1
|
Liu K, Mou X, Li S. Stretching and twisting of double-stranded RNA under forces: Unwinding mechanism and base-pair dependent elasticity. J Chem Phys 2025; 162:125101. [PMID: 40130799 DOI: 10.1063/5.0245191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
We used all-atom molecular dynamics simulations to investigate the mechanical response of double-stranded RNA (dsRNA) by applying various forces. We used the helical rise and helical twist, as well as a newly defined helical diameter, to characterize the stretching and twisting of dsRNA. The results indicate that dsRNA unwinds when stretched, accompanied by a linear increase in helical rise and helical diameter. Then, we utilized the normal modes, which are linear combinations of helical modes, to elucidate the underlying mechanism of dsRNA unwinding from an energetic perspective. On the other hand, we employed a stiffness matrix based on a rigid base pair model to examine the base-pair dependence of twist elasticity for dsRNA, as well as stretch elasticities with respect to the helical rise and helical diameter. The results show that the force induces variations in the local elasticities and their couplings of dsRNA, which are closely related to the distributions of base pairs. The mean stretch and twist elasticities can be considered as constants within the measurement uncertainties; however, their couplings demonstrate a slight linear dependency on applied force.
Collapse
Affiliation(s)
- Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
2
|
Mou X, Liu K, He L, Li S. Mechanical response of double-stranded DNA: Bend, twist, and overwind. J Chem Phys 2024; 161:085102. [PMID: 39177087 DOI: 10.1063/5.0216585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
We employed all-atom molecular dynamics simulations to explore the mechanical response of bending, twisting, and overwinding for double-stranded DNA (dsDNA). We analyzed the bending and twisting deformations, as well as their stiffnesses, using the tilt, roll, and twist modes under stretching force. Findings indicate that the roll and twist angles vary linearly with the stretching force but show opposite trends. The tilt, roll, and twist elastic moduli are considered constants, while the coupling between roll and twist modes slightly decreases under stretching force. The effect of the stretching force on the roll and twist modes, including both their deformations and elasticities, exhibits sequence-dependence, with symmetry around the base pair step. Furthermore, we examined the overwinding path and mechanism of dsDNA from the perspective of the stiffness matrix, based on the tilt, roll, and twist modes. The correlations among tilt, roll, and twist angles imply an alternative overwinding pathway via twist-roll coupling when dsDNA is stretched, wherein entropic contribution prevails.
Collapse
Affiliation(s)
- Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
3
|
Mandal S, Ganesh KN, Maiti PK. Dynamics of terminal fraying-peeling and hydrogen bonds dictates the sequential vs. cooperative melting pathways of nanoscale DNA and PNA triplexes. NANOSCALE 2024; 16:13029-13040. [PMID: 38904319 DOI: 10.1039/d4nr01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Peptide nucleic acids (PNAs) are charge-neutral synthetic DNA/RNA analogues. In many aspects of biology and biotechnology, the details of DNA and PNA melting reaction coordinates are crucial, and their associative/dissociative details remain inadequately understood. In the current study, we have attempted to gain insights into comparative melting pathways and binding affinity of iso-sequences of an 18-mer PNA-DNA-PNA triplex and the analogous DNA-DNA-DNA triplex, and DNA-DNA and PNA-DNA duplexes. It is intriguing that while the DNA-DNA-DNA triplex melts in two sequential steps, the PNA-DNA-PNA triplex melts in a single step and the mechanistic aspects for this difference are still not clear. We report an all-atom molecular dynamics simulation of both complexes in the temperature range of 300 to 500 K with 20 K intervals. Based on the trajectory analysis, we provide evidence that the association and dissociation are dictated by the differences in fraying-peeling effects from either terminus to the center in a zipper pattern among the PNA-DNA-PNA triplex and DNA-DNA-DNA triplexes. These are shown to be governed by the different characteristics of H-bonding, RMSD, and Free Energy Landscape (FEL) as analyzed by PCA, leading to the DNA-DNA-DNA triplex exhibiting sequential melting, while the PNA-DNA-PNA triplex shows cooperative melting of the whole fragment in a single-step. The PNA-DNA-PNA triplex base pairs are thermodynamically more stable than the DNA-DNA-DNA triplex, with the binding affinity of PNA-TFO to the PNA : DNA duplex being higher than that of DNA-TFO to the DNA : DNA duplex. The investigation of the association/dissociation of PNA-TFO to the PNA-DNA duplex has relevance and importance in the emerging effective applications of oligonucleotide therapy.
Collapse
Affiliation(s)
- Sandip Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Krishna N Ganesh
- Jawaharlal Nehru Center for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, India.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Aggarwal A, Naskar S, Maiti PK. Molecular Rectifiers with a Very High Rectification Ratio Enabled by Oxidative Damage in Double-Stranded DNA. J Phys Chem B 2022; 126:4636-4646. [PMID: 35729785 DOI: 10.1021/acs.jpcb.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we report a novel strategy to construct highly efficient molecular diodes using oxidatively damaged DNA molecules. Being exposed to several endogenous and exogenous events, DNA suffers from constant oxidative damage, leading to the oxidation of guanine to 8-oxoguanine (8oxoG). Here, we study the charge migration properties of native and oxidatively damaged DNA using a multiscale multiconfigurational methodology comprising molecular dynamics, density functional theory, and kinetic Monte Carlo simulations. We perform a comprehensive study to understand the effect of different concentrations and locations of 8oxoG in a dsDNA sequence on its charge-transport properties and find tunable rectifier properties having potential applications in molecular electronics such as molecular switches and molecular rectifiers. We also discover the negative differential resistance properties of the fully oxidized Drew-Dickerson sequence. The presence of 8oxoG guanine leads to the trapping of charge, thus operating as a charge sink, which reveals how oxidized guanine saves the rest of the genome from further oxidative damage.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Walking around Ribosomal Small Subunit: A Possible "Tourist Map" for Electron Holes. Molecules 2021; 26:molecules26185479. [PMID: 34576950 PMCID: PMC8467113 DOI: 10.3390/molecules26185479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Despite several decades of research, the physics underlying translation-protein synthesis at the ribosome-remains poorly studied. For instance, the mechanism coordinating various events occurring in distant parts of the ribosome is unknown. Very recently, we suggested that this allosteric mechanism could be based on the transport of electric charges (electron holes) along RNA molecules and localization of these charges in the functionally important areas; this assumption was justified using tRNA as an example. In this study, we turn to the ribosome and show computationally that holes can also efficiently migrate within the whole ribosomal small subunit (SSU). The potential sites of charge localization in SSU are revealed, and it is shown that most of them are located in the functionally important areas of the ribosome-intersubunit bridges, Fe4S4 cluster, and the pivot linking the SSU head to its body. As a result, we suppose that hole localization within the SSU can affect intersubunit rotation (ratcheting) and SSU head swiveling, in agreement with the scenario of electronic coordination of ribosome operation. We anticipate that our findings will improve the understanding of the translation process and advance molecular biology and medicine.
Collapse
|
6
|
Aggarwal A, Sahoo AK, Bag S, Kaliginedi V, Jain M, Maiti PK. Fine-tuning the DNA conductance by intercalation of drug molecules. Phys Rev E 2021; 103:032411. [PMID: 33862831 DOI: 10.1103/physreve.103.032411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
In this work we study the structure-transport property relationships of small ligand intercalated DNA molecules using a multiscale modeling approach where extensive ab initio calculations are performed on numerous MD-simulated configurations of dsDNA and dsDNA intercalated with two different intercalators, ethidium and daunomycin. DNA conductance is found to increase by one order of magnitude upon drug intercalation due to the local unwinding of the DNA base pairs adjacent to the intercalated sites, which leads to modifications of the density of states in the near-Fermi-energy region of the ligand-DNA complex. Our study suggests that the intercalators can be used to enhance or tune the DNA conductance, which opens new possibilities for their potential applications in nanoelectronics.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Saientan Bag
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manish Jain
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Sosorev A, Kharlanov O. Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Phys Chem Chem Phys 2021; 23:7037-7047. [PMID: 33448272 DOI: 10.1039/d0cp04970k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translation - protein synthesis at the ribonucleic acid (RNA) based molecular machine, the ribosome, - proceeds in a similar manner in all life forms. However, despite several decades of research, the physics underlying this process remains enigmatic. Specifically, during translation, a ribosome undergoes large-scale conformational changes of its distant parts, and these motions are coordinated by an unknown mechanism. In this study, we suggest that such a mechanism could be related to charge (electron hole) transport along and between the RNA molecules, localization of these charges at certain sites and successive relaxation of the molecular geometry. Thus, we suppose that RNA-based molecular machines, e.g., the ribosome, could be electronically controlled, having "wires", "actuators", "a battery", and other "circuitry". Taking transfer RNA as an example, we justify the reasonability of our suggestion using ab initio and atomistic simulations. Specifically, very large hole transfer integrals between the nucleotides (up to above 100 meV) are observed so that the hole can migrate over nearly the whole tRNA molecule. Hole localization at several guanines located at functionally important sites (G27, G10, G34 and G63) is predicted, which is shown to induce geometry changes in these sites, their neighborhoods and even rather distant moieties. If our hypothesis is right, we anticipate that our findings will qualitatively advance the understanding of the key biological processes and could inspire novel approaches in medicine.
Collapse
Affiliation(s)
- Andrey Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, GSP-7, 117997, Russia.
| | | |
Collapse
|
8
|
Aggarwal A, Vinayak V, Bag S, Bhattacharyya C, Waghmare UV, Maiti PK. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model. J Chem Inf Model 2020; 61:106-114. [PMID: 33320660 DOI: 10.1021/acs.jcim.0c01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Double-stranded DNA (dsDNA) has been established as an efficient medium for charge migration, bringing it to the forefront of the field of molecular electronics and biological research. The charge migration rate is controlled by the electronic couplings between the two nucleobases of DNA/RNA. These electronic couplings strongly depend on the intermolecular geometry and orientation. Estimating these electronic couplings for all the possible relative geometries of molecules using the computationally demanding first-principles calculations requires a lot of time and computational resources. In this article, we present a machine learning (ML)-based model to calculate the electronic coupling between any two bases of dsDNA/dsRNA and bypass the computationally expensive first-principles calculations. Using the Coulomb matrix representation which encodes the atomic identities and coordinates of the DNA base pairs to prepare the input dataset, we train a feedforward neural network model. Our neural network (NN) model can predict the electronic couplings between dsDNA base pairs with any structural orientation with a mean absolute error (MAE) of less than 0.014 eV. We further use the NN-predicted electronic coupling values to compute the dsDNA/dsRNA conductance.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Vinayak Vinayak
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Saientan Bag
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chiranjib Bhattacharyya
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
What do we know about DNA mechanics so far? Curr Opin Struct Biol 2020; 64:42-50. [DOI: 10.1016/j.sbi.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022]
|
10
|
Aggarwal A, Bag S, Venkatramani R, Jain M, Maiti PK. Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism. NANOSCALE 2020; 12:18750-18760. [PMID: 32970051 DOI: 10.1039/d0nr02382e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we compare the charge transport properties of multiple double-stranded (ds)RNA sequences with corresponding dsDNA sequences. Recent studies have presented a contradictory picture of relative charge transport efficiencies in A-form DNA : RNA hybrids and dsDNA. Using a multiscale modelling framework, we compute conductance of dsDNA and dsRNA using Landauer formalism in the coherent limit and Marcus-Hush theory in the incoherent limit. We find that dsDNA conducts better than dsRNA in both the charge transport regimes. Our analysis shows that the structural differences in the twist angle and slide of dsDNA and dsRNA are the main reasons behind the higher conductance of dsDNA in the incoherent hopping regime. In the coherent limit however, for the same base pair length, the conductance of dsRNA is higher than that of dsDNA for the morphologies where dsRNA has a smaller end-to-end length relative to that of dsDNA.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
11
|
Bag S, Aggarwal A, Maiti PK. Machine Learning Prediction of Electronic Coupling between the Guanine Bases of DNA. J Phys Chem A 2020; 124:7658-7664. [DOI: 10.1021/acs.jpca.0c04368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Saientan Bag
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Naskar S, Saurabh S, Jang YH, Lansac Y, Maiti PK. Liquid crystal ordering of nucleic acids. SOFT MATTER 2020; 16:634-641. [PMID: 31840704 DOI: 10.1039/c9sm01816f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several analytical calculations and computer simulations propose that cylindrical monodispersive rods having an aspect ratio (ratio of length to diameter) greater than 4 can exhibit liquid crystal (LC) ordering. But, recent experiments demonstrated the signature of LC ordering in systems of 4- to 20-base pair (bp) long nucleic acids (NAs) that do not satisfy the shape anisotropy criterion. Mechanisms of end-to-end adhesion and stacking have been proposed to explain this phenomenon. In this study, using all-atom molecular dynamics (MD) simulation, we explicitly verify the end-to-end stacking of double-stranded RNA (dsRNA) and demonstrate the LC ordering at the microscopic level. Using umbrella sampling (US) calculation, we quantify the potential of mean force (PMF) between two dsRNAs for various reaction coordinates (RCs) and compare our results with previously reported PMFs for double-stranded DNA (dsDNA). The PMF profiles demonstrate the anisotropic nature of inter-NA interaction. We find that, like dsDNA, dsRNA also prefers to stack on top of each other while repelling sideways, leading to the formation of supra-molecular-columns that undergo LC ordering at high NA volume fraction (φ). We also demonstrate and quantify the nematic ordering of the RNAs using several hundred nanosecond-long MD simulations that remain almost invariant for different initial configurations and under different external physiological conditions.
Collapse
Affiliation(s)
- Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
13
|
Liu Y, Ren X, He L. A DFT study of energetic and structural properties of a full turn of A-form DNA under relaxed and stretching conditions. J Chem Phys 2019; 151:215102. [DOI: 10.1063/1.5129716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yue Liu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xinguo Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lixin He
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
14
|
Sahoo AK, Bagchi B, Maiti PK. Understanding enhanced mechanical stability of DNA in the presence of intercalated anticancer drug: Implications for DNA associated processes. J Chem Phys 2019; 151:164902. [PMID: 31675856 DOI: 10.1063/1.5117163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Most of the anticancer drugs bind to double-stranded DNA (dsDNA) by intercalative-binding mode. Although experimental studies have become available recently, a molecular-level understanding of the interactions between the drug and dsDNA that lead to the stability of the intercalated drug is lacking. Of particular interest are the modifications of the mechanical properties of dsDNA observed in experiments. The latter could affect many biological functions, such as DNA transcription and replication. Here, we probe, via all-atom molecular dynamics (MD) simulations, the change in the mechanical properties of intercalated drug-DNA complexes for two intercalators, daunomycin and ethidium. We find that, upon drug intercalation, the stretch modulus of DNA increases significantly, whereas its persistence length and bending modulus decrease. Steered MD simulations reveal that it requires higher forces to stretch the intercalated dsDNA complexes than the normal dsDNA. Adopting various pulling protocols to study force-induced DNA melting, we find that the dissociation of dsDNA becomes difficult in the presence of intercalators. The results obtained here provide a plausible mechanism of function of the anticancer drugs, i.e., via altering the mechanical properties of DNA. We also discuss long-time consequences of using these drugs, which require further in vivo investigations.
Collapse
Affiliation(s)
- Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Bag S, Maiti PK. Tuning molecular fluctuation to boost the conductance in DNA based molecular wires. Phys Chem Chem Phys 2019; 21:23514-23520. [PMID: 31617554 DOI: 10.1039/c9cp03589c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inherent molecular fluctuations are known to have a significant influence on the charge transport properties of biomolecules like DNA, PNA and proteins. In this work, we show ways to control these fluctuations and further demonstrate their use to enhance the conductance of two widely studied molecular wires, namely dsDNA (DNA) and G4 Quadruplex (G4-Quad). We quantify the molecular fluctuation in terms of the root mean square deviation (RMSD) of the molecule. In the case of DNA, we use temperature to control the fluctuations, while in the case of G4-Quad the fluctuations are tuned by the ions inside the pore. The electronic coupling between the bases of dsDNA and G4-Quad, which measures the conductance of these molecular wires, shows a non-monotonic behaviour with the increase in fluctuation. We find values of fluctuation which give rise to maximum electronic coupling and hence high conductivity for both the cases. In the case of DNA, these optimal fluctuations (∼2.5 Å) are achieved at a temperature of 210 K, which gives rise to an electronic coupling of 0.135 eV between the DNA bases. The optimal fluctuations in G4-Quad are achieved (∼7 Å) in a 4 base pair long system with 2 Na+ ions inside the pore, giving rise to an electronic coupling of 0.09 eV.
Collapse
Affiliation(s)
- Saientan Bag
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, Karnataka, India.
| | | |
Collapse
|