1
|
Suresh S, Palla S, Chung DR, Chien HS, Du BX, Shinde J, Kavala V, Yao CF. Catalyst-free reactions of anilines with β-chloroenones: synthesis of α-chloroenaminones and 1,4-benzodiazepines. Org Biomol Chem 2024; 22:8857-8868. [PMID: 39189549 DOI: 10.1039/d4ob00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Michael addition of anilines to β-chloroenones gives enaminones by the elimination of hydrochloric acid (HCl). These enaminones are transformed into α-chloroenaminones via in situ sp2 C-H functionalization. Anilines that are attached to an electron-donating group react more readily with β-chloroenone to give the corresponding products in excellent yields. A highly atom-economical method has been developed using dimethyl sulfoxide (DMSO) as a green oxidant and solvent. The desired α-functionalized enaminones are formed in good yields with excellent Z-selectivity. We have established the generality of this reaction with many substrates, and scaled-up reactions have been performed to showcase the practical applications. A catalyst-free double annulation of β-chloroenones with o-phenylenediamine has also been demonstrated for the synthesis of 1,4-benzodiazepine derivatives in moderate yields under mild reaction conditions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sowndarya Palla
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Dai-Ru Chung
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Hung-Sheng Chien
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Bo-Xun Du
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
2
|
Wu ZH, Qu HT, Han BJ, Yang JX, Chang XW, Feng CT. Synthesis of pyrazino[1,2- b]indazoles via cascade cyclization of indazole aldehydes with propargylic amines. Org Biomol Chem 2024; 22:2226-2230. [PMID: 38363281 DOI: 10.1039/d4ob00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
An efficient intermolecular annulation of indazole aldehydes with propargylic amines has been developed for the synthesis of pyrazinoindazoles under catalyst- and additive-free conditions. This straightforward methodology was found to feature a wide substrate scope, high atom economy and environmental advantages. The bioactivity results of these new pyrazino[1,2-b]indazoles showed that some of them exhibited significant antifungal activity.
Collapse
Affiliation(s)
- Zeng-Hui Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Heng-Tong Qu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Ben-Jun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Jia-Xin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| | - Xiang-Wei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
| | - Cheng-Tao Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui academy of Chinese medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Escandón-Mancilla FM, González-Rivas N, Unnamatla MVB, García-Eleno MA, Corona-Becerril D, Frontana-Uribe BA, Cuevas-Yañez E. Beyond 1,2,3-triazoles: Formation and Applications of Ketemines Derived from Copper Catalyzed Azide Alkyne Cycloaddition. Curr Org Synth 2024; 21:359-379. [PMID: 36177624 DOI: 10.2174/1570179420666220929152449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Ketemines represent an interesting class of organic intermediates that has undergone a regrowth as a consequence of recent extensions of copper catalyzed azide alkyne cycloaddition (Cu- AAC) to other synthetic fields. This review summarizes the most recent generation methods of ketimines from CuAAC reaction, highlighting chemical properties focused on the synthesis of cyclic compounds, among others, affording a general outlook towards the development of new biologically active compounds.
Collapse
Affiliation(s)
- Flor M Escandón-Mancilla
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
| | - Nelly González-Rivas
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Murali V Basavanag Unnamatla
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Marco A García-Eleno
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - David Corona-Becerril
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Erick Cuevas-Yañez
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km. 14.5, Toluca, Estado de México, 50200, Mexico
- Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón esq. Paseo Tollocan, 50120, Toluca, Mexico
| |
Collapse
|
4
|
Bodala V, Podugu RL, Yettula K, Gollamudi P, Vidavalur S, Pulipaka S. Iron-Catalysed [3+3] Annulation of Oxime Acetates and Enaminones towards the Synthesis of Multi-Substituted Pyridines. Chem Asian J 2023; 18:e202201004. [PMID: 36461710 DOI: 10.1002/asia.202201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Indexed: 12/04/2022]
Abstract
A direct access to unsymmetrical and symmetrical multi-substituted pyridines has been accomplished via iron-catalysed [3+3] annulation of oxime acetates with enaminones. This protocol is featured by easily available starting materials, no requirement of expensive additives and ligands, operational simplicity, and good tolerance with diverse functional groups.
Collapse
Affiliation(s)
- Varaprasad Bodala
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | | | - Kumari Yettula
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Padmarao Gollamudi
- Department of Chemistry, Dr. B. R. Ambedkar University, Srikakulam, 532410, India
| | - Siddaiah Vidavalur
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Shyamala Pulipaka
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
5
|
Pasumpon K, Mahendran V, Shanmugam S. Microwave‐Assisted Tandem Copper‐Catalyzed Three‐Component Reaction for Synthesis of 2‐Iminopyrans. ChemistrySelect 2022. [DOI: 10.1002/slct.202203659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kamaraj Pasumpon
- Department of Organic Chemistry School of Chemistry Madurai Kamaraj University Madurai 625 021
- Department of Chemistry Eurofins Advinus Biopharma Services India Pvt. Ltd Bangalore 560058
| | | | - Sivakumar Shanmugam
- Department of Organic Chemistry School of Chemistry Madurai Kamaraj University Madurai 625 021
| |
Collapse
|
6
|
Luo X, Yang Z, Zheng J, Liang G, Luo H, Yang W. CuX Dual Catalysis: Construction of Oxazolo[2,3- b][1,3]oxazines via a Tandem CuAAC/Ring Cleavage/[4+2+3] Annulation Reaction. Org Lett 2022; 24:7300-7304. [PMID: 36178978 DOI: 10.1021/acs.orglett.2c02705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuX as a simple dual catalyst strategy that promotes the tandem transformations of fused oxazolo[2,3-b][1,3]oxazines has been developed. Copper catalyzed terminal ynones, sulfonyl azides, and nitriles for the CuAAC/ring cleavage/[4+2] annulation reaction, while the halogen catalyzed ring cleavage and [2+3] annulation of oxiranes to form the final fused products. This study provides a four-component, one-pot strategy for synthesizing complex fused heterocycles from simple ingredients and expands the application of CuAAC in organic synthesis.
Collapse
Affiliation(s)
- Xiai Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Jia Zheng
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Gang Liang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hui Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Wei H, Zhang Z, Zhang X, Gao S, Wang T, Zhao M, Wei P, Wang M. Copper-catalyzed intramolecular iminolactonization cyclization reactions of remote C(sp 3)–H bonds in carboxamides. Org Biomol Chem 2022; 20:8912-8916. [DOI: 10.1039/d2ob01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel and efficient synthetic method for iminolactones by copper-catalyzed intramolecular C(sp3)–H bond functionalization of carboxamides via a cascade process is reported for the first time.
Collapse
Affiliation(s)
- He Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhenhua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiang Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Shuo Gao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Tongtong Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Mengmeng Zhao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Pifeng Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
8
|
Gao Y, Zhang J, Shan W, Fei W, Yao J, Yao W. Enantioselective Phosphine-Catalyzed Trimerization of γ-Aryl-3-butynoates via Isomerization/[3 + 2] Cyclization/Michael Addition Cascade. Org Lett 2021; 23:6377-6381. [PMID: 34346689 DOI: 10.1021/acs.orglett.1c02197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We disclose an l-isoleucine-derived amide phosphine-catalyzed trimerization of γ-aryl-3-butynoates, which undergo an isomerization to allenoate, [3 + 2] cyclization, and Michael addition cascade. Exocyclopentene derivatives bearing an all-carbon quaternary stereocenter were constructed stereospecifically and enantioselectively. A wide variety of γ-aryl-3-butynoates could be employed to deliver optically pure cyclopentene derivatives in moderate to good yields with ee values of ≥95% and in most cases ≥98%.
Collapse
Affiliation(s)
- Yujia Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Juan Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenyu Shan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Weihong Fei
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
9
|
Bahadorikhalili S, Divar M, Damghani T, Moeini F, Ghassamipour S, Iraji A, Miller MA, Larijani B, Mahdavi M. N-sulfonyl ketenimine as a versatile intermediate for the synthesis of heteroatom containing compounds. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Iron-catalyzed [4 + 2] annulation of α,β-unsaturated ketoxime acetates with enaminones toward functionalized pyridines. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
11
|
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 2021; 11:3452-3469. [PMID: 35424324 PMCID: PMC8694354 DOI: 10.1039/d0ra10472h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic compounds have become an inevitable part of organic chemistry due to their ubiquitous presence in bioactive compounds. Copper-catalyzed multicomponent synthesis of heterocycles has developed as the most convenient and facile synthetic route towards complex heterocyclic motifs. In this review, we discuss the advancements in the field of copper-catalyzed multicomponent reactions for the preparation of heterocycles since 2018. Heterocycles are abundant in several pharmaceutical and naturally occurring compounds. Copper-catalyzed multicomponent reactions are a convenient method for easy access to heterocycles. In this review, we focus on the advancement in this field for the past two years.![]()
Collapse
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
12
|
Abstract
AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives
Collapse
Affiliation(s)
- Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology
| | | |
Collapse
|
13
|
Valizadeh S, Ghasemi Z, Shahrisa A, Notash B, Pirouzmand M, Kabiri R. Magnetic chitosan nanocomposite: As a novel catalyst for the synthesis of new derivatives of N-sulfonylamidine and N-sulfonylimidate. Carbohydr Polym 2019; 226:115310. [PMID: 31582060 DOI: 10.1016/j.carbpol.2019.115310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
This study reports the synthesis and characterization of a highly active catalyst based on chelated copper iodide on magnetic chitosan-salicylaldehyde Schiff base. This catalyst was successfully used for the three-component reaction of N-propargylphthalimide, tosylazide, and NH or OH containing nucleophiles to access new classes of N-sulfonylamidine or N-sulfonylimidate derivatives. The products, which were constructed via an in situ generated sulfonyl keteneimine intermediate, were obtained in good to excellent yields. Short reaction times, easy separation and reusability without significant loss of catalyst activity were found to be the notable features of this synthetic protocol.
Collapse
Affiliation(s)
- Sepideh Valizadeh
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Zarrin Ghasemi
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran.
| | - Aziz Shahrisa
- Department of Organic and Bioorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| | - Mahtab Pirouzmand
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 516661476, Iran
| | - Roya Kabiri
- Laboratory of NMR, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| |
Collapse
|
14
|
Deng L, Cao X, Liu Y, Wan JP. In-Water Synthesis of 5-Thiolated 1,2,3-Triazoles from β-Thioenaminones by Diazo Transfer Reaction. J Org Chem 2019; 84:14179-14186. [PMID: 31608630 DOI: 10.1021/acs.joc.9b01817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of 1,2,3-triazoles with a sulfur-based side chain has been accessed with the metal-free annulation reactions of readily available β-thiolated enaminones and tosyl hydrazine. By these reactions with water as the only medium, a broad array of 5-thiolated 1,2,3-triazoles have been synthesized with generally good to excellent yields. Except using TMEDA (N,N,N',N'-tetramethylethylenediamine) as the only base promoter, not any other catalyst or additive is required, thus providing an efficient and environmentally benign method for useful 1,2,3-triazole synthesis.
Collapse
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Xiaoji Cao
- Research Centre of Analysis and Measurement , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| |
Collapse
|
15
|
Massaro NP, Chatterji A, Sharma I. Three-Component Approach to Pyridine-Stabilized Ketenimines for the Synthesis of Diverse Heterocycles. J Org Chem 2019; 84:13676-13685. [PMID: 31550889 DOI: 10.1021/acs.joc.9b01906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ketenimines are versatile synthetic intermediates capable of performing novel transformations in organic synthesis. They are normally generated in situ due to their inherent instability and high level of reactivity. Herein, we report pyridine-stabilized ketenimine zwitterionic salts, which are prepared through click chemistry from readily accessible alkynes and sulfonyl azides. To demonstrate their synonymous reactivity to ketenimines, these salts have been utilized in a cascade sequence to access highly functionalized quinolines including the core structures of an antiprotozoal agent and the potent topoisomerase inhibitor Tas-103.
Collapse
Affiliation(s)
- Nicholas P Massaro
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Aayushi Chatterji
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
16
|
Luo T, Xu H, Liu Y. Aqueous Synthesis of 3,4‐Dihydropyridinones from Acryloyl Chloride and Enaminones by Domino Amidation and Intramolecular Michael Addition. ChemistrySelect 2019. [DOI: 10.1002/slct.201902898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Haishun Xu
- State Key Laboratory of Subtropical SilvicultureDepartment of Traditional Chinese MedicineZhejiang A&F University Hangzhou 311300 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|