1
|
Zhang R, Dong G. Skeletal Rearrangements of Amides via Breaking Inert Bonds. Chemistry 2025; 31:e202500595. [PMID: 40095718 PMCID: PMC12057600 DOI: 10.1002/chem.202500595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Skeletal rearrangements of amides provide rapid access to complex nitrogen-containing scaffolds from simple readily available starting materials. While classical reactions such as the Hofmann and Curtius rearrangements have been widely utilized in organic synthesis, recent advances in amide activation strategies have brought new types of transformations and offered many new applications. This review focuses on the development of amide skeletal rearrangement reactions over the past two decades. The content is organized based on the initial bond cleavage pathways: C─N bond cleavage, C─C bond cleavage, and C═O bond activation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| | - Guangbin Dong
- Department of ChemistryThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Aisikaer A, Ma J, Li J, Li X. Hydroazidation of phenacylideneoxindoles: Synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones via anti-electron addition. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Yu Y, Zhu XB, Yuan Y, Ye KY. An electrochemical multicomponent reaction toward C-H tetrazolation of alkyl arenes and vicinal azidotetrazolation of alkenes. Chem Sci 2022; 13:13851-13856. [PMID: 36544744 PMCID: PMC9710211 DOI: 10.1039/d2sc05423j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The widespread use of tetrazoles in medicine, biology, and materials science continuously promotes the development of their efficient and selective syntheses. Despite the prosperous development of multicomponent reactions, the use of the most abundant and inexpensive chemical feedstocks, i.e., alkanes and alkenes, toward the preparation of diverse tetrazoles remains elusive. Herein, we developed an electrochemical multicomponent reaction (e-MCR) for highly efficient and selective C-H tetrazolation of alkyl arenes. When applied to alkenes, the corresponding vicinal azidotetrazoles were readily obtained, which were further demonstrated to be versatile building blocks and potential high-energy materials.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Xiao-Bin Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
4
|
Metal-Free Catalysis in C-C Single-Bond Cleavage: Achievements and Prospects. Top Curr Chem (Cham) 2022; 380:38. [PMID: 35951267 DOI: 10.1007/s41061-022-00393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 10/15/2022]
Abstract
This review article emphasizes the C-C bond cleavage in organic synthesis via metal-free approach. Conventional organic synthesis mainly deals with the reactive π bonds and polar σ bonds. In contrast, the ubiquitous C-C single bonds are inherently stable and are less reactive, which poses a challenge to synthetic chemists. Although inert, such C-C single-bond cleavage reactions have gained attention amongst synthetic chemists, as they provide unique and more straightforward routes, with significantly fewer steps. Several review articles have been reported regarding the activation and cleavage of C-C bonds using different transition metals. However, given the high cost and toxicity of many of these metals, the development of strategies under metal-free conditions is of utmost importance. Though many research articles have been published in this area, no review article has been reported so far. Herein, we discuss the reactions in a more concise way from the year 2012 to today, with emphasis on important reactions. Mechanisms of all the reactions are also well addressed. We believe that this review will be beneficial for the readers who work in this field.
Collapse
|
5
|
Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Practical synthesis of tetrazoles from amides and phosphorazidates in the presence of aromatic bases. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Škorić DĐ, Klisurić OR, Jakimov DS, Sakač MN, Csanádi JJ. Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction. Beilstein J Org Chem 2021; 17:2611-2620. [PMID: 34760027 PMCID: PMC8551880 DOI: 10.3762/bjoc.17.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
A practical and high-yielding Schmidt reaction for the synthesis of fused tetrazoles from bile acid precursors was developed. Mild reaction conditions using TMSN3 instead of hydrazoic acid as an azide source produced good yields of the desired tetrazoles. These conditions could be applied to other steroidal precursors. Additionally, an improved methodology for the synthesis of different ketone and enone precursors from cholic acid, deoxycholic acid, and chenodeoxycholic acid was established. Newly obtained tetrazole derivatives were characterized by NMR and X-ray diffraction spectroscopy. In a number of cases, preliminary antiproliferative tests of new compounds showed strong and selective activity towards certain tumor cell lines.
Collapse
Affiliation(s)
- Dušan Đ Škorić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Olivera R Klisurić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - János J Csanádi
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Wang H, Lin Y, Chen S, Ruan Y, Xia H. Metallacycle Expansion and Annulation: Access to
Tetrazolo‐Fused
Osmacycles by Reaction of Cyclic Osmium Carbyne with Sodium Azide. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu‐Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Siyuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yonghong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Zhang L, Wang Z, Sun S, Ni S, Wen L, Li M. Metal‐Free
Catalyzed Cyclization of
N
‐Methoxybenzamides
to Construct Quaternary
Carbon‐Containing
Isoindolinones. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin‐Bao Zhang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Zi‐Chen Wang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Sheng‐Zheng Sun
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Shao‐Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou Guangdong 515063 China
| | - Li‐Rong Wen
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Ming Li
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| |
Collapse
|
10
|
Niu ZJ, Li LH, Li XS, Liu HC, Shi WY, Liang YM. Formation of o-Allyl- and Allenyl-Modified Amides via Intermolecular Claisen Rearrangement. Org Lett 2021; 23:1315-1320. [PMID: 33534590 DOI: 10.1021/acs.orglett.0c04300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We developed a new transition-metal-free intermolecular Claisen rearrangement process to introduce allyl and allenyl groups into the α position of tertiary amides. In this transformation, amides were activated by trifluoromethanesulfonic anhydride to produce the keteniminium ion intermediates that exhibit strong electrophilic activity. This atom-economical process delivers α position-modified amides under mild conditions in moderate to good yields and showcases a broad substrate compatibility.
Collapse
Affiliation(s)
- Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Lian-Hua Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Zhang J, Wang X, Kuang Y, Wu J. Generation of Sulfonylated Tetrazoles through an Iron-Catalyzed Multicomponent Reaction Involving Sulfur Dioxide. iScience 2020; 23:101872. [PMID: 33336165 PMCID: PMC7733023 DOI: 10.1016/j.isci.2020.101872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
As a privileged motif, tetrazoles can be widely found in pharmaceuticals and materials science. Herein, a five-component reaction of cycloketone oxime esters, alkynes, DABCO·(SO2)2, and two molecules of trimethylsilyl azide under iron catalysis is developed, giving rise to a range of cyano-containing sulfonylated tetrazoles in moderate to good yields. This multicomponent reaction exhibits excellent selectivity and enables the formation of multiple new chemical bonds in one pot. A possible mechanism involving azidosulfonylation of alkynes, C-C bond cleavage of both cycloketone oxime esters and alkynes, and [3 + 2] cycloaddition of trimethylsilyl azide and the nitrilium cation intermediate is proposed. Additionally, the potential of terminal alkynes acting as powerful synthons for the synthesis of tetrazoles in a radical initiated process is demonstrated for the first time. High-value tetrazole motifs were synthesized via a five-component reaction Fixing sulfur dioxide into tetrazole molecules under mild conditions Low-cost iron catalyst initiated the transformation Excellent selectivity with the formation of multiple new chemical bonds
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuefeng Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yunyan Kuang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Zhejiang 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Xiu H, Li T, Song C, Ma Y. Azidative Aromatization of Quinone Methides Under Transition Metal and Solvent Free Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haiping Xiu
- School of Pharmaceutical Science Shandong University Wenhua Road No. 44 250012 Jinan P. R. China
| | - Tingting Li
- Department of Chemistry Shandong University Shanda South Road No. 27 250100 Jinan P. R. China
| | - Chun Song
- School of Pharmaceutical Science Shandong University Wenhua Road No. 44 250012 Jinan P. R. China
- State Key Laboratory of Microbial Technology Binhai Road No. 72 266237 Qingdao P. R. China
| | - Yudao Ma
- Department of Chemistry Shandong University Shanda South Road No. 27 250100 Jinan P. R. China
| |
Collapse
|
13
|
Ishihara K, Shioiri T, Matsugi M. An Expeditious Approach to Tetrazoles from Amides Utilizing Phosphorazidates. Org Lett 2020; 22:6244-6247. [PMID: 32634317 DOI: 10.1021/acs.orglett.0c01890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel method was developed for the synthesis of tetrazoles from amides utilizing diphenyl phosphorazidate or bis(p-nitrophenyl) phosphorazidate as both the activator of amide-oxygen for elimination and azide source. Various amides were converted into the corresponding tetrazoles in good yields. This synthetic method allows to prepare 1,5-disubstituted and 5-substituted 1H-tetrazoles from various amides without the use of toxic or explosive reagents.
Collapse
Affiliation(s)
- Kotaro Ishihara
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Takayuki Shioiri
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Masato Matsugi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| |
Collapse
|
14
|
Dhandabani GK, Shih CL, Wang JJ. Acid-Promoted Intramolecular Decarbonylative Coupling Reactions of Unstrained Ketones: A Modular Approach to Synthesis of Acridines and Diaryl Ketones. Org Lett 2020; 22:1955-1960. [DOI: 10.1021/acs.orglett.0c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Chia-Ling Shih
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No.100 Tzyou first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| |
Collapse
|
15
|
Liu YP, Zhu CJ, Yu CC, Wang AE, Huang PQ. Tf2
O-Mediated Intermolecular Coupling of Secondary Amides with Enamines or Ketones: A Versatile and Direct Access to β-Enaminones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong-Peng Liu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian China
| | - Cheng-Jie Zhu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian China
| | - Cun-Cun Yu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian China
| | - Ai-E Wang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian China
- College of Chemistry and Chemical Engineering; State Key Laboratory of Applied Organic Chemistry Lanzhou University; 730000 Lanzhou China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology; College of Chemistry and Chemical Engineering; Xiamen University; 361005 Xiamen Fujian China
- College of Chemistry and Chemical Engineering; State Key Laboratory of Applied Organic Chemistry Lanzhou University; 730000 Lanzhou China
| |
Collapse
|
16
|
Niu Z, Li L, Liu X, Liang Y. Transition‐Metal‐Free Alkylation/Arylation of Benzoxazole via Tf
2
O‐Activated‐Amide. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhi‐Jie Niu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Lian‐Hua Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
17
|
Yoshimura R, Shibata Y, Tanaka K. Aerobic Oxidative Cross-Coupling of Substituted Acrylamides with Alkenes Catalyzed by an Electron-Deficient CpRhIII Complex. J Org Chem 2019; 84:13164-13171. [DOI: 10.1021/acs.joc.9b01733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ryo Yoshimura
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Wang S, Huang P. Cross‐Coupling of Secondary Amides with Tertiary Amides: The Use of Tertiary Amides as Surrogates of Alkyl Carbanions for Ketone Synthesis. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shu‐Ren Wang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
19
|
Xu F, Wang Y, Xun X, Huang Y, Jin Z, Song B, Wu J. Diverse Oxidative C(sp 2)-N Bond Cleavages of Aromatic Fused Imidazoles for Synthesis of α-Ketoamides and N-(pyridin-2-yl)arylamides. J Org Chem 2019; 84:8411-8422. [PMID: 30977657 DOI: 10.1021/acs.joc.9b00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient and chemoselective C(sp2)-N bond cleavage of aromatic imidazo[1,2- a]pyridine molecules is developed. A broad scope of amide compounds such as α-ketoamides and N-(pyridin-2-yl)arylamides are afforded as the final products in up to quantitative yields. Diverse C-N bond cleavages are controlled by the oxidative species used in this transformation, with various amide products afforded in a chemoselective fashion. A preliminary study indicated that some α-ketoamides exhibit anti-Tobacco Mosaic Virus activity for potential use in plant protection.
Collapse
Affiliation(s)
- Fangzhou Xu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Yanyan Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Xiwei Xun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Yun Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jian Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
20
|
Xia A, Qi X, Mao X, Wu X, Yang X, Zhang R, Xiang Z, Lian Z, Chen Y, Yang S. Metal-Free Aerobic Oxidative Selective C-C Bond Cleavage in Heteroaryl-Containing Primary and Secondary Alcohols. Org Lett 2019; 21:3028-3033. [PMID: 30995066 DOI: 10.1021/acs.orglett.9b00563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A transition-metal-free aerobic oxidative selective C-C bond-cleavage reaction in primary and secondary heteroaryl alcohols is reported. This reaction was highly efficient and tolerated various heteroaryl alcohols, generating a carboxylic acid derivative and a neutral heteroaromatic compound. Experimental studies combined with density functional theory calculations revealed the mechanism underlying the selective C-C bond cleavage. This strategy also provides an alternative simple approach to carboxylation reaction.
Collapse
Affiliation(s)
- Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xueyu Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xin Mao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xiaoai Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Rong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Zhiyu Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Zhong Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Yingchun Chen
- West China School of Pharmacy , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|