1
|
Lu JB, Xu XQ, Ruan ZS, Liu K, Liang RX, Jia YX. Pd-Catalyzed Intramolecular Dearomative [4 + 2] Cycloaddition of Naphthalenes with Arylalkynes. Org Lett 2023; 25:8139-8144. [PMID: 37934112 DOI: 10.1021/acs.orglett.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Pd-catalyzed intramolecular dearomative [4 + 2] cycloaddition reaction of naphthalenes with arylalkynes is developed. The protocol provides a straightforward method to access a range of polycyclic dihydronaphthalenes containing two vicinal all-carbon stereocenters in moderate yields under mild conditions in an air atmosphere. The deuterium labeling experiment suggests a pathway involving electrophilic dearomatization followed by Friedel-Crafts cyclization. Several synthetic transformations of the product were conducted to demonstrate the utility of this reaction.
Collapse
Affiliation(s)
- Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Zi-Sheng Ruan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Kai Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
3
|
Wang BR, Li YB, Zhang Q, Gao D, Tian P, Li Q, Yin L. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides. Nat Commun 2023; 14:4688. [PMID: 37542041 PMCID: PMC10403559 DOI: 10.1038/s41467-023-40409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Herein, we report a copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 1,3-enynes, which provides a series of chiral poly-substituted pyrrolidines in high regio-, diastereo-, and enantioselectivities. Both 4-aryl-1,3-enynes and 4-silyl-1,3-enynes serve as suitable dipolarophiles while 4-alkyl-1,3-enynes are inert. Moreover, the method is successfully applied in the construction of both tetrasubstituted stereogenic carbon centers and chiral spiro pyrrolidines. The DFT calculations are also conducted, which imply a concerted mechanism rather than a stepwise mechanism. Finally, various transformations started from the pyrrolidine bearing a triethylsilylethynyl group and centered on the alkyne group are achieved, which compensates for the inertness of 4-alkyl-1,3-enynes in the present reaction.
Collapse
Affiliation(s)
- Bo-Ran Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qinghua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Liang Yin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Yavari I, Mohsenzadeh R, Ravaghi P, Safaei M. Synthesis of pyrrolidin-2-ylidenes and pyrrol-2-ylidenes via 1,3-dipolar cycloaddition of H-bond-assisted azomethine ylides to nitrostyrenes. Org Biomol Chem 2023. [PMID: 37309553 DOI: 10.1039/d3ob00725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen-bond-assisted azomethine ylides, generated from 2-(benzylamino)-2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)acetonitriles, undergo a formal Huisgen 1,3-dipolar cycloaddition with β-bromo-β-nitrostyrenes to afford a diastereoselective synthesis of highly substituted pyrrolidin-2-ylidene derivatives. When β-nitrostyrenes were used as the alkene component, 2-(4,5-diaryl-1,5-dihydro-2H-pyrrol-2-ylidene)-1H-indene-1,3(2H)-diones were obtained. Efficient conversion of pyrrolidene-2-ylidenes to the corresponding pyrrol-2-ylidenes takes place in refluxing 1-propanol in the presence of excess Et3N. Also, the structure of the pyrrolidene-2-ylidene derivative was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Ramin Mohsenzadeh
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Parisa Ravaghi
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Maryam Safaei
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| |
Collapse
|
5
|
Chen Y, Zhao JQ, Zhang YP, Zhou MQ, Zhang XM, Yuan WC. Copper-Catalyzed Asymmetric Dearomative [3+2] Cycloaddition of Nitroheteroarenes with Azomethines. Molecules 2023; 28:molecules28062765. [PMID: 36985737 PMCID: PMC10057014 DOI: 10.3390/molecules28062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Catalytic asymmetric dearomative [3+2] cycloaddition of α-imino γ-lactones with either 3-nitroindoles or 2-nitrobenzofurans by using a chiral copper complex as the catalyst was developed. A wide range of structurally diverse polyheterocyclic compounds containing spirocyclic-fused butyrolactone-pyrrolidine-indoline and butyrolactone-pyrrolidine-dihydrobenzofuran skeletons could be smoothly obtained with excellent results (>99:1 dr and 98% ee). The potential synthetic applications of this methodology were also demonstrated by the scale-up experiment and by the diverse transformations of one product. This method is characterized by high asymmetric induction, wide functional group tolerance and scalability, and attractive product diversification.
Collapse
Affiliation(s)
- Yan Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
He XL, Wen YW, Li H, Qian S, He M, Song Q, Wang Z. Diastereoselective Synthesis of Dihydrobenzofuran-Fused Spiroindolizidines via Double-Dearomative [3 + 2] Cycloadditions. J Org Chem 2023; 88:493-503. [PMID: 36550408 DOI: 10.1021/acs.joc.2c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spiroindolizidine oxindoles represent a kind of privileged scaffold in many biologically active natural alkaloids. 2,3-Dihydrobenzofuran derivatives exhibit significant bioactivities in a variety of pharmaceuticals. Herein, we assembled these two privileged fragments into a small molecule via double-dearomative [3 + 2] cycloadditions with pyridinium ylides and 2-nitrobenzofurans. This protocol features remarkable advantages including wide substrate scope, mild condition, high level of diastereoselectivities and yields. Thus, a collection of spiroindolizidine-fused dihydrobenzofurans/indolines were facilely produced efficiently.
Collapse
Affiliation(s)
- Xiao-Long He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| | - You-Wu Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China
| | - Hechen Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China
| | - Shan Qian
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| | - Mengyang He
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Qiao Song
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Zhouyu Wang
- School of Science, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| |
Collapse
|
7
|
Wang D, Sun J, Han Y, Sun Q, Yan CG. An Access to Highly Functionalized Dihydrobenzofuran Spirooxindole Scaffolds. Org Lett 2022; 24:7790-7795. [PMID: 36239308 DOI: 10.1021/acs.orglett.2c03123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed an efficient protocol for the construction of polycyclic dihydrobenzofuran spirooxindole scaffolds via base promoted cascade annulation of Morita-Baylis-Hillman (MBH) carbonates of isatins with ortho-hydroxychalcones or ortho-hydroxy-β-nitrostyrenes. The complex polycyclic compounds were conveniently synthesized in satisfactory yields and with high diastereoselectivity. This protocol provides a swift and convenient approach for the assembly of diverse highly functionalized dihydrobenzofuran spirooxindoles and also features broad substrate scope, high molecular convergence, and excellent atomic economy.
Collapse
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiu Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
8
|
Rao GA, Gurubrahamam R, Chen K. Base‐Catalysed [4+2]‐Annulation Between 2‐Nitrobenzofurans and N‐Alkoxyacrylamides: Synthesis of [3,2‐b]Benzofuropyridinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gunda Ananda Rao
- National Taiwan Normal University - Gongguan Campus Department of Chemistry TAIWAN
| | - Ramani Gurubrahamam
- Indian Institute of Technology Jammu Department of Chemistry jagti, nagrota bypass road 181221 Jammu INDIA
| | - Kwunmin Chen
- National Taiwan Normal University - Gongguan Campus Department of Chemistry INDIA
| |
Collapse
|
9
|
Starosotnikov AM, Bastrakov MA. Heterocycles
via
Dearomatization Reactions. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Zhou XJ, Zhao JQ, Lai YQ, You Y, Wang ZH, Yuan WC. Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 2022; 34:1019-1034. [PMID: 35521642 DOI: 10.1002/chir.23455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
A readily available chiral cyclohexanediamine-derived bifunctional tertiary amine-squaramide catalyst is more effective for the asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. A range of structurally diverse spiro-fused polyheterocyclic compounds containing oxindole, pyrrolidine, and hydrobenzofuran motifs were smoothly obtained in excellent results (up to 99% yield, >20:1 dr in all cases and up to 99% ee). This method features high efficiency, mild reaction conditions, exquisite asymmetric induction, wide functional group tolerance, great potential for scale-up synthesis, and attractive product diversification.
Collapse
Affiliation(s)
- Xiao-Jian Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China.,Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Yue-Qin Lai
- Zhejiang Jinhua Conba Bio-Pharm. Co. Ltd., Jinhua, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| |
Collapse
|
11
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Molnár M, Treuerne Balázs KE, Madarász Z, Nyerges M. New reactions of 3,4‐dihydro‐6,7‐dimethoxyisoquinoline ylide with nitrile derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Márk Molnár
- Servier Research Institute of Medicinal Chemistry, 7 Záhony street Budapest Hungary
| | - Krisztina E. Treuerne Balázs
- School of Pharmacy, Faculty of Medicine and Health N214, Pharmacy and Bank Building A15, The University of Sydney NSW Australia
| | - Zoltán Madarász
- Servier Research Institute of Medicinal Chemistry, 7 Záhony street Budapest Hungary
| | - Miklós Nyerges
- Servier Research Institute of Medicinal Chemistry, 7 Záhony street Budapest Hungary
| |
Collapse
|
13
|
Affiliation(s)
- Ning Wang
- Sichuan University West China Hospital Department of laboratory medicine CHINA
| | - Jing Ren
- Sichuan University West China Hospital Department of Radiology CHINA
| | - Kaizhi Li
- Sichuan University West China Hospital Department of laboratory medicine Biophamaceutical Research Institute, West China Hospital, Sichuan University, Ch 610041 Chengdu CHINA
| |
Collapse
|
14
|
Laviós A, Sanz-Marco A, Vila C, Muñoz MC, Pedro JR, Blay G. Metal-Free Diastereo- and Enantioselective Dearomative Formal [3 + 2] Cycloaddition of 2-Nitrobenzofurans and Isocyanoacetate Esters. Org Lett 2022; 24:2149-2154. [PMID: 35293212 PMCID: PMC8961877 DOI: 10.1021/acs.orglett.2c00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The diastereo- and enantioselective dearomative formal [3 + 2] cycloaddition of 2-nitrobenzofurans and α-aryl-α-isocyanoacetate esters provides tricyclic compounds bearing the 3a,8b-dihydro-1H-benzofuro[2,3-c]pyrrole framework with three consecutive stereogenic centers. The reaction was enabled by a cupreine-ether organocatalyst. The reaction products were obtained with almost full diastereoselectivity and with excellent enantiomeric excesses for a number of substituted 2-nitrobenzofurans and isocyanoacetates.
Collapse
Affiliation(s)
- Adrian Laviós
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Amparo Sanz-Marco
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - M. Carmen Muñoz
- Departament
de Física Aplicada, Universitat Politècnica
de València, Camí de Vera S/N, 46022 València, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
15
|
Yuan WC, Chen XM, Zhao JQ, Zhang YP, Wang ZH, You Y. Ag-Catalyzed Asymmetric Interrupted Barton-Zard Reaction Enabling the Enantioselective Dearomatization of 2- and 3-Nitroindoles. Org Lett 2022; 24:826-831. [PMID: 35029401 DOI: 10.1021/acs.orglett.1c04036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We disclose a Ag-catalyzed asymmetric interrupted Barton-Zard reaction of α-aryl-substituted isocyanoacetates with 2- and 3-nitroindoles, which enables the dearomatization of nitroindoles and hence offers rapid access to an array of optically active tetrahydropyrrolo[3,4-b]indole derivatives bearing three contiguous stereogenic centers, including two tetrasubstituted chiral carbon atoms with pretty outcomes (up to 99% yield, 91:9 dr, and 96% ee). The synthetic potential of the protocol was showcased by the gram-scale reaction and versatile transformations of the product.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Luo J, Liu Y, Wang H, Gong C, Zhou Z, Zhou Q. Chiral 1,2-Diaminocyclohexane-α-Amino Acid-Derived Amidphos/Ag(I)-Catalyzed Divergent Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Gao C, Zhang T, Li X, Wu JD, Liu J. Asymmetric Decarboxylative [3+2] Cycloaddition for the Diastereo- and Enantioselective Synthesis of Spiro[2.4]heptanes via Cyclopropanation. Org Chem Front 2022. [DOI: 10.1039/d2qo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric cycloaddition reaction has emerged as one of the powful and reliable strategies for the construction of enantioenriched molecules, especially those with polycyclic frameworks. Herein, we report the asymmetric decarboxylative...
Collapse
|
18
|
Zhao JQ, Zhou S, Qian HL, Wang ZH, Zhang YP, You Y, Yuan WC. Higher-order [10 + 2] cycloaddition of 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles: access to polycyclic cyclopenta[ b]indoline derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The higher-order [10 + 2] cycloaddition of 3-nitroindoles and 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles and affords a range of structurally diverse cyclopenta[b]indolines with excellent results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
19
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Zhao JQ, Zhou S, Yang L, Du HY, You Y, Wang ZH, Zhou MQ, Yuan WC. Catalytic Asymmetric Dearomative 1,3-Dipolar Cycloaddition of 2-Nitrobenzothiophenes and Isatin-Derived Azomethine Ylides. Org Lett 2021; 23:8600-8605. [PMID: 34672632 DOI: 10.1021/acs.orglett.1c03318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enantioselective dearomative 1,3-dipolar cycloaddition of 2-nitrobenzothiophenes and isatin-derived azomethine ylides with a bifunctional hydrogen-bonding thiourea catalyst was established, giving polyheterocyclic compounds in excellent results (up to 99% yield, >20:1 dr for all cases and up to 99% ee). The enantioselectivity could be reversed by the bifunctional hydrogen-bonding squaramide catalyst containing the same chiral source as in the thiourea catalyst. DFT calculations revealed the origin of the observed stereochemistry and the reversal of enantioselectivity.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lei Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hong-Yan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
21
|
Zhou P, Yi Y, Hua YZ, Jia SK, Wang MC. Dinuclear Zinc Catalyzed Enantioselective Dearomatization [3+2] Annulation of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes. Chemistry 2021; 28:e202103688. [PMID: 34713514 DOI: 10.1002/chem.202103688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
The application of dinuclear zinc catalysts in a dearomatization reaction has been developed. Catalytic asymmetric dearomatization [3+2] annulations of 2-nitrobenzofurans or 2-nitrobenzothiophenes with CF3 -containing N-unprotected isatin-derived azomethine ylides catalyzed by dinuclear zinc catalysts are realized with excellent diastereomer ratios (dr) of >20 : 1 and enantiomeric excess (ee) of up to 99 %. This protocol provides a practical, straightforward access to structurally diverse pyrrolidinyl spirooxindoles containing a 2,3-fused-dihydrobenzofuran (or dihydrobenzothiphene) moiety, and four contiguous stereocenters. Reactions can be performed on a gram scale. The absolute configuration of products is confirmed by X-ray single crystal structure analysis, and a possible mechanism is proposed.
Collapse
Affiliation(s)
- Peng Zhou
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yang Yi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| |
Collapse
|
22
|
Zheng Y, Jiang W, Tan J, Yan J, Zhan R, Huang H. Organocatalytic β,γ-Selective Activation of Deconjugated Butenolides Access to Chiral Tricyclic Chroman-butyrolactones. J Org Chem 2021; 86:12821-12830. [PMID: 34465087 DOI: 10.1021/acs.joc.1c01449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A highly efficient method for the β,γ-selective activation of deconjugated butenolides has been developed through an organocatalytic asymmetric vinylogous cascade reaction. This protocol enables the construction of a broad range of substituted tricyclic chroman-butyrolactones by vinylogous Michael/oxa-Michael pathways in good yield (up to 89%) with good to high enantioselectivity (up to 97:3 er) and excellent diastereoselectivity. The ring-opening esterification of butyrolactones was also demonstrated.
Collapse
Affiliation(s)
- Yangqing Zheng
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Weichao Jiang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Jingbo Tan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Juzhang Yan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Ruoting Zhan
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
23
|
Wan Q, Xie JH, Zheng C, Yuan YF, You SL. Silver-Catalyzed Asymmetric Dearomatization of Electron-Deficient Heteroarenes via Interrupted Barton-Zard Reaction. Angew Chem Int Ed Engl 2021; 60:19730-19734. [PMID: 34196074 DOI: 10.1002/anie.202107767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Herein we report a catalytic asymmetric dearomatization reaction of electron-deficient heteroarenes with α-substituted isocyanoacetates through an interrupted Barton-Zard reaction. A range of optically active pyrrolo[3,4-b]indole derivatives was obtained in good yields (up to 97 %) with high stereoselectivities (up to >20:1 dr and 97 % ee), using a catalytic system consisting of a cinchona-derived amino-phosphine and silver oxide. This reaction features wide substrate scope and mild conditions, and provides a new strategy for developing asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yao-Feng Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
24
|
Saktura M, Skrzyńska A, Frankowski S, Wódka S, Albrecht Ł. Asymmetric Dearomative (3+2)-Cycloaddition Involving Nitro-Substituted Benzoheteroarenes under H-Bonding Catalysis. Molecules 2021; 26:molecules26164992. [PMID: 34443580 PMCID: PMC8401887 DOI: 10.3390/molecules26164992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
In our studies, the organocatalytic 1,3-dipolar cycloaddition between 2-nitrobenzofurans or 2-nitrobenzothiophene and N-2,2,2-trifluoroethyl-substituted isatin imines has been developed. The reaction has been realized by employing bifunctional organocatalysis, with the use of squaramide derivative being crucial for the stereochemical efficiency of the process. The usefulness of the cycloadducts obtained has been confirmed in selected transformations, including aromative and non-aromative removal of the nitro group.
Collapse
Affiliation(s)
| | - Anna Skrzyńska
- Correspondence: (A.S.); (Ł.A.); Tel.: +48-42-631-31-42 (ext. 23) (A.S.); +48-42-631-31-57 (Ł.A.)
| | | | | | - Łukasz Albrecht
- Correspondence: (A.S.); (Ł.A.); Tel.: +48-42-631-31-42 (ext. 23) (A.S.); +48-42-631-31-57 (Ł.A.)
| |
Collapse
|
25
|
Wan Q, Xie J, Zheng C, Yuan Y, You S. Silver‐Catalyzed Asymmetric Dearomatization of Electron‐Deficient Heteroarenes via Interrupted Barton–Zard Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao‐Feng Yuan
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
26
|
Dou P, Chen Y, You Y, Wang Z, Zhao J, Zhou M, Yuan W. Organocatalyzed Asymmetric Dearomative [3+2] Annulation of Electron‐Deficient 2‐Nitrobenzo Heteroarenes with 3‐Isothiocyanato Oxindoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei‐Hao Dou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yan Chen
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yong You
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Zhen‐Hua Wang
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Jian‐Qiang Zhao
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Ming‐Qiang Zhou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
| | - Wei‐Cheng Yuan
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
27
|
Singh G, Pandey R, Kurup AS, Anand RV. A Base-Mediated Approach Towards Dihydrofuro[2,3-b]Benzofurans from 2-Nitrobenzofurans and 1,3-Dicarbonyls. Chem Asian J 2021; 16:1271-1279. [PMID: 33788982 DOI: 10.1002/asia.202100184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Indexed: 11/08/2022]
Abstract
A straight-forward approach for the synthesis of a dihydrofuro[2,3-b]benzofuran derivatives has been achieved through a base-mediated Michael addition of 1,3-dicarbonyls to 2-nitrobenzofurans followed by intramolecular cyclization. A variety of 1,3-dicarbonyls, including cyclic as well as trifluoromethylated ones, have been subjected to react with 2-nitrobenzofurans under optimal conditions, and the respective dihydrofuro[2,3-b]benzofurans could be accessed in moderate to excellent yields.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Adarsh S Kurup
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| |
Collapse
|
28
|
Motornov VA, Tabolin AA, Nelyubina YV, Nenajdenko VG, Ioffe SL. Copper-catalyzed [3 + 2]-cycloaddition of α-halonitroalkenes with azomethine ylides: facile synthesis of multisubstituted pyrrolidines and pyrroles. Org Biomol Chem 2021; 19:3413-3427. [PMID: 33899878 DOI: 10.1039/d1ob00146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient route for the synthesis of multifunctionalized pyrrolidines based on copper-catalyzed diastereoselective [3 + 2]-cycloaddition of nitroalkenes with azomethine ylides was developed. Novel fluorinated heterocycles - β-fluoro-β-nitropyrrolidines - were accessed via this method. The products can be prepared in good to excellent yields and with high diastereoselectivity. Subsequent transformations of pyrrolidines including oxidative aromatization into fluorinated pyrrolines and medicinally attractive β-fluoro-NH-pyrroles as well as chemoselective reduction reactions were demonstrated. Application of the developed procedures for the non-fluorinated analogues was demonstrated to lead to various β-substituted pyrrole derivatives.
Collapse
Affiliation(s)
- Vladimir A Motornov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119991, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| |
Collapse
|
29
|
Yang H, Lu SN, Chen Z, Wu XF. Silver-Mediated [3 + 2] Cycloaddition of Azomethine Ylides with Trifluoroacetimidoyl Chlorides for the Synthesis of 5-(Trifluoromethyl)imidazoles. J Org Chem 2021; 86:4361-4370. [PMID: 33615797 DOI: 10.1021/acs.joc.1c00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A silver-mediated [3 + 2] cycloaddition of azomethine ylides with trifluoroacetimidoyl chlorides for the rapid assembly of 5-(trifluoromethyl)imidazoles has been developed. Notable features of the reaction include readily accessible reagents, a broad substrate scope, and high efficiency. The protocol can be successfully applied to construct the analogue of the specific allosteric modulator of GABAA receptors. The silver species could be recycled by a simple operation.
Collapse
Affiliation(s)
- Hefei Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Shu-Ning Lu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning People's Republic of China.,Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
30
|
Chang X, Yang Y, Shen C, Xue KS, Wang ZF, Cong H, Tao HY, Chung LW, Wang CJ. β-Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. J Am Chem Soc 2021; 143:3519-3535. [DOI: 10.1021/jacs.0c12911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Chong Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kun-Shan Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
31
|
Chen L, Zou YX, Zheng SL, Liu XY, Yang HL, Zhang J, Zeng Y, Duan L, Wen Z, Ni HL. Dearomative 1,6-addition of P(O)–H to in situ formed p-QM-like ion pairs from 2-benzofuryl-ols to C3-phosphinoyl hydrobenzofurans. Org Chem Front 2021. [DOI: 10.1039/d1qo00076d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a dearomative C3-phosphorylation and a tandem C3-phosphorylation/aromatization of 2-benzofuryl-ols with P(O)–H species to afford C3-phosphinoyl hydrobenzofurans and benzofurans, respectively.
Collapse
|
32
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
33
|
Cao D, Chen D, Chen G, Mo H, Xia Z, Li K, Yang J. Synthesis of Dibenzofurans Derivatives via Benzannulation of 2‐Nitrobenzofurans and Alkylidene Malononitriles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongdong Cao
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Dingben Chen
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
| | - Gang Chen
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
| | - Hanjie Mo
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
| | - Zhijun Xia
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
| | - Kai‐bin Li
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
| | - Jianguo Yang
- School of Pharmaceutical and Materials Engineering Taizhou University 1139 Shifu Avenue Taizhou 318000 P. R. China
| |
Collapse
|
34
|
Yuan WC, Zhou XJ, Zhao JQ, Chen YZ, You Y, Wang ZH. Catalytic Enantioselective Dearomatization/Rearomatization of 2-Nitroindoles to Access 3-Indolyl-3′-Aryl-/Alkyloxindoles: Application in the Formal Synthesis of Cyclotryptamine Alkaloids. Org Lett 2020; 22:7088-7093. [DOI: 10.1021/acs.orglett.0c02350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
35
|
Tan JP, Li X, Chen Y, Rong X, Zhu L, Jiang C, Xiao K, Wang T. Highly stereoselective construction of polycyclic benzofused tropane scaffolds and their latent bioactivities: bifunctional phosphonium salt-enabled cyclodearomatization process. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9754-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Catalytic asymmetric synthesis of diazabicyclo[3.1.0]hexanes by 1,3-dipolar cycloaddition of azomethine ylides with azirines. Chem Commun (Camb) 2020; 56:5050-5053. [PMID: 32243487 DOI: 10.1039/d0cc01061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substituted 1,3-diazabicyclo[3.1.0]hexanes with two contiguous quaternary stereocentres are readily prepared by catalytic asymmetric [3+2] cycloaddition of α-substituted iminoesters with azirines. High diastereoselectivities and enantioselectivities (up to 98% ee) are achieved using CuI/(R)-Fesulphos as the catalytic system.
Collapse
Affiliation(s)
- Alba Molina
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
37
|
Zhuo JR, Quan BX, Zhao JQ, Zhang ML, Chen YZ, Zhang XM, Yuan WC. Base-mediated [4+2] annulation of electron-deficient nitrobenzoheterocycles and α,α-dicyanoalkenes in water: Facile access to structurally diverse functionalized dibenzoheterocyclic compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Lei L, Yao YY, Jiang LJ, Lu X, Liang C, Mo DL. Synthesis of Furo[3,2- b]quinolines and Furo[2,3- b:4,5- b']diquinolines through [4 + 2] Cycloaddition of Aza- o-Quinone Methides and Furans. J Org Chem 2020; 85:3059-3070. [PMID: 31958946 DOI: 10.1021/acs.joc.9b02953] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An approach for the construction of furo[3,2-b]quinolines and furo[2,3-b:4,5-b']diquinolines is developed through a metal-free [4 + 2] cycloaddition of easily available in situ generated aza-o-quinone methides and furans. The reaction tolerates a wide range of aza-o-quinone methides and substituted furans to afford the corresponding dihydro- or tetrahydrofuroquinolines in good to excellent yields. Mechanistic studies reveal that the reaction involves a concerted [4 + 2] cycloaddition pathway and shows a high regioselectivity of cycloaddition for a furan ring. The present method features mild reaction conditions, dearomatization of furans, high regio- and diastereoselectivity, gram-scalable preparations, and diversity of furoquinolines.
Collapse
Affiliation(s)
- Lu Lei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yi-Yun Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Li-Juan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou, Fujian 350300, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
39
|
Ge ZZ, Yang L, You Y, Wang ZH, Xie KX, Zhou MQ, Zhao JQ, Yuan WC. Asymmetric dearomatization of 2-nitrobenzofurans by organocatalyzed one-step Michael addition to access 3,3′-disubstituted oxindoles. Chem Commun (Camb) 2020; 56:2586-2589. [DOI: 10.1039/c9cc09939e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient enantioselective dearomatization of 2-nitrobenzofurans was realized by organocatalyzed one-step Michael addition to access structurally diverse 3,3′-disubstituted oxindoles.
Collapse
Affiliation(s)
- Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Lei Yang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yong You
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University
- Chengdu 610106
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
40
|
Wang Z, Wang DC, Xie MS, Qu GR, Guo HM. Enantioselective Synthesis of Fused Polycyclic Tropanes via Dearomative [3 + 2] Cycloaddition Reactions of 2-Nitrobenzofurans. Org Lett 2019; 22:164-167. [PMID: 31868372 DOI: 10.1021/acs.orglett.9b04108] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straight synthetic approach to fused polycyclic tropane scaffold formation through an asymmetric dearomatization cycloaddition process of 2-nitrobenzofurans with cyclic azomethine ylides was successfully developed. In the presence of a chiral copper complex, derived from Cu(OAc)2 and a diphosphine ligand, a series of fused polycyclic tropane derivatives were obtained in high yields (75-91%) with excellent enantioselectivities (90-98%). The utility of this method was showcased by the facile transformation of product.
Collapse
Affiliation(s)
- Zhen Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
41
|
Unsymmetrical 1-oxazolinyl 1’,2-Bisphosphine ferrocene silyl ether: Preparation and lithiation mechanism. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Wang HX, Li WP, Xia C, Xie MS, Qu GR, Guo HM. Enantioselective synthesis of chiral carbocyclic pyrimidine nucleosides via asymmetric cyclopropanation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Chen XM, Lei CW, Yue DF, Zhao JQ, Wang ZH, Zhang XM, Xu XY, Yuan WC. Organocatalytic Asymmetric Dearomatization of 3-Nitroindoles and 3-Nitrobenzothiophenes via Thiol-Triggered Diastereo- and Enantioselective Double Michael Addition Reaction. Org Lett 2019; 21:5452-5456. [DOI: 10.1021/acs.orglett.9b01688] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng-Feng Yue
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
44
|
Zhou XJ, Zhao JQ, Chen XM, Zhuo JR, Zhang YP, Chen YZ, Zhang XM, Xu XY, Yuan WC. Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. J Org Chem 2019; 84:4381-4391. [DOI: 10.1021/acs.joc.9b00401] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Jian Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Rui Zhuo
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
45
|
Zhao JQ, Yang L, Zhou XJ, You Y, Wang ZH, Zhou MQ, Zhang XM, Xu XY, Yuan WC. Organocatalyzed Dearomative Cycloaddition of 2-Nitrobenzofurans and Isatin-Derived Morita–Baylis–Hillman Carbonates: Highly Stereoselective Construction of Cyclopenta[b]benzofuran Scaffolds. Org Lett 2019; 21:660-664. [DOI: 10.1021/acs.orglett.8b03786] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jian Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
46
|
Xiao BX, Jiang B, Song X, Du W, Chen YC. Phosphine-catalysed asymmetric dearomative formal [4+2] cycloadditions of 3-benzofuranyl vinyl ketones. Chem Commun (Camb) 2019; 55:3097-3100. [PMID: 30789167 DOI: 10.1039/c9cc00386j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An asymmetric dearomative formal [4+2] cycloaddition reaction of 3-benzofuranyl vinyl ketones and 3-olefinic (7-aza)oxindoles is explored which is catalysed by chiral phosphines.
Collapse
Affiliation(s)
- Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Xue Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
47
|
Yang XH, Li JP, Wang DC, Xie MS, Qu GR, Guo HM. Enantioselective dearomative [3+2] cycloaddition of 2-nitrobenzofurans with aldehyde-derived Morita–Baylis–Hillman carbonates. Chem Commun (Camb) 2019; 55:9144-9147. [DOI: 10.1039/c9cc04542b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phosphine-catalyzed asymmetric dearomative [3+2] cycloaddition of 2-nitrobenzofurans with aldehyde-derived MBH carbonates or allenoates was developed.
Collapse
Affiliation(s)
- Xin-He Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Jian-Ping Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| |
Collapse
|
48
|
Deng H, Jia R, Yang WL, Yu X, Deng WP. Ligand-controlled switch in diastereoselectivities: catalytic asymmetric construction of spirocyclic pyrrolidine-azetidine/oxe(thie)tane derivatives. Chem Commun (Camb) 2019; 55:7346-7349. [DOI: 10.1039/c9cc03589c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An asymmetric [3+2] cycloaddition of azomethine ylides with four-membered ring-containing dipolarophiles was developed, and either exo or endo spirocyclic pyrrolidine-azetidine/oxe(thie)tanes were obtained.
Collapse
Affiliation(s)
- Hua Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Renmeng Jia
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xingxin Yu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
49
|
Zhao JQ, Yang L, You Y, Wang ZH, Xie KX, Zhang XM, Xu XY, Yuan WC. Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Org Biomol Chem 2019; 17:5294-5304. [DOI: 10.1039/c9ob00775j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Ph2PMe-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans, 2-nitrobenzothiophenes, and 3-nitrobenzothiophenes with allenoates is reported.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Lei Yang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|