1
|
Lai CK, Magesh K, Velmathi S, Wu SP. Development of a xanthene-based NIR fluorescent probe for accurate and sensitive detection of γ-glutamyl transpeptidase in cancer diagnosis and treatment. J Mater Chem B 2024; 13:201-206. [PMID: 39544048 DOI: 10.1039/d4tb01841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
γ-Glutamyl transpeptidase (GGT) regulates glutathione (GSH), essential for cell functions and linked to cancer. High GGT levels in tumors make it a valuable cancer biomarker. Current GGT detection methods often lack sensitivity and specificity. To address this, we developed XM-Glu, a new near-infrared (NIR) fluorescent probe. XM-Glu features a xanthene-based structure with a hydroxy xanthene fluorophore and a malononitrile group for NIR emission and reduced background noise. It has a self-immolating linker masked with glutamate acid, which activates fluorescence when GGT is present. XM-Glu can detect GGT in the range of 1.0 to 20 mU with a low detection limit of 0.067 mU mL-1. It showed high specificity and minimal interference in cellular assays. In mice, XM-Glu effectively detected GGT in tumor, liver, and kidney tissues. Its NIR properties provide real-time insights into GGT activity, improving cancer diagnosis and monitoring. This new technology enhances cancer research and helps better understand GGT's role in cancer progression.
Collapse
Affiliation(s)
- Chia-Kai Lai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China.
| | - Kuppan Magesh
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, India
| | - Sivan Velmathi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, India
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
2
|
Wang K, Chen XY, Zhang RWY, Yue Y, Wen XL, Yang YS, Han CY, Ma Y, Liu HJ, Zhu HL. Multifunctional fluorescence/photoacoustic bimodal imaging of γ-glutamyltranspeptidase in liver disorders under different triggering conditions. Biomaterials 2024; 310:122635. [PMID: 38810386 DOI: 10.1016/j.biomaterials.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Ying Yue
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Xiao-Lin Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chen-Yang Han
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Yuan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hong-Ji Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Yang XG, Yin PP, Wang Q, Yang SY, Li Y, Gao X, Song J, Zhang XY, Li Z. Aggregation-Induced Emission of Curcuminoid-BF 2 Complex for Phosphor-Converted Red Light-Emitting Diode. Inorg Chem 2024. [PMID: 39258754 DOI: 10.1021/acs.inorgchem.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The incorporation of difluoroboron β-diketonate and tetraphenylethene under a facile Knoevenagel condensation reaction afforded one new D-π-A-π-D complex TCBF with high aggregation-induced emission (AIE) activity. The TCBF film can maintain a high photocurrent after long-term (500 min) photoelectronic measurements. The successful fabrication of a red LED device makes it a promising candidate for high-performance solid-state lighting.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Pei-Pei Yin
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Qilian Wang
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Shu-Yao Yang
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Yan Li
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Xingrui Gao
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Jinzhao Song
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Xin-Ya Zhang
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| | - Ziyong Li
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China
| |
Collapse
|
4
|
Saleem M, Hanif M, Rafiq M, Raza H, Ja KS, Lu C. γ-Glutamyltranspeptidase (GGT) Sensitive Fluorescence Probes for Cancer Diagnosis; Brief Review. J Fluoresc 2024; 34:977-1006. [PMID: 37505365 DOI: 10.1007/s10895-023-03353-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Millions of deaths occur each year due to the late diagnosis of abnormal cellular growth within the body. However, the devastating impact of this can be significantly reduced if cancer metastasis is detected early through the use of enzymatic biomarkers. Among several biomarkers, γ-glutamyltranspeptidase (GGT) stands out as a member of the aminopeptidase family. It is primarily found on the surface of cancer cells such as glioma, ovarian, lung, and prostate cancer, without being overexpressed in normal cells or tissues. Recent years have witnessed significant progress in the field of cancer monitoring and imaging. Fluorescence sensing techniques have been employed, utilizing organic small molecular probes with enzyme-specific recognition sites. These probes emit a fluorescent signal upon interacting with GGT, enabling the imaging, identification, and differentiation of normal and cancerous cells, tissues, and organs. This review article presents a concise overview of recent progress in fluorescent probes developed for the selective detection of GGT, focusing on their applications in cancer imaging. It highlights the observed alterations in the fluorescence and absorption spectra of the probes before and after interaction with GGT. Additionally, the study investigates the changes in the probe molecule's structure following enzyme treatment, evaluates the sensor's detection limit, and consolidated imaging studies conducted using confocal fluorescence analysis. This comprehensive survey is expected to contribute to the advancement of sensing techniques for biomarker detection and cancer imaging, providing valuable insights for refining methodologies and inspiring future developments in this field.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Bhakkar, 30000, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus, Layyah, 31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongu National University, Kongju Chungnam, Republic of Korea
| | - Kim Song Ja
- Department of Biological Sciences, Kongu National University, Kongju Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Wang K, Yue Y, Chen XY, Wen XL, Yang B, Ren SZ, Yang YS, Jiang HX. In Vivo Imaging of γ-Glutamyl Transferase in Cardiovascular Diseases with a Photoacoustic Probe. ACS Sens 2024; 9:962-970. [PMID: 38293708 DOI: 10.1021/acssensors.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In this work, a photoacoustic (PA) probe, HDS-GGT, was developed for the in vivo imaging of cardiovascular diseases by monitoring the γ-glutamyl transferase (GGT) dynamics. HDS-GGT exhibited a stable PA signal with auxiliary absorbance and NIRF variation after the trigger by GGT. In all three modalities of absorbance, NIRF, and PA, HDS-GGT could quantitatively reflect the GGT level. In PA modality, HDS-GGT indicated the practical advantages including high sensitivity, high stability, and high specificity. In living oxidized low-density lipoprotein-induced RAW264.7 cells, HDS-GGT indicated proper capability for imaging the plaques by visualizing the GGT dynamics. Moreover, during imaging in living model mice, HDS-GGT was achieved to distinguish the plaques from healthy blood vessels via a multiview PA presentation. HDS-GGT could also suggest the severity of plaques in the extracted aorta from the model mice, which was consistent with the histological staining results. The information herein might be useful for future investigations on cardiovascular diseases.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Yue
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Lin Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shen-Zhen Ren
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Hao-Xiang Jiang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| |
Collapse
|
6
|
Zhang Y, Zhang Z, Wu M, Zhang R. Advances and Perspectives of Responsive Probes for Measuring γ-Glutamyl Transpeptidase. ACS MEASUREMENT SCIENCE AU 2024; 4:54-75. [PMID: 38404494 PMCID: PMC10885334 DOI: 10.1021/acsmeasuresciau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
Gamma-glutamyltransferase (GGT) is a plasma-membrane-bound enzyme that is involved in the γ-glutamyl cycle, like metabolism of glutathione (GSH). This enzyme plays an important role in protecting cells from oxidative stress, thus being tested as a key biomarker for several medical conditions, such as liver injury, carcinogenesis, and tumor progression. For measuring GGT activity, a number of bioanalytical methods have emerged, such as chromatography, colorimetric, electrochemical, and luminescence analyses. Among these approaches, probes that can specifically respond to GGT are contributing significantly to measuring its activity in vitro and in vivo. This review thus aims to highlight the recent advances in the development of responsive probes for GGT measurement and their practical applications. Responsive probes for fluorescence analysis, including "off-on", near-infrared (NIR), two-photon, and ratiometric fluorescence response probes, are initially summarized, followed by discussing the advances in the development of other probes, such as bioluminescence, chemiluminescence, photoacoustic, Raman, magnetic resonance imaging (MRI), and positron emission tomography (PET). The practical applications of the responsive probes in cancer diagnosis and treatment monitoring and GGT inhibitor screening are then highlighted. Based on this information, the advantages, challenges, and prospects of responsive probe technology for GGT measurement are analyzed.
Collapse
Affiliation(s)
- Yiming Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zexi Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Miaomiao Wu
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Run Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
7
|
Guo H, Li Z, Yang XG. Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Abstract
The crystal structure of a curcumin-BF2 complex has been successfully refined from single-crystal X-ray diffraction data of crystals with one molecule of co-crystallized dichloromethane. The complex has a nearly coplanar structure. The molecules form a mesh structure by intermolecular multiple hydrogen bonds, as well as weak hydrogen bonds with CH2Cl2 molecules. An investigation of the photo-physical properties has indicated that the curcumin-BF2 complex possesses a wide absorption band and an intense red emission in the solid state due to a strong electron-withdrawing effect of the BF2 groups. DFT calculations of a single molecule verify the relationships between the photo-physical properties and its intrinsic electronic features, but neglect the role of hydrogen bonding.
Collapse
Affiliation(s)
- Hui Guo
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang , Henan Province , 471934 , P. R. China
| | - Ziyong Li
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang , Henan Province , 471934 , P. R. China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang , Henan Province , 471934 , P. R. China
| |
Collapse
|
8
|
Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Wang S, Liu W, Zheng X, Ren H, Wu J, Li F, Wang P. A ratiometric fluorescent probe for detection of γ-glutamyl transpeptidase in blood serum and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121325. [PMID: 35567819 DOI: 10.1016/j.saa.2022.121325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl transpeptidase (GGT) is one of the biomarker of cancer, hepatitis, and numerous other diseases. The accurate analysis of GGT is useful for the early diagnosis of these diseases. In this work, Probe 1, a ratiometric fluorescent probe based on 2,3,5,6-tetrafluoroterephthalonitrile, was designed for GGT detection. The results indicated that Probe 1 can sensitively and selectively detect GGT in phosphate buffered solution and complex biological systems (e.g., blood serum). Furthermore, Probe 1 has been successfully applied for ratiometric imaging of GGT in cancer cells and normal cells.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fan Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
10
|
A New Deep‐Red to Near‐infrared Emission and Polarity Sensitive Fluorescent Probe Based on β‐Diketone‐boron Difluoride and Coumarin Derivative. ChemistrySelect 2022. [DOI: 10.1002/slct.202202272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Guo S, Zhu T, Wang R, Gao J, Sun J, Ou-Yang Z, Liu Y, Gu X, Zhao C. A water-soluble fluorescent probe for real-time visualization of γ-glutamyl transpeptidase activity in living cells. Bioorg Med Chem Lett 2022; 68:128762. [PMID: 35490954 DOI: 10.1016/j.bmcl.2022.128762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
γ-glutamyl transpeptidase (GGT) is a kind of cell-surface enzyme that is overexpressed in many cancer cells. It is of great significance to develop an ideal tool for the diagnosis of GGT-rich cancer cells. Here, we reported a simple-structured but effective imaging probe for the detection of GGT activity. In the presence of GGT, the γ-glutamyl linkage could be cleaved specifically to produce amino-substituted product, resulting in significant fluorescence enhancement at 578 nm. Moreover, we successfully employed the probe to monitor GGT activity in HepG2 cells. We envisaged that such a simple but effective imaging tool could improve the practical applications for bioimaging.
Collapse
Affiliation(s)
- Shiyuan Guo
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zhirong Ou-Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
12
|
Huang L, Sun Y, Zhao G, Wang L, Meng X, Zhou J, Duan H. A novel fluorescein-based fluorescent probe for detection Hg2+ and bioimaging applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
14
|
Stöckl Y, Fellmeth T, Bauer F, Wank B, Frey W, Claasen B, Zens A, Köhn A, Laschat S. Chasing polycyclic natural products: 5/6/5‐ or 5/6/6‐carbotricyclic scaffold construction via stereodivergent Diels‐Alder reaction of chiral hydrindanes and their boron complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yannick Stöckl
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Thomas Fellmeth
- University of Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Florian Bauer
- University of Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Bianca Wank
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Wolfgang Frey
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Birgit Claasen
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Anna Zens
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Andreas Köhn
- Universität Stuttgart: Universitat Stuttgart Institut für Theoretische Chemie GERMANY
| | - Sabine Laschat
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart GERMANY
| |
Collapse
|
15
|
Li H, Kim D, Yao Q, Ge H, Chung J, Fan J, Wang J, Peng X, Yoon J. Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009796] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jingyun Wang
- School of Bioengineering Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
16
|
Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021; 60:17268-17289. [DOI: 10.1002/anie.202009796] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 02/02/2023]
|
17
|
Collot M. Recent advances in dioxaborine-based fluorescent materials for bioimaging applications. MATERIALS HORIZONS 2021; 8:501-514. [PMID: 34821266 DOI: 10.1039/d0mh01186j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent materials are continuously contributing to important advances in the field of bioimaging. Among these materials, dioxaborine-based fluorescent materials (DBFM) are arousing growing interest. Due to their rigid structures conferred by a cyclic boron complex, DBFM possess appealing photophysical properties including high extinction coefficients and quantum yields as well as emission in the near infrared, enhanced photostability and high two-photon absorption. We herein discuss the recent advances of DBFM that found use in bioimaging applications. This review covers the development of fluorescent molecular probes for biomolecules (DNA, proteins), small molecules (cysteine, H2O2, oxygen), ions and the environment (polarity, viscosity) as well as polymers and nanomaterials used in bioimaging. This review aims at providing a comprehensive and critical insight on DBFM by highlighting the assets of these promising materials in bioimaging but also by pointing out their limitations that would require further developments.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.
| |
Collapse
|
18
|
Li Y, Xue C, Fang Z, Xu W, Xie H. In Vivo Visualization of γ-Glutamyl Transpeptidase Activity with an Activatable Self-Immobilizing Near-Infrared Probe. Anal Chem 2020; 92:15017-15024. [DOI: 10.1021/acs.analchem.0c02954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenghong Xue
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijun Fang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weipan Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Huo R, Zheng X, Liu W, Zhang L, Wu J, Li F, Zhang W, Lee CS, Wang P. A two-photon fluorescent probe for sensitive detection and imaging of γ-glutamyl transpeptidase. Chem Commun (Camb) 2020; 56:10902-10905. [PMID: 32808621 DOI: 10.1039/d0cc02750b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A GGT-activated two-photon fluorescent probe (4F-2CN-GSH) was developed based on a cascade reaction. 4F-2CN-GSH could selectivily detect GGT with low detection limit and distinguish ovarian cancer cells from normal cells using both one-photon and two-photon fluorescence imaging.
Collapse
Affiliation(s)
- Ruijin Huo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fan Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wenjun Zhang
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chun-Sing Lee
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. and School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Quicker, deeper and stronger imaging: A review of tumor-targeted, near-infrared fluorescent dyes for fluorescence guided surgery in the preclinical and clinical stages. Eur J Pharm Biopharm 2020; 152:123-143. [PMID: 32437752 DOI: 10.1016/j.ejpb.2020.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
Cancer is a public health problem and the main cause of human mortality and morbidity worldwide. Complete removal of tumors and metastatic lymph nodes in surgery is significantly beneficial for the prognosis of patients. Tumor-targeted, near-infrared fluorescent (NIRF) imaging is an emerging field of real-time intraoperative cancer imaging based on tumor-targeted NIRF dyes. Targeted NIRF dyes contain NIRF fluorophores and specific binding ligands such as antibodies, peptides and small molecules. The present article reviews recently updated tumor-targeted NIRF dyes for the molecular imaging of malignant tumors in the preclinical stage and clinical trials. The strengths and challenges of NIRF agents with tumor-targeting ability are also summarized. Smaller ligands, near infrared II dyes, dual-modality dyes and activatable dyes may contribute to quicker, deeper, stronger imaging in the nearest future. In this review, we highlighted tumor-targeted NIRF dyes for fluorescence-guided surgery and their potential clinical translation.
Collapse
|
21
|
Liu N, Chen PZ, Wang JX, Niu LY, Yang QZ. Difluoroboron β-diketonate dye with intense red/near-infrared fluorescence in solutions and solid states. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Reo YJ, Jun YW, Sarkar S, Dai M, Ahn KH. Ratiometric Imaging of γ-Glutamyl Transpeptidase Unperturbed by pH, Polarity, and Viscosity Changes: A Benzocoumarin-Based Two-Photon Fluorescent Probe. Anal Chem 2019; 91:14101-14108. [PMID: 31566966 DOI: 10.1021/acs.analchem.9b03942] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
γ-Glutamyltransferase (GGT) is involved in maintaining the intracellular glutathione levels and, at its elevated levels, is associated with various diseases including cancer and myocardial infarction. To study this enzyme in biological systems, fluorescent probes have received significant attention recently. As fluorescence signal is sensitive to environmental fluctuations; however, it is challenging to address the signal fluctuation issue. Disclosed is the benzocoumarin-based probe that enables ratiometric imaging of GGT activity levels in cells as well as in tissues, essentially unperturbed by medium pH, viscosity, and polarity changes. Validity of the probe is demonstrated by determining the GGT activity level in HeLa cells directly through ratiometric imaging. Furthermore, the probe and its enzymatic product are two-photon absorbing, extending its applicability to tissue: an 8.5-fold higher level of GGT in cancerous tissue over the normal tissue is determined, and the GGT activity levels between different mouse organ tissues are quantitatively compared with the highest level in the kidney. The probe with practicality holds great promise for studying GGT-associated biological processes directly through ratiometric imaging by two-photon microscopy.
Collapse
Affiliation(s)
- Ye Jin Reo
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu , Pohang , Gyungbuk 37673 , Republic of Korea
| | - Yong Woong Jun
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Sourav Sarkar
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu , Pohang , Gyungbuk 37673 , Republic of Korea
| | - Mingchong Dai
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu , Pohang , Gyungbuk 37673 , Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu , Pohang , Gyungbuk 37673 , Republic of Korea
| |
Collapse
|
23
|
Zhang Y, Zhang G, Yang P, Moosa B, Khashab NM. Self-Immolative Fluorescent and Raman Probe for Real-Time Imaging and Quantification of γ-Glutamyl Transpeptidase in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27529-27535. [PMID: 31290645 DOI: 10.1021/acsami.9b07186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Characterizing over-expressed enzymes or biomarkers in living cells is critical for the molecular understanding of disease pathology and consequently for designing precision medicines. Herein, a "switch-on" probe is designed to selectively detect γ-glutamyl transpeptidase (GGT) in living cells via a unique ensemble of enhanced fluorescence and surface-enhanced Raman scattering (SERS). In the presence of GGT, the γ-glutamyl bond in the probe molecule is cleaved, thereby activating a fluorescent probe molecule as well as a Raman reporter molecule. Consequently, the detection of GGT is achieved based on both plasmonic fluorescent enhancement and SERS with a detection limit as low as 1.2 × 10-3 U/L (normal range for GGT levels in the blood is 9-48 U/L). The main advantage of this platform is that on the occasion of fluorescence signal interference, especially in the presence of free metal ions in cells, the SERS signals still hold high stability as a backup. This work highlights the benefits of the marriage of two complimentary sensing techniques into one platform that can overcome the major obstacles of detection of real-time biomarkers and imaging in living cells.
Collapse
Affiliation(s)
- Yang Zhang
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Peng Yang
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|