1
|
Bi J, Zhou Z, Li J, Li B, Sun X, Liu Y, Wang K, Gao G, Du Z, Ai W, Huang W. Enhancing Reversibility and Stability of Mg Metal Anodes: High-Exposure (002) Facets and Nanosheet Arrays for Superior Mg Plating/Stripping. Angew Chem Int Ed Engl 2024; 63:e202407770. [PMID: 38934232 DOI: 10.1002/anie.202407770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Magnesium metal batteries (MMBs), recognized as promising contenders for post-lithium battery technologies, face challenges such as uneven magnesium (Mg) plating and stripping behaviors, leading to uncontrollable dendrite growth and irreversible structural damage. Herein, we have developed a Mg foil featuring prominently exposed (002) facets and an architecture of nanosheet arrays (termed (002)-Mg), created through a one-step acid etching method. Specifically, the prominent exposure of Mg (002) facets, known for their inherently low surface and adsorption energies with Mg atoms, not only facilitates smooth nucleation and dense deposition but also significantly mitigates side reactions on the Mg anode. Moreover, the nanosheet arrays on the surface evenly distribute the electric field and Mg ion flux, enhancing Mg ion transfer kinetics. As a result, the fabricated (002)-Mg electrodes exhibit unprecedented long-cycle performance, lasting over 6000 h (>8 months) at a current density of 3 mA cm-2 for a capacity of 3 mAh cm-2. Furthermore, the corresponding pouch cells equipped with various electrolytes and cathodes demonstrate remarkable capacity and cycling stability, highlighting the superior electrochemical compatibility of the (002)-Mg electrode. This study provides new insights into the advancement of durable MMBs by modifying the crystal structure and morphology of Mg.
Collapse
Affiliation(s)
- Jingxuan Bi
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenkai Zhou
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junhui Li
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Boxin Li
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaojie Sun
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guowei Gao
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhuzhu Du
- School of Materials Science and Engineering & Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
2
|
Ten A, Lomonosov V, Boukouvala C, Ringe E. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. ACS NANO 2024; 18:18785-18799. [PMID: 38963330 PMCID: PMC11256891 DOI: 10.1021/acsnano.4c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼102 at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 103 along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Andrey Ten
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Vladimir Lomonosov
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Christina Boukouvala
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
3
|
Boukouvala C, West CA, Ten A, Hopper E, Ramasse QM, Biggins JS, Ringe E. Far-field, near-field and photothermal response of plasmonic twinned magnesium nanostructures. NANOSCALE 2024; 16:7480-7492. [PMID: 38344779 PMCID: PMC11025716 DOI: 10.1039/d3nr05848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Magnesium nanoparticles offer an alternative plasmonic platform capable of resonances across the ultraviolet, visible and near-infrared. Crystalline magnesium nanoparticles display twinning on the (101̄1), (101̄2), (101̄3), and (112̄1) planes leading to concave folded shapes named tents, chairs, tacos, and kites, respectively. We use the Wulff-based Crystal Creator tool to expand the range of Mg crystal shapes with twinning over the known Mg twin planes, i.e., (101̄x), x = 1, 2, 3 and (112̄y), y = 1, 2, 3, 4, and study the effects of relative facet expression on the resulting shapes. These shapes include both concave and convex structures, some of which have been experimentally observed. The resonant modes, far-field, and near-field optical responses of these unusual plasmonic shapes as well as their photothermal behaviour are reported, revealing the effects of folding angle and in-filling of the concave region. Significant differences exist between shapes, in particular regarding the maximum and average electric field enhancement. A maximum field enhancement (|E|/|E0|) of 184, comparable to that calculated for Au and Ag nanoparticles, was found at the tips of the (112̄4) kite. The presence of a 5 nm MgO shell is found to decrease the near-field enhancement by 67% to 90% depending on the shape, while it can increase the plasmon-induced temperature rise by up to 42%. Tip rounding on the otherwise sharp nanoparticle corners also significantly affects the maximum field enhancement. These results provide guidance for the design of enhancing and photothermal substrates for a variety of plasmonic applications across a wide spectral range.
Collapse
Affiliation(s)
- Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Claire A West
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Andrey Ten
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Elizabeth Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Quentin M Ramasse
- School of Chemical and Process Engineering, University of Leeds, 211 Clarendon Road, Leeds, LS2 9JT, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse, Leeds, LS2 9JS, UK
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Warrington, WA4 4AD, UK
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
4
|
Fiesinger F, Gaissmaier D, van den Borg M, Jacob T. First-Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesium-Ion Batteries. CHEMSUSCHEM 2022; 15:e202200414. [PMID: 35353957 PMCID: PMC9401065 DOI: 10.1002/cssc.202200414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Indexed: 06/02/2023]
Abstract
Rechargeable magnesium-ion batteries (MIBs) are a promising alternative to commercial lithium-ion batteries (LIBs). They are safer to handle, environmentally more friendly, and provide a five-time higher volumetric capacity (3832 mAh cm-3 ) than commercialized LIBs. However, the formation of a passivation layer on metallic Mg electrodes is still a major challenge towards their commercialization. Using density functional theory (DFT), the atomistic properties of metallic magnesium, mainly well-selected self-diffusion processes on perfect and imperfect Mg surfaces were investigated to better understand the initial surface growth phenomena. Subsequently, rate constants and activation temperatures of crucial diffusion processes on Mg(0001) and Mg(10 1 ‾ 1) were determined, providing preliminary insights into the surface kinetics of metallic Mg electrodes. The obtained DFT results provide a data set for parametrizing a force field for metallic Mg or performing kinetic Monte-Carlo simulations.
Collapse
Affiliation(s)
- Florian Fiesinger
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Daniel Gaissmaier
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | | | - Timo Jacob
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| |
Collapse
|
5
|
Boukouvala C, Daniel J, Ringe E. Approaches to modelling the shape of nanocrystals. NANO CONVERGENCE 2021; 8:26. [PMID: 34499259 PMCID: PMC8429535 DOI: 10.1186/s40580-021-00275-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/05/2021] [Indexed: 05/26/2023]
Abstract
Unlike in the bulk, at the nanoscale shape dictates properties. The imperative to understand and predict nanocrystal shape led to the development, over several decades, of a large number of mathematical models and, later, their software implementations. In this review, the various mathematical approaches used to model crystal shapes are first overviewed, from the century-old Wulff construction to the year-old (2020) approach to describe supported twinned nanocrystals, together with a discussion and disambiguation of the terminology. Then, the multitude of published software implementations of these Wulff-based shape models are described in detail, describing their technical aspects, advantages and limitations. Finally, a discussion of the scientific applications of shape models to either predict shape or use shape to deduce thermodynamic and/or kinetic parameters is offered, followed by a conclusion. This review provides a guide for scientists looking to model crystal shape in a field where ever-increasingly complex crystal shapes and compositions are required to fulfil the exciting promises of nanotechnology.
Collapse
Affiliation(s)
- Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Joshua Daniel
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK.
| |
Collapse
|
6
|
Morphology evolution and dendrite growth in Li- and Mg-metal batteries: A potential dependent thermodynamic and kinetic multiscale ab initio study. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Asselin J, Boukouvala C, Hopper ER, Ramasse QM, Biggins JS, Ringe E. Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles. ACS NANO 2020; 14:5968-5980. [PMID: 32286792 PMCID: PMC7254836 DOI: 10.1021/acsnano.0c01427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Nanostructures of some metals can sustain light-driven electron oscillations called localized surface plasmon resonances, or LSPRs, that give rise to absorption, scattering, and local electric field enhancement. Their resonant frequency is dictated by the nanoparticle (NP) shape and size, fueling much research geared toward discovery and control of new structures. LSPR properties also depend on composition; traditional, rare, and expensive noble metals (Ag, Au) are increasingly eclipsed by earth-abundant alternatives, with Mg being an exciting candidate capable of sustaining resonances across the ultraviolet, visible, and near-infrared spectral ranges. Here, we report numerical predictions and experimental verifications of a set of shapes based on Mg NPs displaying various twinning patterns including (101̅1), (101̅2), (101̅3), and (112̅1), that create tent-, chair-, taco-, and kite-shaped NPs, respectively. These are strikingly different from what is obtained for typical plasmonic metals because Mg crystallizes in a hexagonal close packed structure, as opposed to the cubic Al, Cu, Ag, and Au. A numerical survey of the optical response of the various structures, as well as the effect of size and aspect ratio, reveals their rich array of resonances, which are supported by single-particle optical scattering experiments. Further, corresponding numerical and experimental studies of the near-field plasmon distribution via scanning transmission electron microscopy electron-energy loss spectroscopy unravels a mode nature and distribution that are unlike those of either hexagonal plates or cylindrical rods. These NPs, made from earth-abundant Mg, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges.
Collapse
Affiliation(s)
- Jérémie Asselin
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, United Kingdom, CB3 0FS
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom, CB2 3EQ
| | - Christina Boukouvala
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, United Kingdom, CB3 0FS
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom, CB2 3EQ
| | - Elizabeth R. Hopper
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, United Kingdom, CB3 0FS
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom, CB2 3EQ
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, United Kingdom, CB3 0AS
| | - Quentin M. Ramasse
- School
of Chemical and Process Engineering, University
of Leeds, 211 Clarendon
Road, Leeds, United Kingdom, LS2 9JT
- School
of Physics and Astronomy, University of
Leeds, Woodhouse, Leeds, United Kingdom, LS2 9JS
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Warrington, United Kingdom, WA4 4AD
| | - John S. Biggins
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom, CB2 1PZ
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, United Kingdom, CB3 0FS
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom, CB2 3EQ
| |
Collapse
|
8
|
Kopač Lautar A, Bitenc J, Rejec T, Dominko R, Filhol JS, Doublet ML. Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent DFT Study. J Am Chem Soc 2020; 142:5146-5153. [DOI: 10.1021/jacs.9b12474] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anja Kopač Lautar
- Department of Materials Chemistry, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jan Bitenc
- Department of Materials Chemistry, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Tomaž Rejec
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Robert Dominko
- Department of Materials Chemistry, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- ALISTORE-ERI, FR3104, 80039 Amiens Cedex, France
| | - Jean-Sébastien Filhol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- RS2E French network on Electrochemical Energy Storage, FR5439, 80039 Amiens Cedex, France
| | - Marie-Liesse Doublet
- ICGM, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- RS2E French network on Electrochemical Energy Storage, FR5439, 80039 Amiens Cedex, France
| |
Collapse
|
9
|
Merrill LC, Schaefer JL. The Influence of Interfacial Chemistry on Magnesium Electrodeposition in Non-nucleophilic Electrolytes Using Sulfone-Ether Mixtures. Front Chem 2019; 7:194. [PMID: 31001520 PMCID: PMC6456701 DOI: 10.3389/fchem.2019.00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
One of the limiting factors in the development of magnesium batteries is the reversibility of magnesium electrodeposition and dissolution at the anode. Often irreversibility is related to impurities and decomposition. Herein we report on the cycling behavior of magnesium metal anodes in different electrolytes, Mg(HMDS)2 - 4 MgCl2 in tetrahydrofuran (THF) and a butyl sulfone/THF mixture. The deposition morphology and anode-electrolyte interface is studied and related to Mg/Mg cell cycling performance. It is found that adding the sulfone caused the formation of a boundary layer at the electrode-electrolyte interface, which, in turn, resulted in a particle-like deposition morphology. This type of deposition has a high surface area, which alters the effective local current density and results in electronically isolated deposits. Extended cycling resulted in magnesium growth through a separator. Electrolyte decomposition is observed with and without the addition of the sulfone, however the addition of the sulfone increased the degree of decomposition.
Collapse
Affiliation(s)
- Laura C Merrill
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|