1
|
Bissbort T, Hess KU, Weidendorfer D, Sturm EV, Schawe JEK, Wilding M, Purgstaller B, Goetschl KE, Sturm S, Müller-Caspary K, Schmahl W, Griesshaber E, Dietzel M, Dingwell DB. Dehydration-Driven Glass Formation in Aqueous Carbonates. J Phys Chem Lett 2025; 16:4773-4779. [PMID: 40335035 PMCID: PMC12086832 DOI: 10.1021/acs.jpclett.5c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/09/2025]
Abstract
Amorphous carbonates, in their liquid and solid (glassy) forms, have been identified to play important roles in biomineralization, volcanism, and deep element cycling. Anhydrous amorphous calcium and calcium-magnesium carbonate (ACC and ACMC05, respectively) are structural glasses that exhibit a glass transition upon being heated. We report a significant effect of the water content on glass formation. The results yield a parametrization enabling prediction of the stability of their liquid and solid amorphous phases as a function of temperature and water content. These results, obtained through novel fast differential scanning calorimetry, demonstrate that hydrous ACC and ACMC05 do indeed exhibit the behavior of structural glasses and that dehydration of these materials by lyophilization is a route that can be used to isothermally cross the glass transition. This work presents a viable process for a significantly wider range of geo- and biomaterials. Dehydration-controlled formation of glassy ACC therefore constitutes the missing link in the transformation from supersaturated aqueous solutions through an intermediate amorphous glassy state to crystalline CaCO3 polymorphs. These results yield direct implications for the mechanistic interpretation of geological processes and biomineralization.
Collapse
Affiliation(s)
- Thilo Bissbort
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| | - Kai-Uwe Hess
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| | - Daniel Weidendorfer
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| | - Elena V. Sturm
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| | - Jürgen E. K. Schawe
- Laboratory
of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Wilding
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Bettina Purgstaller
- Institute
of Applied Geosciences, Graz University
of Technology, Rechbauerstrasse
12, 8010 Graz, Austria
| | - Katja E. Goetschl
- Institute
of Applied Geosciences, Graz University
of Technology, Rechbauerstrasse
12, 8010 Graz, Austria
| | - Sebastian Sturm
- Fakultät
für Chemie und Pharmazie, Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandstrasse 5-13, 81377 München, Germany
| | - Knut Müller-Caspary
- Fakultät
für Chemie und Pharmazie, Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandstrasse 5-13, 81377 München, Germany
| | - Wolfgang Schmahl
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| | - Erika Griesshaber
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| | - Martin Dietzel
- Institute
of Applied Geosciences, Graz University
of Technology, Rechbauerstrasse
12, 8010 Graz, Austria
| | - Donald B. Dingwell
- Earth
and Environmental Sciences, Ludwig-Maximilians-Universität
München, Theresienstraße
41/III, 80333 München, Germany
| |
Collapse
|
2
|
Li SL, Tsao C, Yang SY, Chan JCC. Structural order of Mg-stabilized amorphous calcium carbonate and its associated phase transformation. Chem Commun (Camb) 2025; 61:6567-6578. [PMID: 40223802 DOI: 10.1039/d5cc00602c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Biominerals formed by marine organisms exhibit intricate structures and support a remarkable range of functionalities. Recent advances in our understanding of biomineralization highlight the pivotal role of magnesium-stabilized amorphous calcium carbonate (Mg-ACC) as a transient precursor in the formation of calcareous biominerals. This feature article reviews recent in vitro studies of Mg-ACC, illustrating the concepts of particle attachment, secondary nucleation, domain segregation, and mesocrystal formation. Some conceptual issues associated with the ongoing debate between classical nucleation theory and non-classical nucleation theory are discussed. We suggest that solid-state NMR measurements of the van Vleck second moment provide a stringent test for any proposed atomic model of Mg-ACC. The coordination environment of Mg2+ ions and the significance of bicarbonate ions in Mg-ACC are discussed. The diffusion of Mg2+ ions within the calcitic lattice of high-Mg calcite offers a mechanistic insight into the 'dolomite problem'. The fusion of neighboring high-Mg calcite spherulites highlights their potential role as versatile building blocks for calcareous biomineral skeletal frameworks. Altogether, this article aims to provide a comprehensive understanding of the structural complexity and transformation pathways of Mg-ACC.
Collapse
Affiliation(s)
- Shu-Li Li
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Chieh Tsao
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Sheng-Yu Yang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Ma C, Nong X, Xu F, Zhu Z, Nong P, Luo F, Tang S, Zhang L, Kang Z, Zhu Y. Dissolution and solubility of the calcium-nickel carbonate solid solutions [(Ca 1-xNi x)CO 3] at 25 °C. GEOCHEMICAL TRANSACTIONS 2024; 25:13. [PMID: 39612076 DOI: 10.1186/s12932-024-00096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
A series of the calcium-nickel carbonate solid solutions [(Ca1-xNix)CO3] were synthesized and their dissolution in N2-degassed water (NDW) and CO2-saturated water (CSW) at 25 °C was experimentally investigated. During dissolution of the synthetic solids (Ni-bearing calcite, amorphous Ca-bearing NiCO3 and their mixtures), the Ni-calcite and the Ca-NiCO3 dissolved first followed by the formation of the Ni-bearing aragonite-structure phases. After 240-300 days of dissolution in NDW, the water solutions achieved the stable Ca and Ni concentrations of 0.592-0.665 and 0.073-0.290 mmol/L for the solids with lower Ni/(Ca + Ni) mol ratios (XNi), or 0.608-0.721 and 0.273-0.430 mmol/L for the solids with higher XNi, respectively. After 240-300 days of dissolution in CSW, the water solutions achieved the stable Ca and Ni concentrations of 1.094-3.738 and 0.831-4.300 mmol/L, respectively. For dissolution in NDW and CSW, the mean values of log IAP (Ion activity products) in the final stable state (≈ log Ksp, Solubility product constants) were determined to be - 8.65 ± 0.04 and - 8.16 ± 0.11 for calcite [CaCO3], respectively; - 8.50 ± 0.02 and - 7.69 ± 0.03 for the synthetical nickel carbonates [NiCO3], respectively. In respect to the bulk composition of the (Ca1-xNix)CO3 solid solutions, the final log IAP showed the highest value when XNi = 0.10-0.30. Mostly, the mean values of log IAP increased with the increasing XNi in respect to the Ni-calcite, the Ni-aragonite and the amorphous Ca-Ni carbonate. The plotting of the experimental data on the Lippmann diagram for the (Ca1-xNix)CO3 solid solution using the predicted Guggenheim parameters of a0 = 2.14 and a1 = - 0.128 from a miscibility gap of XNi = 0.238 to 0.690 indicated that the solids dissolved incongruently and the final Ca and Ni concentrations in the water solutions were simultaneously limited by the minimum stoichiometric saturation curves for the Ni-calcite, Ni-aragonite and the amorphous Ca-Ni carbonate. During dissolution in NDW, the Ni2+ preferred to dissolve into the water solution and Ca2+ preferred to remain in the solid, while during dissolution in CSW for the solids with higher XNi, the Ca2+ preferred to dissolve into the water solution and Ni2+ preferred to remain in the solid. These findings provide valuable insights into understanding the mechanisms governing Ni geochemical cycle in natural environments.
Collapse
Affiliation(s)
- Chengyou Ma
- College of Earth Sciences, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Xiaoke Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Fan Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541006, China.
| | - Peijie Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Fei Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Shen Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China
| | - Lihao Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541006, China
| | - Zhiqiang Kang
- College of Earth Sciences, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Yinian Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| |
Collapse
|
4
|
Molnár Z, Pekker P, Rečnik A, Pósfai M. Formation and properties of spindle-shaped aragonite mesocrystals from Mg-bearing solutions. NANOSCALE 2024; 16:2012-2021. [PMID: 38194258 DOI: 10.1039/d3nr04672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The formation of aragonite under ambient conditions is typically linked to Mg-rich aqueous environments. The grains that form in such environments show peculiar properties such as aggregate-like appearance and mesocrystalline character. We tested the effect of dissolved Mg2+ ions on the formation of aragonite mesocrystals by synthesizing aragonite with an automatic titrator at constant pH and at different dissolved Mg : Ca ratios, and by studying the properties of the precipitated material with various scanning transmission electron microscopy (STEM) techniques. At all studied Mg : Ca ratios the firstly condensed carbonate phase was Mg-bearing amorphous calcium carbonate (Mg-ACC) that transformed into aragonite during the synthesis experiments. The aragonite grains had typically aggregate-like appearance and spindle shapes, with the external morphologies of the spindles unaffected by variation in solution chemistry. The alignment of the nanocrystals within the aggregates was crystallographically highly coherent, the [001] directions of nanocrystals showing only a small misorientation with respect to one another; however, both parallel and twin assembly of neighbouring crystals occurred. An increase in the dissolved Mg concentration decreased the crystallographic coherence between the aragonite nanocrystals, suggesting an important role of Mg2+ ions in the assembly of aragonite spindles. Whereas the mesoscale-ordered arrangement of nanocrystals implies a particle-mediated assembly, the observed differences in particle size and composition between the amorphous precursor and the crystalline end-product suggest that the crystallization includes at least partial dissolution and re-precipitation. These findings provide insight into the formation of aragonite and could contribute to the understanding of important aspects of the formation of mesocrystals and hierarchically structured biogenic minerals.
Collapse
Affiliation(s)
- Zsombor Molnár
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
- HUN-REN-PE Environmental Mineralogy Research Group, Egyetem st. 10, 8200, Veszprém, Hungary
| | - Péter Pekker
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
| | - Aleksander Rečnik
- Jožef Stefan Institute, Department of Nanostructured Materials, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Mihály Pósfai
- University of Pannonia, Research Institute of Biomolecular and Chemical Engineering, Nanolab, Egyetem st. 10, 8200, Veszprém, Hungary.
- HUN-REN-PE Environmental Mineralogy Research Group, Egyetem st. 10, 8200, Veszprém, Hungary
| |
Collapse
|
5
|
Hess KU, Schawe JEK, Wilding M, Purgstaller B, Goetschl KE, Sturm S, Müller-Caspary K, Sturm EV, Schmahl W, Griesshaber E, Bissbort T, Weidendorfer D, Dietzel M, Dingwell DB. Glass transition temperatures and crystallization kinetics of a synthetic, anhydrous, amorphous calcium-magnesium carbonate. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220356. [PMID: 37634535 PMCID: PMC10460641 DOI: 10.1098/rsta.2022.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
We report the first calorimetric observations of glass transition temperatures and crystallization rates of anhydrous, amorphous calcium-magnesium carbonate using fast scanning differential scanning calorimetry. Hydrous amorphous Ca0.95Mg0.05CO3 · 0.5H2O (ACMC) solid was precipitated from a MgCl2-NaHCO3 buffered solution, separated from the supernatant, and freeze-dried. An aliquot of the freeze-dried samples was additionally dried at 250°C for up to 6 h in a furnace and in a high-purity N2 atmosphere to produce anhydrous ACMC. The glass transition temperature of the anhydrous Ca0.95Mg0.05CO3 was determined by applying different heating rates (1000-6000 K s-1) and correcting for thermal lag to be 376°C and the relaxational heat capacity was determined to be Cp = 0.16 J/(g K). Additionally, the heating rate dependence of the temperature that is associated with the corrected crystallization peaks is used to determine the activation energy of crystallization to be 275 kJ mol-1. A high-resolution transmission electron microscopy study on the hydrous and anhydrous samples provided further constraints on their compositional and structural states. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
Collapse
Affiliation(s)
- Kai-Uwe Hess
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Jürgen E. K. Schawe
- Mettler-Toledo GmbH, Heuwinkelstrasse 3, 8603, Nänikon, Switzerland
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire OX11 0FA, UK
| | - Bettina Purgstaller
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria
| | - Katja E. Goetschl
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria
| | - Sebastian Sturm
- Fakultät für Chemie und Pharmazie, Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandstr. 5-13, 81377, München, Germany
| | - Knut Müller-Caspary
- Fakultät für Chemie und Pharmazie, Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandstr. 5-13, 81377, München, Germany
| | - Elena V. Sturm
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Wolfgang Schmahl
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Erika Griesshaber
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Thilo Bissbort
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Daniel Weidendorfer
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Martin Dietzel
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria
| | - Donald B. Dingwell
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| |
Collapse
|
6
|
Luong NT, Veyret N, Boily JF. CO 2 Mineralization by MgO Nanocubes in Nanometric Water Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45055-45063. [PMID: 37707796 PMCID: PMC10540135 DOI: 10.1021/acsami.3c10590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Water films formed by the adhesion and condensation of air moisture on minerals can trigger the formation of secondary minerals of great importance to nature and technology. Magnesium carbonate growth on Mg-bearing minerals is not only of great interest for CO2 capture under enhanced weathering scenarios but is also a prime system for advancing key ideas on mineral formation under nanoconfinement. To help advance ideas on water film-mediated CO2 capture, we tracked the growth of amorphous magnesium carbonate (AMC) on MgO nanocubes exposed to moist CO2 gas. AMC was identified by its characteristic vibrational spectral signature and by its lack of long-range structure by X-ray diffraction. We find that AMC (MgCO3·2.3-2.5H2O) grew in sub-monolayer (ML) to 4 ML thick water films, with formation rates and yields scaling with humidity. AMC growth was however slowed down as AMC nanocoatings blocked water films access to the reactive MgO core. Films could however be partially dissolved by exposure to thicker water films, driving AMC growth for several more hours until nanocoatings blocked the reactions again. These findings shed new light on a potentially important bottleneck for the efficient mineralization of CO2 using MgO-bearing products. Notably, this study shows how variations in the air humidity affect CO2 capture by controlling water film coverages on reactive minerals. This process is also of great interest in the study of mineral growth in nanometrically thick water films.
Collapse
Affiliation(s)
- N. Tan Luong
- Department of Chemistry, Umeå
University, SE 901 87 Umeå, Sweden
| | - Noémie Veyret
- Department of Chemistry, Umeå
University, SE 901 87 Umeå, Sweden
| | | |
Collapse
|
7
|
Sugawara S, Fujiya W, Kagi H, Yamaguchi A, Hashizume K. Heat-Induced Dolomitization of Amorphous Calcium Magnesium Carbonate in a CO 2-Filled Closed System. ACS OMEGA 2022; 7:44670-44676. [PMID: 36530237 PMCID: PMC9753508 DOI: 10.1021/acsomega.2c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
We report a method to synthesize dolomite [CaMg(CO3)2] from amorphous calcium magnesium carbonate (ACMC) via solid-state transformation. When ACMC is heated in air, it does not crystallize into dolomite but decomposes into Mg calcite, magnesium oxide, and CO2. Hence, we heated ACMC in a closed system filled with CO2 gas (pCO2 >1.2 bar at 420 °C) and produced submicron-sized dolomite. Single-phase dolomite was obtained after dissolving impurities in the run products, such as northupite [Na3Mg(CO3)2Cl] and eitelite [Na2Mg(CO3)2], in water. Also, we investigated the crystallization process of dolomite by changing the heating temperature and heating time. Despite crystallization by solid-state transformation, the heated samples crystallized to dolomite via Ca-rich protodolomite with no ordering reflection of X-ray diffraction as previously observed for hydrothermal synthesis. The results demonstrated that this crystallization pathway is kinetically favored even in solid-state transformation and that the Ca-rich protodolomite phase preferentially crystallizes during heating, leading to phase separation from the amorphous phase. Therefore, the crystallization process via protodolomite as a precursor is a common mechanism in dolomite crystallization, suggesting the presence of kinetic barriers other than hydration of cations.
Collapse
Affiliation(s)
- Shingo Sugawara
- Faculty
of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Wataru Fujiya
- Faculty
of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Hiroyuki Kagi
- Geochemical
Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Akira Yamaguchi
- National
Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518, Japan
| | - Ko Hashizume
- Faculty
of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
8
|
Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nat Rev Chem 2022; 6:598-613. [PMID: 37117714 DOI: 10.1038/s41570-022-00418-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/02/2023]
Abstract
The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2-H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.
Collapse
|
9
|
Kerisit SN, Mergelsberg ST, Thompson CJ, White SK, Loring JS. Thin Water Films Enable Low-Temperature Magnesite Growth Under Conditions Relevant to Geologic Carbon Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12539-12548. [PMID: 34491048 DOI: 10.1021/acs.est.1c03370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Injecting supercritical CO2 (scCO2) into basalt formations for long-term storage is a promising strategy for mitigating CO2 emissions. Mineral carbonation can result in permanent entrapment of CO2; however, carbonation kinetics in thin H2O films in humidified scCO2 is not well understood. We investigated forsterite (Mg2SiO4) carbonation to magnesite (MgCO3) via amorphous magnesium carbonate (AMC; MgCO3·xH2O, 0.5 < x < 1), with the goal to establish the fundamental controls on magnesite growth rates at low H2O activity and temperature. Experiments were conducted at 25, 40, and 50 °C in 90 bar CO2 with a H2O film thickness on forsterite that averaged 1.78 ± 0.05 monolayers. In situ infrared spectroscopy was used to monitor forsterite dissolution and the growth of AMC, magnesite, and amorphous SiO2 as a function of time. Geochemical kinetic modeling showed that magnesite was supersaturated by 2 to 3 orders of magnitude and grew according to a zero-order rate law. The results indicate that the main drivers for magnesite growth are sustained high supersaturation coupled with low H2O activity, a combination of thermodynamic conditions not attainable in bulk aqueous solution. This improved understanding of reaction kinetics can inform subsurface reactive transport models for better predictions of CO2 fate and transport.
Collapse
Affiliation(s)
- Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sebastian T Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher J Thompson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Signe K White
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John S Loring
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Ulrich RN, Guillermic M, Campbell J, Hakim A, Han R, Singh S, Stewart JD, Román-Palacios C, Carroll HM, De Corte I, Gilmore RE, Doss W, Tripati A, Ries JB, Eagle RA. Patterns of Element Incorporation in Calcium Carbonate Biominerals Recapitulate Phylogeny for a Diverse Range of Marine Calcifiers. FRONTIERS IN EARTH SCIENCE 2021; 9:641760. [PMID: 36381649 PMCID: PMC9645792 DOI: 10.3389/feart.2021.641760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of that ion in seawater, the physical properties of seawater, the mineralogy of the biomineral, and the pathways and mechanisms of biomineralization. Here we report measurements of a suite of nine elemental ratios (Li/Ca, B/Ca, Na/Ca, Mg/Ca, Zn/Ca, Sr/Ca, Cd/Ca, Ba/Ca, and U/Ca) in 18 species of benthic marine invertebrates spanning a range of biogenic carbonate polymorph mineralogies (low-Mg calcite, high-Mg calcite, aragonite, mixed mineralogy) and of phyla (including Mollusca, Echinodermata, Arthropoda, Annelida, Cnidaria, Chlorophyta, and Rhodophyta) cultured at a single temperature (25°C) and a range of pCO2 treatments (ca. 409, 606, 903, and 2856 ppm). This dataset was used to explore various controls over elemental partitioning in biogenic marine carbonates, including species-level and biomineralization-pathway-level controls, the influence of internal pH regulation compared to external pH changes, and biocalcification responses to changes in seawater carbonate chemistry. The dataset also enables exploration of broad scale phylogenetic patterns of elemental partitioning across calcifying species, exhibiting high phylogenetic signals estimated from both uni- and multivariate analyses of the elemental ratio data (univariate: λ = 0-0.889; multivariate: λ = 0.895-0.99). Comparing partial R 2 values returned from non-phylogenetic and phylogenetic regression analyses echo the importance of and show that phylogeny explains the elemental ratio data 1.4-59 times better than mineralogy in five out of nine of the elements analyzed. Therefore, the strong associations between biomineral elemental chemistry and species relatedness suggests mechanistic controls over element incorporation rooted in the evolution of biomineralization mechanisms.
Collapse
Affiliation(s)
- Robert N. Ulrich
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maxence Guillermic
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julia Campbell
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Abbas Hakim
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachel Han
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shayleen Singh
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Justin D. Stewart
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cristian Román-Palacios
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, United States
| | - Hannah M. Carroll
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ilian De Corte
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
| | - Rosaleen E. Gilmore
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Whitney Doss
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
| | - Aradhna Tripati
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
- American Indian Studies Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Justin B. Ries
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Boston, MA, United States
| | - Robert A. Eagle
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Diverse Leadership in Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Institut Universitaire Européen de la Mer, Plouzané, France
| |
Collapse
|
11
|
Elmassry MM, Bisht K, Colmer-Hamood JA, Wakeman CA, San Francisco MJ, Hamood AN. Malonate utilization by Pseudomonas aeruginosa affects quorum-sensing and virulence and leads to formation of mineralized biofilm-like structures. Mol Microbiol 2021; 116:516-537. [PMID: 33892520 DOI: 10.1111/mmi.14729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Michael J San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Honors College, Texas Tech University, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
12
|
Benzerara K, Bolzoni R, Monteil C, Beyssac O, Forni O, Alonso B, Asta MP, Lefevre C. The gammaproteobacterium Achromatium forms intracellular amorphous calcium carbonate and not (crystalline) calcite. GEOBIOLOGY 2021; 19:199-213. [PMID: 33347698 DOI: 10.1111/gbi.12424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/21/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Achromatium is a long known uncultured giant gammaproteobacterium forming intracellular CaCO3 that impacts C and S geochemical cycles functioning in some anoxic sediments and at oxic-anoxic boundaries. While intracellular CaCO3 granules have first been described as Ca oxalate then colloidal CaCO3 more than one century ago, they have often been referred to as crystalline solids and more specifically calcite over the last 25 years. Such a crystallographic distinction is important since the respective chemical reactivities of amorphous calcium carbonate (ACC) and calcite, hence their potential physiological role and conditions of formation, are significantly different. Here, we analyzed the intracellular CaCO3 granules of Achromatium cells from Lake Pavin using a combination of Raman microspectroscopy and scanning electron microscopy. Granules in intact Achromatium cells were unequivocally composed of ACC. Moreover, ACC spontaneously transformed into calcite when irradiated at high laser irradiance during Raman analyses. Few ACC granules also transformed spontaneously into calcite in lysed cells upon cell death and/or sample preparation. Overall, the present study supports the original claims that intracellular Ca-carbonates in Achromatium are amorphous and not crystalline. In that sense, Achromatium is similar to a diverse group of Cyanobacteria and a recently discovered magnetotactic alphaproteobacterium, which all form intracellular ACC. The implications for the physiology and ecology of Achromatium are discussed. Whether the mechanisms responsible for the preservation of such unstable compounds in these bacteria are similar to those involved in numerous ACC-forming eukaryotes remains to be discovered. Last, we recommend to future studies addressing the crystallinity of CaCO3 granules in Achromatium cells recovered from diverse environments all over the world to take care of the potential pitfalls evidenced by the present study.
Collapse
Affiliation(s)
- Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Romain Bolzoni
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Caroline Monteil
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Olivier Forni
- Institut de Recherche en Astrophysique et Planétologie (CNRS, Univ. Toulouse, CNES), Toulouse, France
| | - Béatrice Alonso
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Maria P Asta
- IFSTTAR, CNRS, University Grenoble Alpes, Grenoble, France
| | - Christopher Lefevre
- CEA Cadarache, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA, CNRS, Aix-Marseille University, Saint-Paul-lez-Durance, France
| |
Collapse
|
13
|
López H, González L, Monroy-Barreto M, Perez G, Olvera L. Bioavailability of four calcium sources in the second-cycle egg-producing hens. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Affiliation(s)
- Chun‐Yu Chang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Sheng‐Yu Yang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Jerry C. C. Chan
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
15
|
Purgstaller B, Mavromatis V, Goetschl KE, Steindl FR, Dietzel M. Effect of temperature on the transformation of amorphous calcium magnesium carbonate with near-dolomite stoichiometry into high Mg-calcite. CrystEngComm 2021. [DOI: 10.1039/d0ce01679a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amorphous calcium magnesium carbonate (ACMC) transformation into high Mg-calcite (HMC) proceeds via dissolution and re-precipitation at the ACMC-solution interface.
Collapse
Affiliation(s)
- Bettina Purgstaller
- Institute of Applied Geosciences
- Graz University of Technology
- 8010 Graz
- Austria
| | - Vasileios Mavromatis
- Geosciences Environment Toulouse (GET)
- Observatoire Midi-Pyrénées
- Université de Toulouse
- CNRS
- IRD
| | - Katja E. Goetschl
- Institute of Applied Geosciences
- Graz University of Technology
- 8010 Graz
- Austria
| | - Florian R. Steindl
- Institute of Applied Geosciences
- Graz University of Technology
- 8010 Graz
- Austria
| | - Martin Dietzel
- Institute of Applied Geosciences
- Graz University of Technology
- 8010 Graz
- Austria
| |
Collapse
|
16
|
Mergelsberg ST, Kerisit SN, Ilton ES, Qafoku O, Thompson CJ, Loring JS. Low temperature and limited water activity reveal a pathway to magnesite via amorphous magnesium carbonate. Chem Commun (Camb) 2020; 56:12154-12157. [PMID: 32909561 DOI: 10.1039/d0cc04907g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Forsterite carbonated in thin H2O films to magnesite via amorphous magnesium carbonate during reaction with H2O-bearing liquid CO2 at 25 °C. This novel reaction pathway contrasts with previous studies that were carried out at higher H2O activity and temperature, where more highly hydrated nesquehonite was the metastable intermediate.
Collapse
Affiliation(s)
- Sebastian T Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Eugene S Ilton
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Odeta Qafoku
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Christopher J Thompson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - John S Loring
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
17
|
Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME JOURNAL 2020; 15:1-18. [PMID: 32839547 DOI: 10.1038/s41396-020-00747-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022]
Abstract
Bacteria synthesize a wide range of intracellular submicrometer-sized inorganic precipitates of diverse chemical compositions and structures, called biominerals. Their occurrences, functions and ultrastructures are not yet fully described despite great advances in our knowledge of microbial diversity. Here, we report bacteria inhabiting the sediments and water column of the permanently stratified ferruginous Lake Pavin, that have the peculiarity to biomineralize both intracellular magnetic particles and calcium carbonate granules. Based on an ultrastructural characterization using transmission electron microscopy (TEM) and synchrotron-based scanning transmission X-ray microscopy (STXM), we showed that the calcium carbonate granules are amorphous and contained within membrane-delimited vesicles. Single-cell sorting, correlative fluorescent in situ hybridization (FISH), scanning electron microscopy (SEM) and molecular typing of populations inhabiting sediments affiliated these bacteria to a new genus of the Alphaproteobacteria. The partially assembled genome sequence of a representative isolate revealed an atypical structure of the magnetosome gene cluster while geochemical analyses indicate that calcium carbonate production is an active process that costs energy to the cell to maintain an environment suitable for their formation. This discovery further expands the diversity of organisms capable of intracellular Ca-carbonate biomineralization. If the role of such biomineralization is still unclear, cell behaviour suggests that it may participate to cell motility in aquatic habitats as magnetite biomineralization does.
Collapse
|
18
|
Bulus I, Hussin R, Ghoshal S, Tamuri AR, Danmallam IM, Yamusa YA. Europium-doped boro-telluro-dolomite glasses for red laser applications: Basic insight into spectroscopic traits. JOURNAL OF NON-CRYSTALLINE SOLIDS 2020; 534:119949. [DOI: 10.1016/j.jnoncrysol.2020.119949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Hu Y, Jiang C, Li B, Zhou L, Xu R, Guo Y, Cao Y, Cao G, Lu S. A novel lurasidone hydrochloride–shikimic acid co-amorphous system formed by hydrogen-bonding interaction with the retained pH-dependent solubility behavior. CrystEngComm 2020. [DOI: 10.1039/d0ce00952k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current study was aimed at investigating the lurasidone hydrochloride–shikimic acid co-amorphous system using a new type of organic acid.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou 510515
- PR China
| | - Bin Li
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Lijing Zhou
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Renjie Xu
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yujie Guo
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yan Cao
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Guosheng Cao
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Shan Lu
- School of Pharmacy
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| |
Collapse
|