1
|
Penna BR, Gomes-Neto F, Anobom CD, Valente AP. Structural and dynamics characterization of the Zika virus NS2B using nuclear magnetic resonance and RosettaMP: A challenge for transmembrane protein studies. Int J Biol Macromol 2024; 280:136074. [PMID: 39341314 DOI: 10.1016/j.ijbiomac.2024.136074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Zika virus (ZIKV) is an emergent flavivirus that represents a global public health concern due to its association with severe neurological disorders. NS2B is a multifunctional viral membrane protein primarily used to regulate viral protease activity and is crucial for virus replication, making it an appealing target for antiviral drugs. This study presents the structural elucidation of full-length ZIKV NS2B in sodium dodecyl sulfate (SDS) micelles using solution nuclear magnetic resonance experimental data and RosettaMP. The protein structure has four transmembrane α-helices, two amphipathic α-helices, and a β-hairpin in the hydrophilic region. NS2B presented secondary and tertiary stability in different concentrations of SDS. Furthermore, we studied the dynamics of NS2B in SDS micelles through relaxation parameters and paramagnetic relaxation enhancement experiments. The findings were consistent with the structural calculations. Our work will be essential in understanding the role of NS2B in viral replication and screening for inhibitors against ZIKV.
Collapse
Affiliation(s)
- Beatriz R Penna
- Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cristiane D Anobom
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Nuclear Magnetic Resonance (CNRMN), Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
3
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Ossadnik D, Kuzin S, Qi M, Yulikov M, Godt A. A Gd III-Based Spin Label at the Limits for Linewidth Reduction through Zero-Field Splitting Optimization. Inorg Chem 2023; 62:408-432. [PMID: 36525400 DOI: 10.1021/acs.inorgchem.2c03531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The remarkably narrow central line in the electron paramagnetic resonance spectrum and the very weak zero-field splitting (ZFS) make [GdIII(NO3Pic)] ([GdIII(TPATCN)]) an attractive starting point for the development of spin labels. For retaining the narrow line of this parent complex when modifying it with a substituent enabling bioconjugation, alkyl with a somehow remote functional group as a substituent at the picolinate moiety was found to be highly suitable because ZFS stayed weak, even if the threefold axial symmetry was broken. The ZFS is so weak that hyperfine coupling and/or g-value variations noticeably determine the linewidth in Q band and higher fields when the biomolecule is protonated, which is the standard situation, and in W band and higher fields for the protonated complex in a fully deuterated surrounding. Clearly, [NDSE-{GdIII(NO3Pic)}], a spin label targeting the cysteines in a peptide, is at a limit of linewidth narrowing through ZFS minimization. The labeling reaction is highly chemoselective and, applied to a polyproline with two cysteine units, it took no more than a minute at 7 °C and pH 7.8. Subsequent disulfide scrambling is very slow and can therefore be prevented. Double electron-electron resonance and relaxation-induced dipolar modulation enhancement applied to the spin-labeled polyproline proved the spin label useful for distance determination in peptides.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Sergei Kuzin
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| |
Collapse
|
5
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Welegedara AP, Maleckis A, Bandara R, Mahawaththa MC, Dilhani Herath I, Jiun Tan Y, Giannoulis A, Goldfarb D, Otting G, Huber T. Cell-Free Synthesis of Selenoproteins in High Yield and Purity for Selective Protein Tagging. Chembiochem 2021; 22:1480-1486. [PMID: 33319405 DOI: 10.1002/cbic.202000785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Indexed: 01/10/2023]
Abstract
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII -GdIII distances measured by double electron-electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII -GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.
Collapse
Affiliation(s)
- Adarshi P Welegedara
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.,Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, 1006, Riga, Latvia
| | - Ruchira Bandara
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Mithun C Mahawaththa
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Iresha Dilhani Herath
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Angeliki Giannoulis
- Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Collauto A, Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Sören Bülow
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Dnyaneshwar B. Gophane
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Subham Saha
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics Max Planck Institute of Biophysics Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute for Biophysics Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Snorri T. Sigurdsson
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance Goethe University Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
8
|
Collauto A, von Bülow S, Gophane DB, Saha S, Stelzl LS, Hummer G, Sigurdsson ST, Prisner TF. Compaction of RNA Duplexes in the Cell*. Angew Chem Int Ed Engl 2020; 59:23025-23029. [PMID: 32804430 PMCID: PMC7756485 DOI: 10.1002/anie.202009800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/15/2022]
Abstract
The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.
Collapse
Affiliation(s)
- Alberto Collauto
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| | - Sören von Bülow
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Dnyaneshwar B. Gophane
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Subham Saha
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Lukas S. Stelzl
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
| | - Gerhard Hummer
- Department of Theoretical BiophysicsMax Planck Institute of BiophysicsMax-von-Laue-Str. 360438Frankfurt am MainGermany
- Institute for BiophysicsGoethe University FrankfurtMax-von-Laue-Str. 960438Frankfurt am MainGermany
| | - Snorri T. Sigurdsson
- Department of ChemistryScience InstituteUniversity of IcelandDunhagi 3107ReykjavíkIceland
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtMax-von-Laue-Str. 760438Frankfurt am MainGermany
| |
Collapse
|
9
|
Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, Goldfarb D, Otting G, Jackson CJ. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. Nat Commun 2020; 11:5945. [PMID: 33230119 PMCID: PMC7683729 DOI: 10.1038/s41467-020-19695-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function. Non-productive conformational states, including a wide-open state, are frozen out of the conformational landscape via remote mutations, eventually leading to extant CDT that exclusively samples catalytically relevant compact states. These results show that remote mutations can reshape the global conformational landscape of an enzyme as a mechanism for increasing catalytic activity.
Collapse
Affiliation(s)
- Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mithun C Mahawaththa
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ben E Clifton
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.,Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Gottfried Otting
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia. .,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| |
Collapse
|
10
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
11
|
Scherer A, Tischlik S, Weickert S, Wittmann V, Drescher M. Optimising broadband pulses for DEER depends on concentration and distance range of interest. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:59-74. [PMID: 37904889 PMCID: PMC10500711 DOI: 10.5194/mr-1-59-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/26/2020] [Indexed: 11/01/2023]
Abstract
EPR distance determination in the nanometre region has become an important tool for studying the structure and interaction of macromolecules. Arbitrary waveform generators (AWGs), which have recently become commercially available for EPR spectrometers, have the potential to increase the sensitivity of the most common technique, double electron-electron resonance (DEER, also called PELDOR), as they allow the generation of broadband pulses. There are several families of broadband pulses, which are different in general pulse shape and the parameters that define them. Here, we compare the most common broadband pulses. When broadband pulses lead to a larger modulation depth, they also increase the background decay of the DEER trace. Depending on the dipolar evolution time, this can significantly increase the noise level towards the end of the form factor and limit the potential increase in the modulation-to-noise ratio (MNR). We found asymmetric hyperbolic secant (HS{ 1 , 6 } ) pulses to perform best for short DEER traces, leading to a MNR improvement of up to 86 % compared to rectangular pulses. For longer traces we found symmetric hyperbolic secant (HS{ 1 , 1 } ) pulses to perform best; however, the increase compared to rectangular pulses goes down to 43 %.
Collapse
Affiliation(s)
- Andreas Scherer
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Sonja Tischlik
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Sabrina Weickert
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Yardeni EH, Bahrenberg T, Stein RA, Mishra S, Zomot E, Graham B, Tuck KL, Huber T, Bibi E, Mchaourab HS, Goldfarb D. Probing the solution structure of the E. coli multidrug transporter MdfA using DEER distance measurements with nitroxide and Gd(III) spin labels. Sci Rep 2019; 9:12528. [PMID: 31467343 PMCID: PMC6715713 DOI: 10.1038/s41598-019-48694-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Methodological and technological advances in EPR spectroscopy have enabled novel insight into the structural and dynamic aspects of integral membrane proteins. In addition to an extensive toolkit of EPR methods, multiple spin labels have been developed and utilized, among them Gd(III)-chelates which offer high sensitivity at high magnetic fields. Here, we applied a dual labeling approach, employing nitroxide and Gd(III) spin labels, in conjunction with Q-band and W-band double electron-electron resonance (DEER) measurements to characterize the solution structure of the detergent-solubilized multidrug transporter MdfA from E. coli. Our results identify highly flexible regions of MdfA, which may play an important role in its functional dynamics. Comparison of distance distribution of spin label pairs on the periplasm with those calculated using inward- and outward-facing crystal structures of MdfA, show that in detergent micelles, the protein adopts a predominantly outward-facing conformation, although more closed than the crystal structure. The cytoplasmic pairs suggest a small preference to the outward-facing crystal structure, with a somewhat more open conformation than the crystal structure. Parallel DEER measurements with the two types of labels led to similar distance distributions, demonstrating the feasibility of using W-band spectroscopy with a Gd(III) label for investigation of the structural dynamics of membrane proteins.
Collapse
Affiliation(s)
- Eliane H Yardeni
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elia Zomot
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Thomas Huber
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Eitan Bibi
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel.
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
13
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub-Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu II -labelling of Double-Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019; 58:11681-11685. [PMID: 31218813 PMCID: PMC6771633 DOI: 10.1002/anie.201904848] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double-histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol-specific labelling. However, the non-covalent CuII coordination approach is vulnerable to low binding-affinity. Herein, dissociation constants (KD ) are investigated directly from the modulation depths of relaxation-induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low- to sub-μm CuII KD s under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double-histidine motif for EPR applications even at sub-μm protein concentrations in orthogonally labelled CuII -nitroxide systems using a commercial Q-band EPR instrument.
Collapse
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Angeliki Giannoulis
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alan J. Stewart
- School of MedicineBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9TFUK
| | - David G. Norman
- School of Life SciencesUniversity of Dundee, Medical Sciences InstituteDundeeDD1 5EHUK
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex, and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
14
|
Wort JL, Ackermann K, Giannoulis A, Stewart AJ, Norman DG, Bode BE. Sub‐Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu
II
‐labelling of Double‐Histidine Motifs with Lower Temperature. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joshua L. Wort
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Angeliki Giannoulis
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| | - Alan J. Stewart
- School of Medicine Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9TF UK
| | - David G. Norman
- School of Life Sciences University of Dundee, Medical Sciences Institute Dundee DD1 5EH UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry Biomedical Sciences Research Complex, and Centre of Magnetic Resonance University of St Andrews North Haugh St Andrews KY16 9ST UK
| |
Collapse
|
15
|
Azarkh M, Bieber A, Qi M, Fischer JW, Yulikov M, Godt A, Drescher M. Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination. J Phys Chem Lett 2019; 10:1477-1481. [PMID: 30864799 PMCID: PMC6625747 DOI: 10.1021/acs.jpclett.9b00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/13/2019] [Indexed: 05/26/2023]
Abstract
In-cell distance determination by electron paramagnetic resonance (EPR) spectroscopy reveals essential structural information about biomacromolecules under native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) can be utilized for such distance determination. The performance of in-cell RIDME has been assessed at Q-band using stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis oocytes. The overtone coefficients are determined to be the same for protonated aqueous solutions and inside cells. As compared to in-cell DEER (double electron-electron resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times larger modulation depth and does not show artificial broadening in the distance distributions due to the effect of pseudosecular terms.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anna Bieber
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jörg W.
A. Fischer
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Maxim Yulikov
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Abstract
The DEER (double electron-electron resonance, also called PELDOR) experiment, which probes the dipolar interaction between two spins and thus reveals distance information, is an important tool for structural studies. In recent years, shaped pump pulses have become a valuable addition to the DEER experiment. Shaped pulses offer an increased excitation bandwidth and the possibility to precisely adjust pulse parameters, which is beneficial especially for demanding biological samples. We have noticed that on our home built W-band spectrometer, the dead-time free 4-pulse DEER sequence with chirped pump pulses suffers from distortions at the end of the DEER trace. Although minor, these are crucial for Gd(III)-Gd(III) DEER where the modulation depth is on the order of a few percent. Here we present a modified DEER sequence—referred to as reversed DEER (rDEER)—that circumvents the coherence pathway which gives rise to the distortion. We compare the rDEER (with two chirped pump pulses) performance values to regular 4-pulse DEER with one monochromatic as well as two chirped pulses and investigate the source of the distortion. We demonstrate the applicability and effectivity of rDEER on three systems, ubiquitin labeled with Gd(III)-DOTA-maleimide (DOTA, 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid) or with Gd(III)-DO3A (DO3A, 1,4,7,10-Tetraazacyclododecane-1,4,7-triyl) triacetic acid) and the multidrug transporter MdfA, labeled with a Gd(III)-C2 tag, and report an increase in the signal-to-noise ratio in the range of 3 to 7 when comparing the rDEER with two chirped pump pulses to standard 4-pulse DEER.
Collapse
|
17
|
Nitsche C. Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019; 11:157-165. [PMID: 30806881 DOI: 10.1007/s12551-019-00508-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Proteases from flaviviruses have gained substantial interest as potential drug targets to combat infectious diseases caused by dengue, West Nile, Zika and related viruses. Despite nearly two decades of drug discovery campaigns, promising lead compounds for clinical trials have not yet been identified. The main challenges for successful lead compound development are associated with limited drug-likeness of inhibitors and structural ambiguity of the protease target. This brief review focuses on the available information on the structure of flavivirus proteases and their interactions with inhibitors and attempts to point the way forward for successful identification of future lead compounds.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
18
|
Yang Y, Yang F, Gong YJ, Bahrenberg T, Feintuch A, Su XC, Goldfarb D. High Sensitivity In-Cell EPR Distance Measurements on Proteins using an Optimized Gd(III) Spin Label. J Phys Chem Lett 2018; 9:6119-6123. [PMID: 30277780 DOI: 10.1021/acs.jpclett.8b02663] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Distance measurements by electron-electron double resonance (DEER) carried out on spin-labeled proteins delivered into cells provide new insights into the conformational states of proteins in their native environment. Such measurements depend on spin labels that exhibit high redox stability and high DEER sensitivity. Here we present a new Gd(III)-based spin label, BrPSPy-DO3A-Gd(III), which was derived from an earlier label, BrPSPy-DO3MA-Gd(III), by removing the methyl group from the methyl acetate pending arms. The small chemical modification led to a reduction in the zero-field splitting and to a significant increase in the phase memory time, which together culminated in a remarkable improvement of in-cell DEER sensitivity, while maintaining the high distance resolution. The excellent performance of BrPSPy-DO3A-Gd(III) in in-cell DEER measurements was demonstrated on doubly labeled ubiquitin and GB1 delivered into HeLa cells by electroporation.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|