1
|
Zhao N, Jeon SJ, Yuan Y, Venkateswarlu S, Stella A, Papazotos J, Li Y. Full Conjugation in a Polymer with Non-conjugated Piperazine-2,5-dione Units via Energy-minimized Lactam-to-Lactim Tautomerization Enables Water-gated Transistor Fluoride Sensors. Angew Chem Int Ed Engl 2025; 64:e202419314. [PMID: 39607390 PMCID: PMC11811691 DOI: 10.1002/anie.202419314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Piperazine-2,5-dione (glycine anhydride, GA) has recently emerged as a valuable precursor for high-performance π-conjugated polymer semiconductors in organic electronics. We utilized GA to design a novel bisindolin-dihydropiperazine (IDHP)-based conjugated polymer, PIDHPTT, for aqueous chemical sensing. In the isatin-flanked monomer, GA exists as a non-conjugated lactam (DHP-NH) but converts to a conjugated lactim (DHP-OH) form within the polymer. Density functional theory (DFT) calculations show that this conversion is driven by energy minimization via extended π-conjugation. Neighboring DHP units in the lactim form facilitate this process through π-bridges, demonstrating a vinylogous effect, which has previously only been observed in small molecules. This is the first study to report such a long-range vinylogous effect in a polymer due to the collective synergy of numerous functional groups. The OH groups in the lactim DHP interact more strongly with fluoride ions than other halides. PIDHPTT exhibits significant changes in optical absorption, electrochemical impedance, and charge transport in response to fluoride ions, which differ from responses to other halides. A water-gated organic field-effect transistor based on PIDHPTT shows excellent sensitivity and selectivity for fluoride ions, demonstrating the potential of this polymer design for chemical sensing applications.
Collapse
Affiliation(s)
- Naixin Zhao
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Sung Jae Jeon
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yi Yuan
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Samala Venkateswarlu
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Andrew Stella
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Jimmy Papazotos
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yuning Li
- Department of Chemical EngineeringWaterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
2
|
Taguchi M, Sakuraba S, Chan J, Kono H. Unveiling the Photoactivation Mechanism of BLUF Photoreceptor Protein through Hybrid Quantum Mechanics/Molecular Mechanics Free-Energy Calculation. ACS PHYSICAL CHEMISTRY AU 2024; 4:647-659. [PMID: 39634647 PMCID: PMC11613238 DOI: 10.1021/acsphyschemau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur. However, the quantitative energetics of the photoisomerization reaction and how the BLUF domain's structural change propagates toward the catalytic domain are still unknown. We evaluate the free-energy differences among the dark-state and two different light-state structures by the free-energy perturbation calculations combined with QM/MM free-energy optimizations. Furthermore, we performed long-time MD simulations for the free-energetically optimized dark- and light-state structures to clarify the differences in protein dynamics upon photoisomerization. The free-energy difference between the two optimized light-state structures was estimated at ∼4.7 kcal/mol. The free-energetically optimized light-state structure indicates that the chemically unstable enol tautomer of Gln48 in the light state is stabilized by forming a strong hydrogen bonding network with the chromophore and Tyr6. In addition, the components of free-energy difference between the dark- and light-state structures show that the energy upon photoreception is stored in the environment rather than the internal photoreceived region, suggesting a mechanism to keep the photoactivated signaling state with the chemically unstable enol tautomer of Gln48. In the light state, a fluctuation of Trp90 near the C-terminal helix becomes large, which causes subsequent structural changes in the BLUF core and the C-terminal helix. We also identified residue pairs with significant differences concerning residue-wise contact maps between the dark and light states.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shun Sakuraba
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Graduate
School of Science and Engineering, Chiba
University, Chiba 263-8522, Japan
| | - Justin Chan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hidetoshi Kono
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology, Chiba 263-8555, Japan
- Graduate
School of Science and Engineering, Chiba
University, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Yokoyama T, Takayama Y, Mizuguchi M, Nabeshima Y, Kusaka K. SIRT5 mutants reveal the role of conserved asparagine and glutamine residues in the NAD +-binding pocket. FEBS Lett 2024; 598:2269-2280. [PMID: 39031546 DOI: 10.1002/1873-3468.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024]
Abstract
SIRT5, one of the mammalian sirtuins, specifically recognizes succinyl-lysine residues on proteins and catalyzes the desuccinylation reaction. In this study, we characterized SIRT5 mutants with hydrophobic amino acid substitutions at Q140 and N141, in addition to the catalytic residue H158, known as an active site residue, by the Michaelis-Menten analysis and X-ray crystallography. Kinetic analysis showed that the catalytic efficiency (kcat/Km) of the Q140L and N141V mutants decreased to 0.02 times and 0.0038 times that of the wild-type SIRT5, respectively, with the activity of the N141V mutant becoming comparable to that of the H158M mutant. Our findings indicate that N141 contributes significantly to the desuccinylation reaction.
Collapse
Affiliation(s)
| | - Yuki Takayama
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | | | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Katsuhiro Kusaka
- Comprehensive Research Organization for Science and Society (CROSS), Neutron Industrial Application Promotion Center, Tokai, Japan
| |
Collapse
|
4
|
Baranac-Stojanović M, Aleksić J, Stojanović M. Theoretical investigation of tautomerism of 2- and 4-pyridones: origin, substituent and solvent effects. Org Biomol Chem 2023; 22:144-158. [PMID: 38051113 DOI: 10.1039/d3ob01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Computational investigation at the BHandHLYP/6-311+G(d,p) level of theory of the gas-phase tautomerism of 2- and 4-pyridones confirmed the slight prevalence of lactim in the case of the former, but its dominance in the case of the latter, as shown previously. Examination of aromaticity by using HOMA, EDDB, NBOdel, NICS and AICD led to the conclusion that tautomerization of 4-pyridone results in greater aromaticity gain. It is also driven by the Pauli repulsion relief, which was revealed by the tautomerization energy decomposition analysis. By contrast, in the case of 2-pyridone, lactim is favoured by orbital and electrostatic interactions and disfavoured by the Pauli repulsion. Aromaticity gain in this case is smaller. The position of the tautomeric equilibrium can be modulated by substituent inductive effects (Cl and F), inductive and resonance effects (NH2 and NO2), hydrogen bonding (NO2), and medium polarity, the increase of which increases lactam population.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P. O. Box 158, 11000 Belgrade, Serbia.
| | - Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P. O. Box 473, 11000 Belgrade, Serbia
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P. O. Box 473, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. J Am Chem Soc 2023; 145:20302-20310. [PMID: 37682266 PMCID: PMC10515638 DOI: 10.1021/jacs.3c04330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/09/2023]
Abstract
Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.
Collapse
Affiliation(s)
- Dénes Berta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Kinga Nyíri
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Beáta G. Vértessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| |
Collapse
|
6
|
Design of a novel -NOON- tetradentate Schiff-base scaffold supported by α-tetralone and benzothiazole moieties with its Cu2+, Co2+, and Cd2+ chelates. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Kulakova AM, Khrenova MG, Nemukhin AV. Non-Equivalence of Monomers in the Dimeric Structure of a Bacterial Photoactivated Adenylyl Cyclase. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
8
|
Abstract
Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a β-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.
Collapse
Affiliation(s)
- Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, Szigeti str 12, 7624 Pécs, Hungary
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-3400, United States
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
9
|
Kang X, Chen Z, Zhou Z, Zhou Y, Tang S, Zhang Y, Zhang T, Ding B, Zhong D. Direct Observation of Ultrafast Proton Rocking in the BLUF Domain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiu‐Wen Kang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zijing Chen
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Siwei Tang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Bei Ding
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
- Department of Physics Department of Chemistry and Biochemistry and Programs of Biophysics Chemical Physics, and Biochemistry The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
10
|
Ding B, Kang XW, Chen Z, Zhou Z, Zhou Y, Tang S, Zhang Y, Zhang T, Zhong D. Direct Observation of Ultrafast Proton Rocking in the BLUF Domain. Angew Chem Int Ed Engl 2021; 61:e202114423. [PMID: 34927328 DOI: 10.1002/anie.202114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/10/2022]
Abstract
We present direct observation of ultrafast proton rocking in the central motif of a BLUF domain protein scaffold. The mutant design has taken considerations of modulating the proton-coupled electron transfer (PCET) driving forces by replacing Tyr in the original motif with Trp, as well as of removing the interference of a competing electron transfer pathway. Using femtosecond pump-probe spectroscopy and detailed kinetics analysis, we resolved an electron-transfer-coupled Grotthuss-type forward and reversed proton rocking along the FMN-Gln-Trp proton relay chain. The rates of forward and reversed proton transfer are determined to be very close, namely 51 ps vs 52 ps. The kinetic isotope effect (KIE) constants associated with the forward and reversed proton transfer are 3.9 and 5.3, respectively. The observation of ultrafast proton rocking is not only a crucial step towards revealing the nature of proton relay in BLUF domain, but also provides a new paradigm of proton transfer in proteins for theoretical investigations.
Collapse
Affiliation(s)
- Bei Ding
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA
| | - Xiu-Wen Kang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zijing Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhongneng Zhou
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yalin Zhou
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Siwei Tang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yifei Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Tianyi Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Dongping Zhong
- The Ohio State University, Department of Chemical and Biomolecular Engineering, CHINA
| |
Collapse
|
11
|
Piniello B, Lira-Navarrete E, Takeuchi H, Takeuchi M, Haltiwanger RS, Hurtado-Guerrero R, Rovira C. Asparagine Tautomerization in Glycosyltransferase Catalysis. The Molecular Mechanism of Protein O-Fucosyltransferase 1. ACS Catal 2021; 11:9926-9932. [PMID: 34868727 PMCID: PMC8631701 DOI: 10.1021/acscatal.1c01785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Indexed: 12/12/2022]
Abstract
![]()
O-glycosylation is a post-translational protein
modification essential to life. One of the enzymes involved in this
process is protein O-fucosyltransferase 1 (POFUT1),
which fucosylates threonine or serine residues within a specific sequence
context of epidermal growth factor-like domains (EGF-LD). Unlike most
inverting glycosyltransferases, POFUT1 lacks a basic residue in the
active site that could act as a catalytic base to deprotonate the
Thr/Ser residue of the EGF-LD acceptor during the chemical reaction.
Using quantum mechanics/molecular mechanics (QM/MM) methods on recent
crystal structures, as well as mutagenesis experiments, we uncover
the enzyme catalytic mechanism, revealing that it involves proton
shuttling through an active site asparagine, conserved among species,
which undergoes tautomerization. This mechanism is consistent with
experimental kinetic analysis of Caenorhabditis elegans POFUT1 Asn43 mutants, which ablate enzyme activity even if mutated
to Asp, the canonical catalytic base in inverting glycosyltransferases.
These results will aid inhibitor development for Notch-associated O-glycosylation disorders.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Hideyuki Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Robert S. Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Khrenova MG, Grigorenko BL, Nemukhin AV. Molecular Modeling Reveals the Mechanism of Ran-RanGAP-Catalyzed Guanosine Triphosphate Hydrolysis without an Arginine Finger. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Moscow 119071, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 19334, Russia
| | - Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 19334, Russia
| |
Collapse
|
13
|
Khrenova MG, Bulavko ES, Mulashkin FD, Nemukhin AV. Mechanism of Guanosine Triphosphate Hydrolysis by the Visual Proteins Arl3-RP2: Free Energy Reaction Profiles Computed with Ab Initio Type QM/MM Potentials. Molecules 2021; 26:3998. [PMID: 34208932 PMCID: PMC8271468 DOI: 10.3390/molecules26133998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
We report the results of calculations of the Gibbs energy profiles of the guanosine triphosphate (GTP) hydrolysis by the Arl3-RP2 protein complex using molecular dynamics (MD) simulations with ab initio type QM/MM potentials. The chemical reaction of GTP hydrolysis to guanosine diphosphate (GDP) and inorganic phosphate (Pi) is catalyzed by GTPases, the enzymes, which are responsible for signal transduction in live cells. A small GTPase Arl3, catalyzing the GTP → GDP reaction in complex with the activating protein RP2, constitute an essential part of the human vision cycle. To simulate the reaction mechanism, a model system is constructed by motifs of the crystal structure of the Arl3-RP2 complexed with a substrate analog. After selection of reaction coordinates, energy profiles for elementary steps along the reaction pathway GTP + H2O → GDP + Pi are computed using the umbrella sampling and umbrella integration procedures. QM/MM MD calculations are carried out, interfacing the molecular dynamics program NAMD and the quantum chemistry program TeraChem. Ab initio type QM(DFT)/MM potentials are computed with atom-centered basis sets 6-31G** and two hybrid functionals (PBE0-D3 and ωB97x-D3) of the density functional theory, describing a large QM subsystem. Results of these simulations of the reaction mechanism are compared to those obtained with QM/MM calculations on the potential energy surface using a similar description of the QM part. We find that both approaches, QM/MM and QM/MM MD, support the mechanism of GTP hydrolysis by GTPases, according to which the catalytic glutamine side chain (Gln71, in this system) actively participates in the reaction. Both approaches distinguish two parts of the reaction: the cleavage of the phosphorus-oxygen bond in GTP coupled with the formation of Pi, and the enzyme regeneration. Newly performed QM/MM MD simulations confirmed the profile predicted in the QM/MM minimum energy calculations, called here the pathway-I, and corrected its relief at the first elementary step from the enzyme-substrate complex. The QM/MM MD simulations also revealed another mechanism at the part of enzyme regeneration leading to pathway-II. Pathway-II is more consistent with the experimental kinetic data of the wild-type complex Arl3-RP2, whereas pathway-I explains the role of the mutation Glu138Gly in RP2 slowing down the hydrolysis rate.
Collapse
Affiliation(s)
- Maria G. Khrenova
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Egor S. Bulavko
- Biology Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Fedor D. Mulashkin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
| | - Alexander V. Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (M.G.K.); (F.D.M.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, 119334 Moscow, Russia
| |
Collapse
|
14
|
Huang M, Zhou Q, Liang F, Yu L, Xiao B, Li Y, Zhang M, Chen Y, He J, Xiao S, Chang S. Detecting Individual Bond Switching within Amides in a Tunneling Junction. NANO LETTERS 2021; 21:5409-5414. [PMID: 34124909 DOI: 10.1021/acs.nanolett.1c01882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amides are essential in the chemistry of life. Detecting the chemical bond states within amides could unravel the nature of amide stabilization and planarity, which is critical to the structure and reactivity of such molecules. Yet, so far, no work has been reported to detect or measure the bond changes at the single-molecule level within amides. Here, we show that a transition between single and double bonds between N and C atoms in an amide can be monitored in real time in a nanogap between gold electrodes via the generation of distinctive conductance features. Density functional theory simulations show that the switching between amide isomers proceeds via a proton transfer process facilitated by a water molecule bridge, and the resulting molecular junctions display bimodal conductance states with a difference as much as nine times.
Collapse
Affiliation(s)
- Mingzhu Huang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
- Department of Physics, Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Qinghai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Lei Yu
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Bohuai Xiao
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Mingyang Zhang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yan Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jin He
- Department of Physics, Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
15
|
Azadmanesh J, Lutz WE, Coates L, Weiss KL, Borgstahl GEO. Direct detection of coupled proton and electron transfers in human manganese superoxide dismutase. Nat Commun 2021; 12:2079. [PMID: 33824320 PMCID: PMC8024262 DOI: 10.1038/s41467-021-22290-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Human manganese superoxide dismutase is a critical oxidoreductase found in the mitochondrial matrix. Concerted proton and electron transfers are used by the enzyme to rid the mitochondria of O2•-. The mechanisms of concerted transfer enzymes are typically unknown due to the difficulties in detecting the protonation states of specific residues and solvent molecules at particular redox states. Here, neutron diffraction of two redox-controlled manganese superoxide dismutase crystals reveal the all-atom structures of Mn3+ and Mn2+ enzyme forms. The structures deliver direct data on protonation changes between oxidation states of the metal. Observations include glutamine deprotonation, the involvement of tyrosine and histidine with altered pKas, and four unusual strong-short hydrogen bonds, including a low barrier hydrogen bond. We report a concerted proton and electron transfer mechanism for human manganese superoxide dismutase from the direct visualization of active site protons in Mn3+ and Mn2+ redox states.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - William E Lutz
- Eppley Institute for Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gloria E O Borgstahl
- Department of Biochemistry and Molecular Biology, 985870 Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
16
|
Khrenova MG, Kulakova AM, Nemukhin AV. Light-Induced Change of Arginine Conformation Modulates the Rate of Adenosine Triphosphate to Cyclic Adenosine Monophosphate Conversion in the Optogenetic System Containing Photoactivated Adenylyl Cyclase. J Chem Inf Model 2021; 61:1215-1225. [PMID: 33677973 DOI: 10.1021/acs.jcim.0c01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (blue light sensor using flavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to the reaction products, cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi), catalyzed by ACs initiated by excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes that modulate cellular concentrations of signaling messengers. The photoactivated AC from the soil bacterium Beggiatoa sp. (bPAC) is an important model showing a considerable increase in the ATP to cAMP conversion rate in the catalytic domain after the illumination of the BLUF domain. The 1 μs classical molecular dynamics simulations reveal that the activation of the BLUF domain leading to tautomerization of Gln49 in the chromophore-binding pocket results in switching of the position of the side chain of Arg278 in the active site of AC. Allosteric signal transmission pathways between Gln49 from BLUF and Arg278 from AC were revealed by the dynamical network analysis. The Gibbs energy profiles of the ATP → cAMP + PPi reaction computed using QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM) molecular dynamics simulations for both Arg278 conformations in AC clarify the reaction mechanism. In the light-activated system, the corresponding arginine conformation stabilizes the pentacoordinated phosphorus of the α-phosphate group in the transition state, thus lowering the activation energy. Simulations of the bPAC system with the Tyr7Phe replacement in the BLUF demonstrate occurrence of both arginine conformations in an equal ratio, explaining the experimentally observed intermediate catalytic activity of the bPAC-Y7F variant as compared with the dark and light states of the wild-type bPAC.
Collapse
Affiliation(s)
- Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071 Russian Federation
| | - Anna M Kulakova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
17
|
Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc Natl Acad Sci U S A 2020; 117:26626-26632. [PMID: 33037153 DOI: 10.1073/pnas.2016719117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Blue light using flavin (BLUF) photoreceptor proteins are critical for many light-activated biological processes and are promising candidates for optogenetics because of their modular nature and long-range signaling capabilities. Although the photocycle of the Slr1694 BLUF domain has been characterized experimentally, the identity of the light-adapted state following photoexcitation of the bound flavin remains elusive. Herein hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of this photocycle provide a nonequilibrium dynamical picture of a possible mechanism for the formation of the light-adapted state. Photoexcitation of the flavin induces a forward proton-coupled electron transfer (PCET) process that leads to the formation of an imidic acid tautomer of Gln50. The calculations herein show that the subsequent rotation of Gln50 allows a reverse PCET process that retains this tautomeric form. In the resulting purported light-adapted state, the glutamine tautomer forms a hydrogen bond with the flavin carbonyl group. Additional ensemble-averaged QM/MM calculations of the dark-adapted and purported light-adapted states demonstrate that the light-adapted state with the imidic acid glutamine tautomer reproduces the experimentally observed spectroscopic signatures. Specifically, the calculations reproduce the red shifts in the flavin electronic absorption and carbonyl stretch infrared spectra in the light-adapted state. Further hydrogen-bonding analyses suggest the formation of hydrogen-bonding interactions between the flavin and Arg65 in the light-adapted state, providing a plausible explanation for the experimental observation of faster photoinduced PCET in this state. These characteristics of the light-adapted state may also be essential for the long-range signaling capabilities of this photoreceptor protein.
Collapse
|
18
|
Xu JL, Tian H, Kang JH, Kang WX, Sun W, Sun R, Li YM, Sun M. Ag(I)-Catalyzed Addition of Cyclopropenones and Nitrones to Access Imides. Org Lett 2020; 22:6739-6743. [PMID: 32663031 DOI: 10.1021/acs.orglett.0c02099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An unprecedented Ag-catalyzed addition reaction of cyclopropenones and nitrones to access imides was developed. Sequential C-C bond cleavage, N-O bond cleavage, and Mumm rearrangement were uncovered in this process. This protocol exhibited high efficiency, regioselectivity, good yields, and a broad tolerance of various functional groups.
Collapse
Affiliation(s)
- Jing-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Hu Tian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jia-Hao Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wu-Xiang Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Rui Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming Nanlu, Kunming 650500, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Grigorenko BL, Nemukhin AV. Theoretical Vibrational Spectra of Reaction Intermediates in the Active Site of Guanosine Triphosphate Binding Proteins. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420050088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Viader-Salvadó JM, Aguilar Briseño JA, Gallegos-López JA, Fuentes-Garibay JA, Alvarez-González CA, Guerrero-Olazarán M. Identification and in silico structural and functional analysis of a trypsin-like protease from shrimp Macrobrachium carcinus. PeerJ 2020; 8:e9030. [PMID: 32351789 PMCID: PMC7183752 DOI: 10.7717/peerj.9030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 11/20/2022] Open
Abstract
Macrobrachium carcinus (Linnaeus, 1758) is a species of freshwater shrimp widely distributed from Florida southwards to southern Brazil, including southeast of Mexico. In the present work, we identified a putative trypsin-like protease cDNA fragment of 736 nucleotides from M. carcinus hepatopancreas tissue by the 3'RACE technique and compared the deduced amino acid sequence to other trypsin-related proteases to describe its structure and function relationship. The bioinformatics analyses showed that the deduced amino acid sequence likely corresponds to a trypsin-like protease closely related to brachyurins, which comprise a subset of serine proteases with collagenolytic activity found in crabs and other crustacea. The M. carcinus trypsin-like protease sequence showed a global sequence identity of 94% with an unpublished trypsin from Macrobrachium rosenbergii (GenBank accession no. AMQ98968), and only 57% with Penaeus vannamei trypsin (GenBank accession no. CAA60129). A detailed analysis of the amino acid sequence revealed specific differences with crustacean trypsins, such as the sequence motif at the beginning of the mature protein, activation mechanism of the corresponding zymogen, amino acid residues of the catalytic triad and residues responsible for substrate specificity.
Collapse
Affiliation(s)
- José M. Viader-Salvadó
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Alberto Aguilar Briseño
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Juan A. Gallegos-López
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José A. Fuentes-Garibay
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Martha Guerrero-Olazarán
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
21
|
Berta D, Buigues PJ, Badaoui M, Rosta E. Cations in motion: QM/MM studies of the dynamic and electrostatic roles of H + and Mg 2+ ions in enzyme reactions. Curr Opin Struct Biol 2020; 61:198-206. [PMID: 32065923 DOI: 10.1016/j.sbi.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Here we discuss current trends in the simulations of enzymatic reactions focusing on phosphate catalysis. The mechanistic details of the proton transfers coupled to the phosphate cleavage is one of the key challenges in QM/MM calculations of these and other enzyme catalyzed reactions. The lack of experimental information offers both an opportunity for computations as well as often unresolved controversies. We discuss the example of small GTPases including the important human Ras protein. The high dimensionality and chemical complexity of these reactions demand carefully chosen computational techniques both in terms of the underlying quantum chemical theory and the sampling of the conformational ensemble. We also point out the important role of Mg2+ ions, and recent advances in their transient involvement in the catalytic mechanisms.
Collapse
Affiliation(s)
- Dénes Berta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Pedro J Buigues
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Magd Badaoui
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom.
| |
Collapse
|
22
|
Grigorenko BL, Kots ED, Nemukhin AV. Diversity of mechanisms in Ras-GAP catalysis of guanosine triphosphate hydrolysis revealed by molecular modeling. Org Biomol Chem 2020; 17:4879-4891. [PMID: 31041977 DOI: 10.1039/c9ob00463g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of the deceptively simple reaction of guanosine triphosphate (GTP) hydrolysis catalyzed by the cellular protein Ras in complex with the activating protein GAP is an important issue because of the significance of this reaction in cancer research. We show that molecular modeling of GTP hydrolysis in the Ras-GAP active site reveals a diversity of mechanisms of the intrinsic chemical reaction depending on molecular groups at position 61 in Ras occupied by glutamine in the wild-type enzyme. First, a comparison of reaction energy profiles computed at the quantum mechanics/molecular mechanics (QM/MM) level shows that an assignment of the Gln61 side chain in the wild-type Ras either to QM or to MM parts leads to different scenarios corresponding to the glutamine-assisted or the substrate-assisted mechanisms. Second, replacement of Gln61 by the nitro-analog of glutamine (NGln) or by Glu, applied in experimental studies, results in two more scenarios featuring the so-called two-water and the concerted-type mechanisms. The glutamine-assisted mechanism in the wild-type Ras-GAP, in which the conserved Gln61 plays a decisive role, switching between the amide and imide tautomer forms, is consistent with the known experimental results of structural, kinetic and spectroscopy studies. The results emphasize the role of the Ras residue Gln61 in Ras-GAP catalysis and explain the retained catalytic activity of the Ras-GAP complex towards GTP hydrolysis in the Gln61NGln and Gln61Glu mutants of Ras.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
23
|
Goings JJ, Hammes-Schiffer S. Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. J Am Chem Soc 2019; 141:20470-20479. [DOI: 10.1021/jacs.9b11196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua J. Goings
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019; 123:6133-6149. [DOI: 10.1021/acs.jpcb.9b00591] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russian
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
25
|
Tichauer RH, Favre G, Cabantous S, Brut M. Hybrid QM/MM vs Pure MM Molecular Dynamics for Evaluating Water Distribution within p21 N-ras and the Resulting GTP Electronic Density. J Phys Chem B 2019; 123:3935-3944. [PMID: 30991803 DOI: 10.1021/acs.jpcb.9b02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p21ras protein activity, regulated by GTP hydrolysis, constitutes an active field of research for the development of cancer targeted therapies that would concern ∼30% of human tumors to which specific mutations have been associated. Indeed, the catalyzing mechanisms provided by the protein environment during GTP hydrolysis and how they are impaired by specific mutations remain to be fully elucidated. In this article, we present results from molecular mechanics (MM) molecular dynamics (MD) simulations and density functional theory (DFT) calculations carried out for wild-type p21 N-ras and six Gln 61 mutants. In the first part, we present the water distribution within the active site of the wild-type protein according to MM MD. Significant differences are observed when comparing the results to the previous distribution assessed through quantum mechanics/molecular mechanics (QM/MM) MD. Such method-dependent results highlight the importance of accounting for the electrostatic coupling between the protein complex and the solvent molecules in identifying hydration sites. In the second part, we present the results from DFT calculations performed to determine the electronic distribution of the GTP ligand, considering the wild-type active site arrangement according to both classical and hybrid approaches. Only in the QM/MM-based configuration is the ligand electronic density similar to that of a GDP-like state observed experimentally. For this reason, in the last set of calculations carried out for p21 N-ras Gln 61 mutants, only the active site structural conformations obtained through hybrid MD are considered. Through the analysis of the GTP electronic density, we conclude that the wild-type active site arrangement according to QM/MM MD is closer to a catalytically efficient conformation of the protein than the arrangement according to MM MD. Hence, water distribution according to the hybrid approach must correspond to the optimal placement of solvent in the active site. Within all of the studied Gln 61 substituted proteins, p21ras major catalyzing effect, which consists of stabilizing a more GDP-like state, is lost.
Collapse
Affiliation(s)
- Ruth H Tichauer
- LAAS-CNRS , Université de Toulouse , CNRS, UPS, Toulouse , France
| | - Gilles Favre
- Cancer Research Center of Toulouse , INSERM U1037, Université de Toulouse , 31037 Toulouse , France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse , INSERM U1037, Université de Toulouse , 31037 Toulouse , France
| | - Marie Brut
- LAAS-CNRS , Université de Toulouse , CNRS, UPS, Toulouse , France
| |
Collapse
|
26
|
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of Gold(I) Monocarbene Complexes with Protein Targets: A Theoretical Study. Int J Mol Sci 2019; 20:ijms20040820. [PMID: 30769823 PMCID: PMC6412330 DOI: 10.3390/ijms20040820] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Neutral N–heterocyclic carbene gold(I) compounds such as IMeAuCl are widely used both in homogeneous catalysis and, more recently, in medicinal chemistry as promising antitumor agents. In order to shed light on their reactivity with protein side chains, we have carried out density functional theory (DFT) calculations on the thermodynamics and kinetics of their reactions with water and various nucleophiles as a model of plausible protein binding sites such as arginine, aspartic acid, asparagine, cysteine, glutamic acid, glutamine, histidine, lysine, methionine, selenocysteine, and the N-terminal group. In agreement with recent experimental data, our results suggest that IMeAuCl easily interacts with all considered biological targets before being hydrated—unless sterically prevented—and allows the establishment of an order of thermodynamic stability and of kinetic reactivity for its binding to protein residues.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy.
| |
Collapse
|