglobulin G (IgG), and bovine serum albumin could be fabricated. Interestingly, 80 nm-sized HA-NG revealed clearly better cellular uptake than its 150 nm counterparts in both CD44-negative U87 cancer cells and CD44-positive 4T1 and MDA-MB-231 cells. Moreover, small NG exhibited accelerated endosomal escape, which was further boosted by introducing GALA, a pH-sensitive fusogenic peptide. Accordingly, Sap-loaded small and GALA-functionalized HA-NG showed the highest cytotoxicity in CD44-positive MDA-MB-231, 4T1, A549, and SMMC-7721 cancer cells. The biodistribution studies demonstrated that 80 nm-sized HA-NG displayed significantly greater tumor uptake as well as penetration in MDA-MB-231 human breast tumor xenografts than its 150 nm counterparts, whereas the introduction of GALA had no detrimental effect on tumor accumulation. Small, endosome-disrupting, and bioresponsive HA-NG with easy and controlled fabrication hold a great potential for targeted protein therapy.
Collapse
Affiliation(s)
- Ke Huang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Yahui He
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Zhehong Zhu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Jiakun Guo
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Guanglin Wang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences , Medical College of Soochow University , Suzhou 215123 , China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| |
Collapse
|