1
|
Zhang S, Zhou C, Wang X, Bao K, Zhao X, Zhu J, Tao Q, Ge Y, Yu Z, Zhu P, Zhao W, Cheng J, Ma T, Ma S, Cui T. The Synthesis and Characterisation of the High-Hardness Magnetic Material Mn 2N 0.86. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7780. [PMID: 36363371 PMCID: PMC9654248 DOI: 10.3390/ma15217780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
High-quality P6322 Mn2N0.86 samples were synthesised using a high-pressure metathesis reaction, and the properties of the material were investigated. The measurements revealed that the Vickers hardness was 7.47 GPa, which is less than that predicted by commonly used theoretical models. At low air pressure, Mn2N0.86 and MnO coexist at 500 to 600 °C, and by excluding air, we succeeded in producing Mn4N by heating Mn2N0.86 in nitrogen atmosphere; we carefully studied this process with thermogravimetry and differential scanning calorimetry (TG-DSC). This gives a hint that to control temperature, air pressure and gas concentration might be an effective way to prepare fine Mn-N-O catalysis. Magnetic measurements indicated that ferromagnetism and antiferromagnetism coexist within Mn2N0.86 at room temperature and that these magnetic properties are induced by nitrogen vacancies. Ab intio simulation was used to probe the nature of the magnetism in greater detail. The research contributes to the available data and the understanding of Mn2N0.86 and suggests ways to control the formation of materials based on Mn2N0.86.
Collapse
Affiliation(s)
- Shoufeng Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Chao Zhou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Kuo Bao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xingbin Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jinming Zhu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Qiang Tao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yufei Ge
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Zekun Yu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Pinwen Zhu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Wei Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jia’en Cheng
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Teng Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shuailing Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Shi Y, Xu S, Li F. Electrocatalytic nitrate reduction to ammonia via amorphous cobalt boride. Chem Commun (Camb) 2022; 58:8714-8717. [PMID: 35833645 DOI: 10.1039/d2cc02261c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic nitrate reduction reaction (NitRR) is an energy-saving and environmentally benign approach to synthesizing ammonia under ambient conditions. However, the development of noble metal-free catalysts with high activity and selectivity is still a significant challenge. In this study, uniformly dispersed amorphous CoBx nanoparticles supported on carbon paper were synthesized VIA a simple wet chemical reduction method. As an efficient nitrate reduction electrocatalyst, CoBx exhibited a maximum faradaic efficiency of 94.00 ± 1.67% and a yield rate of up to 0.787 ± 0.028 mmol h-1 cm-2 for ammonia production. The enhanced NitRR performance could be attributed to a partial electron transfer from B to Co, which is necessary for optimizing the adsorption energies of the reaction intermediates and facilitating electron transport. Thus, selective and cost-effective electroreduction of nitrates to ammonia can be achieved using CoBx nanoparticles.
Collapse
Affiliation(s)
- Yongbin Shi
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.
| | - Suxian Xu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
3
|
Zhao S, Zhou W, Xiang X, Cao X, Chen N, Chen W, Yu X, Yan B, Gou H. Structure Determination, Mechanical Properties, Thermal Stability of Co 2MoB 4 and Fe 2MoB 4. MATERIALS 2022; 15:ma15093031. [PMID: 35591366 PMCID: PMC9102238 DOI: 10.3390/ma15093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
The precise determination of atomic position of materials is critical for understanding the relationship between structure and properties, especially for compounds with light elements of boron and single or multiple transition metals. In this work, the single crystal X-ray diffraction is employed to analyze the atomic positions of Co2MoB4 and Fe2MoB4 with a Ta3B4-type structure, and it is found that the lengths of B-B bonds connecting the two zig-zag boron chains are 1.86 Å and 1.87 Å, but previously unreported 1.4 Å. Co and Fe atoms occupy the same crystallographic position in lattice for the doped samples and the valence is close to the metal itself, and Co/Fe K-edge X-ray Absorption Fine Structure(XAFS) spectra of borides with different ratios of Co to Fe are collected to detect the local environment and chemical valence of Co and Fe. Vickers hardness and nano indentation measurements are performed, together with the Density Functional Theory (DFT) calculations. Finally, Co2MoB4 possess better thermal stability than Fe2MoB4 evaluated by Thermogravimetric Differential Thermal Analysis (TG-DTA) results.
Collapse
Affiliation(s)
- Shijing Zhao
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
| | - Wenju Zhou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
| | - Xiaojun Xiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (X.Y.)
| | - Xuyan Cao
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
| | - Ning Chen
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (N.C.); (W.C.)
| | - Weifeng Chen
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (N.C.); (W.C.)
| | - Xiaohui Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (X.Y.)
| | - Bingmin Yan
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
- Correspondence: (B.Y.); (H.G.)
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
- Correspondence: (B.Y.); (H.G.)
| |
Collapse
|
4
|
Pu Z, Liu T, Zhang G, Liu X, Gauthier MA, Chen Z, Sun S. Nanostructured Metal Borides for Energy-Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. SMALL METHODS 2021; 5:e2100699. [PMID: 34927953 DOI: 10.1002/smtd.202100699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/14/2021] [Indexed: 06/14/2023]
Abstract
The discovery of durable, active, and affordable electrocatalysts for energy-related catalytic applications plays a crucial role in the advancement of energy conversion and storage technologies to achieve a sustainable energy future. Transition metal borides (TMBs), with variable compositions and structures, present a number of interesting features including coordinated electronic structures, high conductivity, abundant natural reserves, and configurable physicochemical properties. Therefore, TMBs provide a wide range of opportunities for the development of multifunctional catalysts with high performance and long durability. This review first summarizes the typical structural and electronic features of TMBs. Subsequently, the various synthetic methods used thus far to prepare nanostructured TMBs are listed. Furthermore, advances in emerging TMB-catalyzed reactions (both theoretical and experimental) are highlighted, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the carbon dioxide reduction reaction, the nitrogen reduction reaction, the methanol oxidation reaction, and the formic acid oxidation reaction. Finally, challenges facing the development of TMB electrocatalysts are discussed, with focus on synthesis and energy-related catalytic applications, and some potential strategies/perspectives are suggested as well, which will profit the design of more efficient TMB materials for application in future energy conversion and storage devices.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| |
Collapse
|
5
|
Hardness, magnetic, elastic, and electronic properties of manganese semi-boride synthesized by high pressure and high temperature. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Peng X, Hou J, Mi Y, Sun J, Qi G, Qin Y, Zhang S, Qiu Y, Luo J, Liu X. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. NANOSCALE 2021; 13:4767-4773. [PMID: 33650623 DOI: 10.1039/d0nr09104a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand challenge due to the sluggish kinetics of the oxygen evolution reaction (OER) in electrolyzing water. Herein, we present a single atomic Mn site anchored on a boron nitrogen co-doped carbon nanotube array (Mn-SA/BNC), which is perfectly combined with the hydrazine electrooxidation reaction (HzOR) boosted water electrolysis concept. The obtained catalyst achieves 51 mV overpotential at the current density of -10 mA cm-2 for the cathodic HER and 132 mV versus the reversible hydrogen electrode for HzOR, respectively. Besides, in a two-electrode overall hydrazine splitting (OHzS) system, the Mn-SA/BNC catalyst only needs a cell voltage of only 0.41 V to output 10 mA cm-1, with strong durability and nearly 100% faradaic efficiency for H2 production. This work highlights a low-cost and high-efficiency energy-saving H2 production pathway.
Collapse
Affiliation(s)
- Xianyun Peng
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Junrong Hou
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yuying Mi
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jiaqiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Gaocan Qi
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yongji Qin
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Yuan Qiu
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xijun Liu
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China. and Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
7
|
Sukanya R, Chen SM. Amorphous cobalt boride nanosheets anchored surface-functionalized carbon nanofiber: An bifunctional and efficient catalyst for electrochemical sensing and oxygen evolution reaction. J Colloid Interface Sci 2020; 580:318-331. [PMID: 32688123 DOI: 10.1016/j.jcis.2020.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Development of new metal boride with carbon composite is an emerging class of catalyst and it brings enormous curiosity in the material community because of their potential intriguing properties. Here, we describe a new type of amorphous cobalt boride (A-CoB) nanosheet anchored on the surface of functionalized carbon nanofiber (A-CoB/ƒ-CNF) by a simple method. The emerged A-CoB/ƒ-CNF composite was demonstrated to possess great bifunctional electrocatalytic activity for the electrochemical sensing of antibiotic drug nitrofurantoin (NFT) and oxygen evolution reaction (OER). The prepared A-CoB/ƒ-CNF composite was characterized by various analytical and spectroscopic techniques such as XRD, FE-SEM, HR-TEM, Raman, and XPS analysis. The result from the electrochemical impedance spectroscopy confirms that the A-CoB/ƒ-CNF composite shows high electrical conductivity and the number of electron transferability for the NFT sensor and OER which is due to the presence of abundant active sites/large surface area in A-CoB, and synergistic effect between the A-CoB and ƒ-CNF. As an electrochemical sensor, the A-CoB/ƒ-CNF modified electrode shows substantial sensitivity (3.13 μA μM-1 cm-2), wider linear response range (0.01- 527 μM), and lower detection limit (0.003 μM) as-compared to the previously reported noble and non-noble metal-based electrocatalyst for NFT sensor. As well, the A-CoB/ƒ-CNF composite demonstrates superior OER activity with low overpotential and small Tafel slope value of 0.35 V and 173 mV/dec, respectively, which shows advanced kinetics than noble metal catalysts. Based on the results, we believed that the present work gives clear evidence for the preparation of transition metal boride anchored carbon material with an outstanding catalytic activity, and hence, it can be also extended to further electrochemical applications.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
8
|
Chen H, Zou X. Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00146e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarizes structural features and recent synthesis methods of structurally ordered intermetallic borides, and the theoretical–experimental advances in the emerging boride-catalyzed reactions.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
9
|
Wang X, Liu X. High pressure: a feasible tool for the synthesis of unprecedented inorganic compounds. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00477d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After a simple classification of inorganic materials synthesized at high-temperature and high-pressure, this tutorial reviews the important research results in the field of high-temperature and high-pressure inorganic synthesis in the past 5 years.
Collapse
Affiliation(s)
- Xuerong Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
10
|
Pan Y, Chen S, Jia Y. Enhancing the Vickers hardness, melting point and thermodynamic properties of hafnium dodecaboride. RSC Adv 2019; 9:33625-33632. [PMID: 35528889 PMCID: PMC9073543 DOI: 10.1039/c9ra07702b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Although HfB12 is a promising surperhard material because of the boron cuboctahedron cage, the Vickers hardness of HfB12 remains controversial. We apply first-principles calculations to investigate the influence of a transition metal on the structural stability, Vickers hardness and thermodynamic properties of HfB12. The Vickers hardness of HfB12 is 39.3 GPa. In particular, the Vickers hardness of TM-doped HfB12, which are novel superhard materials, is larger than 40 GPa. The Vickers hardness of Re-doped HfB12 is up to 47.6 GPa. The improvement of Vickers hardness is that the introduction of an alloying element improves the localized hybridization between B and Hf, and then enhances the bond strength of the B–B covalent bond and the Hf–B bond. In addition, these alloying elements enhance the melting-point and Debye temperature of the HfB12. Therefore, we believe that alloying is an effective method to improve the Vickers hardness and thermodynamic properties of HfB12 superhard material. Although HfB12 is a promising surperhard material because of the boron cuboctahedron cage, the Vickers hardness of HfB12 remains controversial.![]()
Collapse
Affiliation(s)
- Yong Pan
- School of Materials Science and Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Shuang Chen
- School of Materials Science and Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Yanlin Jia
- College of Materials Science and Engineering
- Central South University
- Changsha
- China
- College of Materials Science and Engineering
| |
Collapse
|