1
|
Ali A, Chung C, Wang J, Liu L, Kong Y, Wang C, Liu Y, Yin Q, Lin S. β-Thioamide Sulfone Enabled Copper-Catalyzed Ring-Opening/Sulfonylation of Cyclopropenes: Access to Alkyl Aryl Sulfones. Org Lett 2025; 27:740-746. [PMID: 39785518 DOI: 10.1021/acs.orglett.4c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Sulfone motifs play important roles in bioactive compounds and functional materials. The development of efficient methodologies for constructing sulfonyl-containing compounds has thus attracted considerable attention. Here, we introduce a protocol for the preparation of alkyl aryl sulfones under mild conditions. This protocol employs β-thioamide sulfone as a novel sulfone motif donor. It forms sulfinates in situ under basic conditions, which then undergo cross-coupling with the intermediates that were generated from ligand-free copper-catalyzed cyclopropenes (CPEs) ring opening.
Collapse
Affiliation(s)
- Arshad Ali
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Cherry Chung
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| | - Jingru Wang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| | - Lang Liu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| | - Yi Kong
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| | - Chongyuan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| | - Shaoquan Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
2
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2025; 9:61-80. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Griffiths OM, Esteves HA, Emmet DC, Ley SV. Photoredox-Catalyzed Preparation of Sulfones Using Bis-Piperidine Sulfur Dioxide - An Underutilized Reagent for SO 2 Transfer. Chemistry 2024; 30:e202303976. [PMID: 38116896 DOI: 10.1002/chem.202303976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Sulfonyl groups are widely observed in biologically relevant molecules and consequently, SO2 capture is an increasingly attractive method to prepare these sulfonyl-containing compounds given the range of SO2 -surrogates now available as alternatives to using the neat gas. This, along with the advent of photoredox catalysis, has enabled mild radical capture of SO2 to emerge as an effective route to sulfonyl compounds. Here we report a photoredox-catalyzed cross-electrophile sulfonylation of aryl and alkyl bromides making use of a previously under-used amine-SO2 surrogate; bis(piperidine) sulfur dioxide (PIPSO). A broad selection of alkyl and aryl bromides were photocatalytically converted to their corresponding sulfinates and then trapped with various electrophiles in a one-pot multistep procedure to prepare sulfones and sulfonamides.
Collapse
Affiliation(s)
- Oliver M Griffiths
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Darcy C Emmet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Steven V Ley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
4
|
Zhong LJ, Fan JH, Chen P, Huang PF, Xiong BQ, Tang KW, Liu Y. Recent advances in ring-opening of cyclobutanone oximes for capturing SO 2, CO or O 2via a radical process. Org Biomol Chem 2023; 22:10-24. [PMID: 38018531 DOI: 10.1039/d3ob01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO2, CO or O2 to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest. In this updated report, the strategies for trapping SO2, CO or O2via iminyl-radical-triggered ring-opening of cyclobutanone oximes are summarized.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
5
|
Cao S, Kim D, Lee W, Hong S. Photocatalytic Enantioselective Hydrosulfonylation of α,β-Unsaturated Carbonyls with Sulfonyl Chlorides. Angew Chem Int Ed Engl 2023; 62:e202312780. [PMID: 37782249 DOI: 10.1002/anie.202312780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
This research explores the enantioselective hydrosulfonylation of various α,β-unsaturated carbonyl compounds via the use of visible light and redox-active chiral Ni-catalysis, facilitating the synthesis of enantioenriched α-chiral sulfones with remarkable enantioselectivity (exceeding 99 % ee). A significant challenge entails enhancing the reactivity between chiral metal-coordinated carbonyl compounds and moderate electrophilic sulfonyl radicals, aiming to minimize the background reactions. The success of our approach stems from two distinctive attributes: 1) the Cl-atom abstraction employed for sulfonyl radical generation from sulfonyl chlorides, and 2) the single-electron reduction to produce a key enolate radical Ni-complex. The latter process appears to enhance the feasibility of the sulfonyl radical's addition to the electron-rich enolate radical. An in-depth investigation into the reaction mechanism, supported by both experimental observations and theoretical analysis, offers insight into the intricate reaction process. Moreover, the versatility of our methodology is highlighted through its successful application in the late-stage functionalization of complex bioactive molecules, demonstrating its practicality as a strategy for producing α-chiral sulfones.
Collapse
Affiliation(s)
- Shi Cao
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyoung Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wooseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Liu Y, Gao W, Yuan S, Ni M, Hao T, Zeng C, Xu X, Fu Y, Peng Y, Ding Q. One-pot synthesis of 11-sulfenyl dibenzodiazepines via tandem sulfenylation/cyclization of o-isocyanodiaryl amines and diaryl disulfides. Org Biomol Chem 2023; 21:4257-4263. [PMID: 37139575 DOI: 10.1039/d3ob00220a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A one-pot sulfenylation/cyclization of o-isocyanodiaryl amines has been described for the preparation of 11-sulfenyl dibenzodiazepines. This AgI-catalyzed reaction covers an unexplored tandem process to give seven-membered N-heterocycles. This transformation shows a broad range of substrate scope, simple operation, and moderate to good yields under aerobic conditions. Diphenyl diselenide can also be produced in an acceptable yield.
Collapse
Affiliation(s)
- Yi Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang 330013, Jiangxi, China.
| | - Sitian Yuan
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Mengjia Ni
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Tianxin Hao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Cuiying Zeng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Xinyi Xu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yang Fu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yiyuan Peng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Qiuping Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| |
Collapse
|
7
|
Xiang YJ, Liu S, Zhou J, Lin JH, Yao X, Xiao JC. Dehydroxylative Sulfonylation of Alcohols. J Org Chem 2023; 88:4818-4828. [PMID: 36913713 DOI: 10.1021/acs.joc.2c03085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Described here is the R3P/ICH2CH2I-promoted dehydroxylative sulfonylation of alcohols with a variety of sulfinates. In contrast to previous dehydroxylative sulfonylation methods, which are usually limited to active alcohols, such as benzyl, allyl, and propargyl alcohols, our protocol can be extended to both active and inactive alcohols (alkyl alcohols). Various sulfonyl groups can be incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high yields were obtained within 15 min of reaction time.
Collapse
Affiliation(s)
- Yi-Jun Xiang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, PR China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| |
Collapse
|
8
|
Peng CC, Long F, Zhang KY, Hu YC, Wu LJ. Copper(I)-Catalyzed Cross-Coupling of Arylsulfonyl Radicals with Diazo Compounds: Assembly of Arylsulfones. J Org Chem 2022; 87:12265-12273. [PMID: 36037316 DOI: 10.1021/acs.joc.2c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel copper-catalyzed cross-coupling of arylsulfonyl radicals with diazo compounds is described for the synthesis of various arylsulfones under mild conditions. In this reaction, the cheap, environmentally friendly, and readily available inorganic K2S2O5 is employed as the sulfur dioxide source for providing arylsulfonyl radicals. In addition, a radical mechanism involving the insertion of sulfur dioxide with aryl radicals followed by the coupling of arylsulfonyl radicals with copper carbenes is proposed.
Collapse
Affiliation(s)
- Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Yuan C, Chen D, Pan C, Yu JT. Benzylic C-H Heteroarylation of 4-Methylphenols with 2H-Indazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem Soc Rev 2022; 51:2313-2382. [PMID: 35244107 DOI: 10.1039/d1cs00510c] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Collapse
Affiliation(s)
- Guglielmo A Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
11
|
Das S, Roy S, Bhowmik A, Sarkar W, Mondal I, Mishra A, Saha SJ, Karmakar S, Deb I. A radical-radical cross-coupling reaction of xanthene with sulfonyl hydrazides: facile access to xanthen-9-sulfone derivatives. Chem Commun (Camb) 2022; 58:2902-2905. [PMID: 35137745 DOI: 10.1039/d1cc07143b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A straightforward strategy for direct incorporation of sulfonyl units into a xanthene moiety for accessing xanthen-9-sulfone derivatives in good to excellent yields has been established via metal-free radical-radical cross-coupling reaction of xanthenes and sulfonyl hydrazides. Using easily accessible starting materials, this methodology proceeds efficiently with a high degree of functional group compatibility and with a wide scope of both xanthenes and sulfonyl hydrazides under operationally simple reaction conditions. Mechanistic investigations revealed that sulfonyl radicals could be generated from sulfonyl hydrazides in the presence of TBHP under an oxygen atmosphere.
Collapse
Affiliation(s)
- Sumit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shantonu Roy
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Arup Bhowmik
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Imtiaj Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Aniket Mishra
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Shubhra Jyoti Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sudip Karmakar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
12
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
13
|
Song Q, Zhao H, Sun Y, Jiang H, Zhang M. Direct C(sp
3
)–H Sulfonylation of Xanthene Derivatives with Sodium Sulfinates by Oxidative Copper Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qinghao Song
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Yanping Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
14
|
Jin S, Haug GC, Trevino R, Nguyen VD, Arman HD, Larionov OV. Photoinduced C(sp 3)-H sulfination empowers the direct and chemoselective introduction of the sulfonyl group. Chem Sci 2021; 12:13914-13921. [PMID: 34760178 PMCID: PMC8549786 DOI: 10.1039/d1sc04245a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Direct installation of the sulfinate group by the functionalization of unreactive aliphatic C-H bonds can provide access to most classes of organosulfur compounds, because of the central position of sulfinates as sulfonyl group linchpins. Despite the importance of the sulfonyl group in synthesis, medicine, and materials science, a direct C(sp3)-H sulfination reaction that can convert abundant aliphatic C-H bonds to sulfinates has remained elusive, due to the reactivity of sulfinates that are incompatible with typical oxidation-driven C-H functionalization approaches. We report herein a photoinduced C(sp3)-H sulfination reaction that is mediated by sodium metabisulfite and enables access to a variety of sulfinates. The reaction proceeds with high chemoselectivity and moderate to good regioselectivity, affording only monosulfination products and can be used for a solvent-controlled regiodivergent distal C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
15
|
Patel BK, Sahoo AK, Dahiya A, Rakshit A. The Renaissance of Alkali Metabisulfites as SO2 Surrogates. SYNOPEN 2021. [DOI: 10.1055/a-1577-9755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractThe upsurge of interest in the development of methodologies for the construction of sulfur-containing compounds via the use of expedient reagents has established sustainable tools in organic chemistry. This review focuses on sulfonylation reactions using inorganic sulfites (Na2S2O5 or K2S2O5) as the sulfur dioxide surrogates. Compared to the bis-adduct with DABCO, which is an excellent surrogate of gaseous SO2, the use of sodium or potassium metabisulfites as SO2 surrogates are equally efficient. The objective of the current review is to exemplify recent sulfonylation reactions using inorganic sulfites. For better understanding, the review is categorized according to the mode of reactions: transition-metal-catalyzed SO2 insertion, metal-free SO2 insertion, and visible-light-mediated SO2 insertion. All the reactions in each of the sections are illustrated with selected examples with a pertinent explanation of the proposed mechanism.1 Introduction2 Outlines of the Reactions Involving SO2 Insertion2.1 Transition-Metal-Catalyzed SO2 Insertion2.2 Transition-Metal-Free SO2 Insertion2.3 Visible-Light-Mediated SO2 Insertion3 Conclusion and Outlook
Collapse
|
16
|
Kumar P, Kale SB, Gonnade RG, Das U. Acid Mediated Sulfonylation of
para
‐Quinone Methides with Tosylmethyl Isocyanides for the Synthesis of Diarylmethyl Sulfones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pawan Kumar
- Division of Organic Chemistry CSIR – National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Someshwar B. Kale
- Division of Organic Chemistry CSIR – National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Centre for Materials Characterization CSIR – National Chemical Laboratory Pune 411008 India
| | - Utpal Das
- Division of Organic Chemistry CSIR – National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
17
|
Renzi P, Azzi E, Lanfranco A, Moro R, Deagostino A. Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.1 Introduction2 Sulfones2.1 Sodium Sulfinates and Sulfinic Acids2.2 Sulfonyl Halides2.3 Sulfonyl Hydrazones2.4 Sulfur Dioxide Surrogates2.5 Miscellaneous3 Thioethers4 Sulfonamides5 Conclusions
Collapse
|
18
|
Kanyiva KS, Uchida K, Shibata T. Silver-Catalyzed C(sp 3)-H Sulfonylation for the Synthesis of Benzyl Sulfones Using Toluene Derivatives and α-Amino Acid Sulfonamides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyalo Stephen Kanyiva
- Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kanako Uchida
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
19
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
One-pot synthesis of sulfones via Ni(II)-catalyzed sulfonylation of boronic acids, Na2S2O5 and benzylic ammonium salts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Joseph D, Idris MA, Chen J, Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05690] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
22
|
Swarnkar S, Ansari MY, Kumar A. Visible-Light-Induced Tertiary C(sp3)–H Sulfonylation: An Approach to Tertiary Sulfones. Org Lett 2021; 23:1163-1168. [DOI: 10.1021/acs.orglett.0c03898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sumedha Swarnkar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Mohd Yeshab Ansari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
23
|
Wang M, Jiang X. The Same Oxidation-State Introduction of Hypervalent Sulfur via Transition-Metal Catalysis. CHEM REC 2021; 21:3338-3355. [PMID: 33496372 DOI: 10.1002/tcr.202000162] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Sulfonyl compounds have attracted considerable interest due to their extensive applications in drug discovery, agricultural, and material science. The access to the assembly of SO2 -containing compounds via the same oxidative-state introduction of hypervalent sulfur has come to the fore in the recent years. Especially, the transition-metal-involved synthesis of hypervalent sulfur compounds is the most effective strategy since SO2 is easy to insert into the metal-carbon bonds. This review discusses the application of the same oxidation-state introduction of hypervalent sulfur strategy under the transition-metal-catalyzed conditions, and presents according to different metal catalysts and the synthesized diversity hypervalent sulfur-containing compounds skeletons, including sulfonamides, sulfones, sulfinamides, sulfonyl acids and sulfonyl fluorides.
Collapse
Affiliation(s)
- Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, P. R. China).,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, postcode is missing, Shanghai, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, P. R. China).,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, postcode is missing, Shanghai, P. R. China
| |
Collapse
|
24
|
Li M, Wang CT, Bao QF, Qiu YF, Wei WX, Li XS, Wang YZ, Zhang Z, Wang JL, Liang YM. Copper-Catalyzed Radical Aryl Migration Approach for the Preparation of Cyanoalkylsulfonylated Oxindoles/Cyanoalkyl Amides. Org Lett 2021; 23:751-756. [DOI: 10.1021/acs.orglett.0c03973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Lv Y, Luo J, Ma Y, Dong Q, He L. Visible-light-promoted sulfonylation of thiols with aryldiazonium and sodium metabisulphite leading to unsymmetrical thiosulfonates. Org Chem Front 2021. [DOI: 10.1039/d1qo00112d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A facile visible-light-mediated protocol has been proposed for the synthesis of thiosulfonates via rhodamine 6G catalyzed sulfonylation of thiols with aryldiazonium and sodium metabisulphite at room temperature.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Yuchuan Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research
- Northwest Institute of Plateau Biology
- Qinghai 810008
- People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| |
Collapse
|
26
|
Lv Y, Luo J, Lin M, Yue H, Dai B, He L. A visible-light photoredox-catalyzed four-component reaction for the construction of sulfone-containing quinoxalin-2(1 H)-ones. Org Chem Front 2021. [DOI: 10.1039/d1qo00816a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A visible-light photoredox-catalyzed four component reaction of quinoxalin-2(1H)-ones, alkenes, aryldiazonium, and sodium metabisulfite leading to sulfone-containing quinoxalin-2(1H)-ones has been developed.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| |
Collapse
|
27
|
Liu Y, Chen Z, Chen P, Xiong B, Xie J, Liu A, Liang Y, Tang K. Visible-Light-Catalyzed Tandem Cyanoalkylsulfonylation/ Cyclization of Alkynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Liu S, Huang Y, Xu XH, Qing FL. Fluorosulfonylation of arenediazonium tetrafluoroborates with Na2S2O5 and N-fluorobenzenesulfonimide. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Huang CM, Li J, Wang SY, Ji SJ. TFA promoted multi-component reaction of aryldiazonium with sodium metabisulphite and thiols: Construction of thiosulfonate under transition-metal free conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Chen Z, Zhou Q, Wang Q, Chen P, Xiong B, Liang Y, Tang K, Liu Y. Iron‐Mediated Cyanoalkylsulfonylation/Arylation of Active Alkenes with Cycloketone Oxime Derivatives via Sulfur Dioxide Insertion. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Quan Zhou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Qiao‐Lin Wang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Pu Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| |
Collapse
|
31
|
A general and practical sulfonylation of benzylic ammonium salts with sulfonyl hydrazides for the synthesis of sulfones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Srivastava V, Singh PK, Srivastava A, Singh PP. Recent application of visible-light induced radicals in C-S bond formation. RSC Adv 2020; 10:20046-20056. [PMID: 35520400 PMCID: PMC9054237 DOI: 10.1039/d0ra03086d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
The sulphur centered radicals, produced from various organic compounds, in high efficiency by single-electron-transfer (SET) oxidation. These radicals are highly reactive intermediates having various applications in the construction of organosulphur compounds in the field of synthetic organic chemistry. These S-centred radical-mediated organic transformations have been achieved using photoredox catalysts, including organic dyes and transition metal catalysts, as well as in the absence of any catalyst. Compared with previous methods, photoredox catalysis is inexpensive and features the advantages of being environmentally benign, highly efficient and easy to use. This review focuses on recent developments in the photocatalyzed carbon-sulphur bond formation.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| | - Arjita Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India
| |
Collapse
|
33
|
Yavari I, Shaabanzadeh S. Electrochemical Synthesis of β-Ketosulfones from Switchable Starting Materials. Org Lett 2020; 22:464-467. [PMID: 31910023 DOI: 10.1021/acs.orglett.9b04221] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A synthesis of β-ketosulfones via sulfination of aryl methyl ketones and aryl acetylenes with sodium sulfinates under mild electrochemical conditions, in moderate to good chemical yields, is described. In particular, an electrochemical sulfination reaction of alkynes with sulfinate salts has never been explored. An environmentally friendly characteristic of this reaction is that it uses electricity as a valuable energy source for electrochemical synthesis of β-ketosulfones. This strategy is more convenient and practical compared to previous approaches.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry , Tarbiat Modares University , P.O. Box 14115-175, Tehran 14117-13116 , Iran
| | - Sina Shaabanzadeh
- Department of Chemistry , Tarbiat Modares University , P.O. Box 14115-175, Tehran 14117-13116 , Iran
| |
Collapse
|
34
|
Liu Y, Wang QL, Chen Z, Li H, Xiong BQ, Zhang PL, Tang KW. Visible-light photoredox-catalyzed dual C–C bond cleavage: synthesis of 2-cyanoalkylsulfonylated 3,4-dihydronaphthalenes through the insertion of sulfur dioxide. Chem Commun (Camb) 2020; 56:3011-3014. [DOI: 10.1039/c9cc10057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light photoredox-catalyzed dual C–C bond cleavage of methylenecyclopropanes and cycloketone oximes for accessing 2-cyanoalkylsulfonated 3,4-dihydronaphthalenes is established.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Hua Li
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| |
Collapse
|
35
|
You G, Xi D, Sun J, Hao L, Xia C. Transition-metal- and oxidant-free three-component reaction of quinoline N-oxides, sodium metabisulfite and aryldiazonium tetrafluoroborates via a dual radical coupling process. Org Biomol Chem 2019; 17:9479-9488. [PMID: 31651023 DOI: 10.1039/c9ob02106j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A convenient and straightforward three-component transformation of quinoline N-oxides, sodium metabisulfite and aryldiazonium tetrafluoroborates has been developed, providing the target products in moderate to good yields. Compared with previous studies, the present methodology avoids the use of transition-metal catalysts and excess oxidants, providing a simple and practical alternative approach for the construction of 2-sulfonylquinolines. Control experiments indicate that a dual radical coupling process is responsible for this reaction.
Collapse
Affiliation(s)
- Guirong You
- Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.
| | | | | | | | | |
Collapse
|
36
|
Nair AM, Halder I, Khan S, Volla CMR. Metal Free Sulfonylative Spirocyclization of Alkenyl and Alkynyl Amides
via
Insertion of Sulfur Dioxide. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901321] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Akshay M. Nair
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| | - Indranil Halder
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| | - Salman Khan
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| | - Chandra M. R. Volla
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| |
Collapse
|
37
|
Yu W, Wu W, Jiang H. Copper‐Catalyzed Benzylic C—H Functionalization, Oxidation and Cyclization of Methylarenes: Direct Access to 2‐Arylbenzothiazoles. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wentao Yu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Wanqing Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
38
|
Affiliation(s)
- Yaqiong Li
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, P. R. China
| | - Yuhang Fan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, P. R. China
| |
Collapse
|
39
|
Wu YC, Jiang SS, Luo SZ, Song RJ, Li JH. Transition-metal- and oxidant-free directed anodic C-H sulfonylation of N,N-disubstituted anilines with sulfinates. Chem Commun (Camb) 2019; 55:8995-8998. [PMID: 31290859 DOI: 10.1039/c9cc03789f] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new, practical directed anodic C-H sulfonylation of N,N-disubstituted anilines with sodium sulfinates for producing o- or p-amino arylsulfones and diarylsulfones is described. Employing the anodic strategy, the reaction proceeds efficiently under mild (room temperature) and transition-metal- and chemical oxidant-free conditions, and enables the formation of C-S bonds via directed activation of ortho- or para-C-H bond to the amino group with broad substrate scope and excellent site selectivity.
Collapse
Affiliation(s)
- Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shuai-Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shu-Zheng Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
40
|
Ye S, Li X, Xie W, Wu J. Photoinduced Sulfonylation Reactions through the Insertion of Sulfur Dioxide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900396] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies; Taizhou University; 1139 Shifu Avenue 318000 Taizhou China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies; Taizhou University; 1139 Shifu Avenue 318000 Taizhou China
- Department of Chemistry; Fudan University; 2005 Songhu Road 200438 Shanghai China
| |
Collapse
|
41
|
Ye S, Li X, Xie W, Wu J. Three‐Component Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide and Allylic Bromides under Visible‐Light Irradiation. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900172] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shengqing Ye
- Institute for Advanced StudiesTaizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Xiaofang Li
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Wenlin Xie
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Jie Wu
- Institute for Advanced StudiesTaizhou University 1139 Shifu Avenue Taizhou 318000 China
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
42
|
Li G, Gan Z, Kong K, Dou X, Yang D. Metal‐Free Synthesis of Thiosulfonates via Insertion of Sulfur Dioxide. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900157] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoqing Li
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Ziyu Gan
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Kexin Kong
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Xiaomeng Dou
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Daoshan Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| |
Collapse
|
43
|
Zong Y, Lang Y, Yang M, Li X, Fan X, Wu J. Synthesis of β-Sulfonyl Amides through a Multicomponent Reaction with the Insertion of Sulfur Dioxide under Visible Light Irradiation. Org Lett 2019; 21:1935-1938. [PMID: 30840466 DOI: 10.1021/acs.orglett.9b00620] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent reaction of styrenes, aryldiazonium tetrafluoroborates, sulfur dioxide, nitriles, and water in the presence of a photocatalyst at room temperature is performed. This vicinal aminosulfonylation of styrenes with the insertion of sulfur dioxide under visible light irradiation proceeds efficiently with excellent chemoselectivity, giving rise to the corresponding β-sulfonyl amides in moderate to good yields.
Collapse
Affiliation(s)
- Yu Zong
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development , 1 Yixueyuan Road , Ganzhou , Jiangxi 341000 , China.,Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China
| | - Yimin Lang
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China
| | - Min Yang
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development , 1 Yixueyuan Road , Ganzhou , Jiangxi 341000 , China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , China
| | - Xiaona Fan
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development , 1 Yixueyuan Road , Ganzhou , Jiangxi 341000 , China
| | - Jie Wu
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China
| |
Collapse
|
44
|
Ye S, Zheng D, Wu J, Qiu G. Photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes. Chem Commun (Camb) 2019; 55:2214-2217. [PMID: 30702736 DOI: 10.1039/c9cc00347a] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes under mild conditions is achieved. This reaction proceeds through alkyl radicals formed in situ from alkyl iodides under visible light irradiation in the presence of a photoredox catalyst. The alkyl radical intermediates would react with sulfur dioxide leading to alkylsulfonyl radicals, which would be trapped by electron-deficient alkenes giving rise to alkyl sulfones. Various functional groups including nitro, halo, acetyl, sufonyl, and pyridinyl are all tolerated under the photoredox conditions.
Collapse
Affiliation(s)
- Shengqing Ye
- Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | | | | | | |
Collapse
|
45
|
Gong X, Wang M, Ye S, Wu J. Synthesis of 3-(Methylsulfonyl)benzo[ b]thiophenes from Methyl(2-alkynylphenyl)sulfanes and Sodium Metabisulfite via a Radical Relay Strategy. Org Lett 2019; 21:1156-1160. [PMID: 30698982 DOI: 10.1021/acs.orglett.9b00100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A radical relay strategy for the generation of 3-(methylsulfonyl)benzo[ b]thiophenes through a reaction of methyl(2-alkynylphenyl)sulfanes with sodium metabisulfite in the presence of a photocatalyst under visible light irradiation is developed. This photoinduced sulfonylation proceeds efficiently under mild conditions by using a catalytic amount of sodium methylsulfinate as an initiator. During the reaction process, the methyl radical generated in situ is the key intermediate, which undergoes a radical relay with the combination of sulfur dioxide to afford methylsulfonyl-containing compounds.
Collapse
Affiliation(s)
- Xinxing Gong
- Institute for Advanced Studies , Taizhou University , 1139 Shifu Avenue , Taizhou 318000 , China.,Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China
| | - Mengjiao Wang
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China
| | - Shengqing Ye
- Institute for Advanced Studies , Taizhou University , 1139 Shifu Avenue , Taizhou 318000 , China
| | - Jie Wu
- Institute for Advanced Studies , Taizhou University , 1139 Shifu Avenue , Taizhou 318000 , China.,Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai 200438 , China
| |
Collapse
|
46
|
Ye S, Qiu G, Wu J. Inorganic sulfites as the sulfur dioxide surrogates in sulfonylation reactions. Chem Commun (Camb) 2019; 55:1013-1019. [PMID: 30601505 DOI: 10.1039/c8cc09250h] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in the sulfonylation reactions by using inorganic sulfites as the source of sulfonyl group are reported. The approaches employing inorganic sulfites as sulfur dioxide surrogates are attractive and promising for the synthesis of sulfonyl compounds since inorganic sulfites are abundant, easily available and cheap. The transformations using inorganic sulfites as the source of sulfonyl group work efficiently, providing diverse sulfonyl compounds including sulfones and sulfonamides. The sulfonylation reactions can be performed under transition metal catalysis or through radical processes under catalyst- and additive-free conditions. In some cases, a photocatalyst is employed under visible-light irradiation to facilitate the transformation. For the sulfur dioxide surrogate of inorganic sulfites, potassium metabisulfite or sodium metabisulfite has been broadly used in various transformations. However, the reactivities of inorganic sulfites in organic reactions still need to be explored.
Collapse
Affiliation(s)
- Shengqing Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China and Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
47
|
Nair AM, Kumar S, Halder I, Volla CMR. Visible-light mediated sulfonylation of thiols via insertion of sulfur dioxide. Org Biomol Chem 2019; 17:5897-5901. [DOI: 10.1039/c9ob01040h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photocatalytically generated sulfenyl radicals were coupled with arylsulfonyl radicals at room temperature for accessing unsymmetrical organic thiosulfonates.
Collapse
Affiliation(s)
- Akshay M. Nair
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Shreemoyee Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Indranil Halder
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Chandra M. R. Volla
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
48
|
Zhu TH, Zhang XC, Zhao K, Loh TP. Cu(OTf)2-mediated C(sp2)–H arylsulfonylation of enamides via the insertion of sulfur dioxide. Org Chem Front 2019. [DOI: 10.1039/c8qo01144c] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereoselective Cu(OTf)2-mediated C(sp2)–H sulfonylation of enamides with arylsulfonyl radicals generated in situ from DABSO and diazonium salts is developed.
Collapse
Affiliation(s)
- Tong-Hao Zhu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Xiao-Chen Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Kai Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
49
|
Wang X, Yang M, Xie W, Fan X, Wu J. Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide. Chem Commun (Camb) 2019; 55:6010-6013. [DOI: 10.1039/c9cc03004b] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A sulfonylation reaction of 4-substituted Hantzsch esters, DABCO·(SO2)2, and electron-deficient alkenes at room temperature in the presence of photoredox catalysis under visible light irradiation is described.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Min Yang
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development
- Ganzhou 341000
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Xiaona Fan
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development
- Ganzhou 341000
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
50
|
Zhang J, Zhou K, Qiu G, Wu J. Photoinduced synthesis of allylic sulfones using potassium metabisulfite as the source of sulfur dioxide. Org Chem Front 2019. [DOI: 10.1039/c8qo01048j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthesis of allylic sulfones through a photoinduced three-component reaction of aryl/alkyl halides, potassium metabisulfite, and allylic bromides under ultraviolet irradiation at room temperature is developed. Diverse allylic sulfones are generated in moderate to good yields.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Kaida Zhou
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- College of Biological
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|