1
|
Sharifian Gh M, Norouzi F, Sorci M, Zaidi TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Lacritin cleavage-potentiated targeting of iron - respiratory reciprocity promotes bacterial death. J Biol Chem 2025; 301:108455. [PMID: 40154612 DOI: 10.1016/j.jbc.2025.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. With current antibiotic classes targeting cell wall synthesis, depolarizing the inner membrane, altering the bacterial metabolome or inhibiting replication or transcription pathways, manipulation of transporters to limit bacterial respiration and thereby pathogenesis has been a decades-long quest. Here we report an inhibitor of multiple bacterial transporters. The inhibitor is the bactericidal N-104 endogenous cleavage fragment of the prosecretory mitogen lacritin. Lacritin is now known to be widely distributed in plasma, cerebral spinal fluid, tears, and saliva. With the bactericidal mechanism determined to be nonlytic by surface plasmon resonance as confirmed by lack of SYTOX Orange entry, we performed an unbiased resistance screen of 3884 Escherichia coli gene knockout strains revealing a complex N-104 polypharmacology. Validation in the virulent Pseudomonas aeruginosa strain PA14-one of three WHO Priority 1: Critical list species-focused on an approach that sequentially couples three transporters and downstream transcription to lethally suppress respiration. By targeting the outer membrane YaiW, cationic N-104 translocates into the periplasm where it ligates inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. With FeoB favoring an anaerobic environment, N-104 promotes the expression of genes regulating anaerobic respiration while largely suppressing those involved in aerobic respiration-a strategy counterproductive under aerobic conditions. This mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with tear thrombin fragment GKY20 as tested on antibiotic-resistant clinical isolates.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tanweer S Zaidi
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald B Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - George M Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Binyong Liang
- Department of Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
2
|
Odunitan TT, Apanisile BT, Afolabi JA, Adeniwura PO, Akinboade MW, Ibrahim NO, Alare KP, Saibu OA, Adeosun OA, Opeyemi HS, Ayiti KS. Beyond Conventional Drug Design: Exploring the Broad-Spectrum Efficacy of Antimicrobial Peptides. Chem Biodivers 2025; 22:e202401349. [PMID: 39480053 DOI: 10.1002/cbdv.202401349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
In the fight against pathogenic infections, antimicrobial peptides (AMPs) constitute a novel and promising class of compounds that defies accepted drug development conventions like Lipinski's rule. AMPs are remarkably effective against a variety of pathogens, including viruses, bacteria, parasites, and fungi. Their effectiveness, despite differing from traditional drug-like properties defies accepted standards. This review investigates the complex world of AMPs with an emphasis on their structural and physicochemical properties, which include size, sequence, structure, charge, and half-life. These distinguishing characteristics set AMPs apart from conventional therapeutics that adhere to Lipinski's rules and greatly contribute to their selective targeting, reduction of resistance, multifunctionality, and broad-spectrum efficacy. In contrast to traditional drugs that follow Lipinski's guidelines, AMPs have special qualities that play a big role in their ability to target specific targets, lower resistance, and work across a wide range of conditions. Our work is unique because of this nuanced investigation, which offers a new viewpoint on the potential of AMPs in tackling the worldwide problem of antibiotic resistance. In the face of the escalating global challenge of antibiotic resistance, antimicrobial peptides (AMPs) are innovative antimicrobial agents with unique mechanisms of action that challenge traditional Lipinski's Rule. They can withstand various microbial threats through membrane disruption, intracellular targeting, and immunomodulation. AMP versatility sets them apart from other antibiotics and their potential to address microbial infections and antibiotic resistance is growing. To fully unlock their potential, traditional drug development approaches need to be reconsidered. AMPs have revolutionary potential, paving the way for innovative solutions to health issues and transforming the antimicrobial therapy landscape.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Justinah A Afolabi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Praise O Adeniwura
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Modinat W Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Najahtulahi O Ibrahim
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kehinde P Alare
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, USA, Ibadan
| | - Oyindamola A Adeosun
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Hammed S Opeyemi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kolawole S Ayiti
- Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
3
|
Lei Y, Lyu A, Pan M, Shi Q, Xu H, Li D, Deng M. Control of Postharvest Green Mold in Citrus by the Antimicrobial Peptide BP15 and Its Lipopeptides. J Fungi (Basel) 2024; 10:837. [PMID: 39728333 DOI: 10.3390/jof10120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against Penicillium digitatum, the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of P. digitatum, with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15. The peptides induced morphological alterations in hyphae and elevated intracellular Sytox Green (SG) fluorescence signals, which is indicative of increased cell membrane permeability and disruption. This membrane damage was further supported by the heightened extracellular conductivity and the release of intracellular nucleic acid and protein. A gel retardation assay demonstrated that the peptides showed significant DNA binding and retardation effects. Furthermore, the peptides exhibited significantly lower hemolytic activity (p < 0.05) compared to commercial prochloraz in normal mammalian erythrocytes (sheep erythrocytes) at the tested concentrations. Therefore, BP15 and its lipopeptides, HBP15 and LBP15, show potential as effective agents for preventing green mold in citrus fruits.
Collapse
Affiliation(s)
- Yu Lei
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Aiyuan Lyu
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Mengjuan Pan
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Qingxia Shi
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Haowan Xu
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Dong Li
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Mengsheng Deng
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
4
|
Wang K, Mwangi J, Cao K, Wang Y, Gao J, Yang M, Michira BB, Lu Q, Li J. Peptide Toxin Diversity and a Novel Antimicrobial Peptide from the Spider Oxyopes forcipiformis. Toxins (Basel) 2024; 16:466. [PMID: 39591221 PMCID: PMC11597926 DOI: 10.3390/toxins16110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Spider venoms are emerging as a rich source of bioactive peptide toxins with therapeutic potential. Lynx spiders of the genus Oxyopes are small, cursorial hunters that employ complex venom to subdue arthropod prey. However, extracting crude venom from these diminutive arachnids poses significant challenges. This study presents a transcriptome analysis of venom glands from an undescribed Oxyopes forcipiformis species, revealing 339 putative protein and peptide toxin sequences categorized into seven functional groups. The venom composition was dominated by membrane-active peptides (40.71%), venom auxiliary proteins (22.71%), neurotoxins (15.63%), channel active peptides (7.08%) and uncharacterized components (13.87%). Additionally, phylogenetic analysis of 65 disulfide-bond-rich peptides yielded six distinct families based on sequence homology and cysteine framework. Finally, a novel antimicrobial peptide, GK37, was identified using in silico and homology analyses. Our data suggested that GK37 presented significant antibacterial activity against Gram-positive bacteria Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 1.552 µM by disrupting bacterial membranes. At 4× MICs, GK37 almost showed no hemolytic activity on blood cells or toxicity against Hek293T cells. Our findings provided a basis for targeted studies of the diversity and pharmacological effects of lynx spider peptide. We elucidated a valuable high-throughput approach for obtaining proteins and peptides from small-group spiders.
Collapse
Affiliation(s)
- Kexin Wang
- Medical College of Tianjin University, Tianjin University, Tianjin 300072, China;
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Kaixun Cao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Jinai Gao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Min Yang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Brenda B. Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Juan Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
| |
Collapse
|
5
|
Pitocchi R, Pennacchio A, Zuber F, Ren Q, Notomista E, Campioni S, Nyström G, Giardina P, Piscitelli A. Antimicrobial Functionalization of Surfaces by a Chimeric Adhesive Protein. ACS APPLIED BIO MATERIALS 2024; 7:6594-6602. [PMID: 39284578 PMCID: PMC11498137 DOI: 10.1021/acsabm.4c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024]
Abstract
The main aim of this work is to account for the prevention and control of microbial growth on surfaces of interest in medical technology. Surface modification is often achieved by physiotherapy or chemical treatments that can involve time-consuming steps, hazardous reagents, and harsh conditions. One of the ways to overcome these drawbacks is the use of surface-active proteins such as hydrophobins. They can form stable protein layers on different surfaces, serving as anchoring points for other molecules of interest. The fungal hydrophobin Vmh2, already exploited for its adhesive ability, has been fused with the antimicrobial peptide GKY20, forming the chimeric protein used herein for functionalizing polystyrene (PS) and bacterial cellulose (BC). As a natural biomass, BC has multiple advantages, including biodegradability, low cost, renewability, high purity, and excellent mechanical properties. The chimeric protein has been proven to successfully adhere to both surfaces. A strong decrease in biofilm formation on PS and a good bactericidal effect of BC have been demonstrated. These findings provide evidence of an alternative strategy to obtain functional composites using a green, easy process.
Collapse
Affiliation(s)
- Rossana Pitocchi
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| | - Anna Pennacchio
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| | - Flavia Zuber
- Laboratories
of Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratories
of Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Eugenio Notomista
- Department
of Biology, University of Naples Federico
II, 80126 Napoli, Italy
| | - Silvia Campioni
- Laboratory
for Cellulose and Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory
for Cellulose and Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Paola Giardina
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| | - Alessandra Piscitelli
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| |
Collapse
|
6
|
Volovik MV, Batishchev OV. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms. Biomolecules 2024; 14:1118. [PMID: 39334885 PMCID: PMC11430820 DOI: 10.3390/biom14091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity. To overcome these challenges, a well-established structure-function relationship for AMPs is critical. In the present study, we focused on the well-known examples of melittin and magainin to investigate in detail the initial stages of AMP interaction with lipid membranes at low peptide-to-lipid ratio. By combining the patch-clamp technique with the bioelectrochemical method of intramembrane field compensation, we showed that these peptides interact with the membrane in different ways: melittin inserts deeper into the lipid bilayer than magainin. This difference led to diversity in pore formation. While magainin, after a threshold concentration, formed the well-known toroidal pores, allowing the translocation of the peptide through the membrane, melittin probably induced predominantly pure lipidic pores with a very low rate of peptide translocation. Thus, our results shed light on the early stages of peptide-membrane interactions and suggest new insights into the structure-function relationship of AMPs based on the depth of their membrane insertion.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
7
|
Campanile M, Kurtul ED, Dec R, Möbitz S, Del Vecchio P, Petraccone L, Tatzelt J, Oliva R, Winter R. Morphological Transformations of SARS-CoV-2 Nucleocapsid Protein Biocondensates Mediated by Antimicrobial Peptides. Chemistry 2024; 30:e202400048. [PMID: 38483823 DOI: 10.1002/chem.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 04/12/2024]
Abstract
Recently, the discovery of antimicrobial peptides (AMPs) as excellent candidates for overcoming antibiotic resistance has attracted significant attention. AMPs are short peptides active against bacteria, cancer cells, and viruses. It has been shown that the SARS-CoV-2 nucleocapsid protein (N-P) undergoes liquid-liquid phase separation in the presence of RNA, resulting in biocondensate formation. These biocondensates are crucial for viral replication as they concentrate the viral RNA with the host cell's protein machinery required for viral protein expression. Thus, N-P biocondensates are promising targets to block or slow down viral RNA transcription and consequently virion assembly. We investigated the ability of three AMPs to interfere with N-P/RNA condensates. Using microscopy techniques, supported by biophysical characterization, we found that the AMP LL-III partitions into the condensate, leading to clustering. Instead, the AMP CrACP1 partitions into the droplets without affecting their morphology but reducing their dynamics. Conversely, GKY20 leads to the formation of fibrillar structures after partitioning. It can be expected that such morphological transformation severely impairs the normal functionality of the N-P droplets and thus virion assembly. These results could pave the way for the development of a new class of AMP-based antiviral agents targeting biocondensates.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Emine Dila Kurtul
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Robert Dec
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
8
|
Mulukutla A, Shreshtha R, Kumar Deb V, Chatterjee P, Jain U, Chauhan N. Recent advances in antimicrobial peptide-based therapy. Bioorg Chem 2024; 145:107151. [PMID: 38359706 DOI: 10.1016/j.bioorg.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMPs) are a group of polypeptide chains that have the property to target and kill a myriad of microbial organisms including viruses, bacteria, protists, etc. The first discovered AMP was named gramicidin, an extract of aerobic soil bacteria. Further studies discovered that these peptides are present not only in prokaryotes but in eukaryotes as well. They play a vital role in human innate immunity and wound repair. Consequently, they have maintained a high level of intrigue among scientists in the field of immunology, especially so with the rise of antibiotic-resistant pathogens decreasing the reliability of antibiotics in healthcare. While AMPs have promising potential to substitute for common antibiotics, their use as effective replacements is barred by certain limitations. First, they have the potential to be cytotoxic to human cells. Second, they are unstable in the blood due to action by various proteolytic agents and ions that cause their degradation. This review provides an overview of the mechanism of AMPs, their limitations, and developments in recent years that provide techniques to overcome those limitations. We also discuss the advantages and drawbacks of AMPs as a replacement for antibiotics as compared to other alternatives such as synthetically modified bacteriophages, traditional medicine, and probiotics.
Collapse
Affiliation(s)
- Aditya Mulukutla
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Romi Shreshtha
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Vishal Kumar Deb
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Pallabi Chatterjee
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
9
|
Sharifian Gh. M, Norouzi F, Sorci M, Zaid TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Targeting Iron - Respiratory Reciprocity Promotes Bacterial Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582947. [PMID: 38464199 PMCID: PMC10925246 DOI: 10.1101/2024.03.01.582947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. Here, through an unbiased resistance screen of 3,884 gene knockout strains, we uncovered a previously unknown non-lytic bactericidal mechanism that sequentially couples three transporters and downstream transcription to lethally suppress respiration of the highly virulent P. aeruginosa strain PA14 - one of three species on the WHO's 'Priority 1: Critical' list. By targeting outer membrane YaiW, cationic lacritin peptide 'N-104' translocates into the periplasm where it ligates outer loops 4 and 2 of the inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. This broadly shuts down transcription of many biofilm-associated genes, including ferrous iron-dependent TauD and ExbB1. The mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with thrombin peptide GKY20. This is the first example of an inhibitor of multiple bacterial transporters.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Tanweer S Zaid
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Gerald B. Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Gordon W. Laurie
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
- Contact author: Gordon Laurie
| |
Collapse
|
10
|
Dong Z, Zhang X, Zhang Q, Tangthianchaichana J, Guo M, Du S, Lu Y. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Int J Nanomedicine 2024; 19:1017-1039. [PMID: 38317847 PMCID: PMC10840538 DOI: 10.2147/ijn.s445333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Traditional chemotherapy is one of the main methods of cancer treatment, which is largely limited by severe side effects and frequent development of multi-drug resistance by cancer cells. Antimicrobial peptides (AMPs) with high efficiency and low toxicity, as one of the most promising new drugs to replace chemoradiotherapy, have become a current research hotspot, attracting the attention of worldwide researchers. AMPs are natural-source small peptides from the innate immune system, and certain AMPs can selectively kill a broad spectrum of cancer cells while exhibiting less damage to normal cells. Although it involves intracellular mechanisms, AMPs exert their anti-cancer effects mainly through membrane destruction effect; thus, AMPs also hold unique advantages in fighting drug-resistant cancer cells. However, the poor stability and hemolytic toxicity of peptides limit their clinical application. Fortunately, functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which provides a huge prospect for better application of AMPs. In this paper, we briefly introduce the characteristics and different sources of AMPs, review and summarize the mechanisms of action and the research status of AMPs used as an anticancer therapy, and finally focus on the further use of AMPs nano agents in the anti-cancer direction.
Collapse
Affiliation(s)
- Ziyi Dong
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Research and Development Centre in Beijing, CSPC Pharmaceutical Group Limited, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jakkree Tangthianchaichana
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Mingxue Guo
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shouying Du
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Lu
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
11
|
The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III. Sci Rep 2023; 13:3733. [PMID: 36878924 PMCID: PMC9988962 DOI: 10.1038/s41598-023-29984-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The misuse of antibiotics has led to the emergence of drug-resistant pathogens. Antimicrobial peptides (AMPs) may represent valuable alternative to antibiotics; nevertheless, the easy degradation due to environmental stress and proteolytic enzyme action, limits their use. So far, different strategies have been developed to overcome this drawback. Among them, glycosylation of AMPs represents a promising approach. In this work, we synthesized and characterized the N-glycosilated form of the antimicrobial peptide LL-III (g-LL-III). The N-acetylglucosamine (NAG) was covalently linked to the Asn residue and the interaction of g-LL-III with bacterial model membranes, together with its resistance to proteases, were investigated. Glycosylation did not affect the peptide mechanism of action and its biological activity against both bacteria and eukaryotic cells. Interestingly, a higher resistance to the activity of proteolytic enzymes was achieved. The reported results pave the way for the successful application of AMPs in medicine and biotechnological fields.
Collapse
|
12
|
Hassan M, Flanagan TW, Kharouf N, Bertsch C, Mancino D, Haikel Y. Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential. Pharmaceutics 2022; 15:pharmaceutics15010072. [PMID: 36678702 PMCID: PMC9864823 DOI: 10.3390/pharmaceutics15010072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Second- and third-line treatments of patients with antibiotic-resistant infections can have serious side effects, such as organ failure with prolonged care and recovery. As clinical practices such as cancer therapies, chronic disease treatment, and organ transplantation rely on the ability of available antibiotics to fight infection, the increased resistance of microbial pathogens presents a multifaceted, serious public health concern worldwide. The pipeline of traditional antibiotics is exhausted and unable to overcome the continuously developing multi-drug resistance. To that end, the widely observed limitation of clinically utilized antibiotics has prompted researchers to find a clinically relevant alternate antimicrobial strategy. In recent decades, the discovery of antimicrobial peptides (AMPs) as an excellent candidate to overcome antibiotic resistance has received further attention, particularly from scientists, health professionals, and the pharmaceutical industry. Effective AMPs are characterized by a broad spectrum of antimicrobial activities, high pathogen specificity, and low toxicity. In addition to their antimicrobial activity, AMPs have been found to be involved in a variety of biological functions, including immune regulation, angiogenesis, wound healing, and antitumor activity. This review provides a current overview of the structure, molecular action, and therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Mohamed Hassan
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-504-339-2671
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Naji Kharouf
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Christelle Bertsch
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
| |
Collapse
|
13
|
Oliva R, Campanile M, Del Vecchio P, Pizzo E, Bosso A, Winter R, Petraccone L. The C-terminus of the GKY20 antimicrobial peptide, derived from human thrombin, plays a key role in its membrane perturbation capability. Phys Chem Chem Phys 2022; 24:7994-8002. [PMID: 35314853 DOI: 10.1039/d1cp05857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously, we characterized in detail the mechanism of action of the antimicrobial peptide GKY20, showing that it selectively perturbs the bacterial-like membrane employing peptide conformational changes, lipid segregation and domain formation as key steps in promoting membrane disruption. Here, we used a combination of biophysical techniques to similarly characterize the antimicrobial activity as well as the membrane perturbing capability of GKY10, a much shorter version of the GKY20 peptide. GKY10 is only half of the parent peptide and consists of the last 10 amino acids (starting from the C-terminus) of the full-length peptide. Despite a large difference in length, we found that GKY10, like the parent peptide, retains the ability to adopt a helical structure and to induce lipid segregation upon membrane binding. Overall, our results suggest that the amino acid sequence of GKY10 is responsible for most of the observed behaviors of GKY20. Our results shed further light on the mechanism of action of the full-length peptide and provide useful information for the design and development of new peptides that serve as antimicrobial agents.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
14
|
Losasso V, Agarwal K, Waskar M, Majumdar A, Crain J, Winn M, Hoptroff M. Small molecules enhance the potency of natural antimicrobial peptides. Biophys J 2022; 121:491-501. [PMID: 34954157 PMCID: PMC8822605 DOI: 10.1016/j.bpj.2021.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023] Open
Abstract
The skin-associated microbiome plays an important role in general well-being and in a variety of treatable skin conditions. In this regard, endogenous antimicrobial peptides have both a direct and indirect role in determining the composition of the microbiota. We demonstrate here that certain small molecular species can amplify the antimicrobial potency of naturally occurring antimicrobial peptides. In this study, we have used niacinamide, a form of vitamin B3 naturally found in foods and widely used in cosmetic skincare products, and two of its structural analogs, to investigate their cooperativity with the human antimicrobial peptide LL37 on the bacterium Staphylococcus aureus. We observed a clear synergistic effect of niacinamide and, to some extent, N-methylnicotinamide, whereas isonicotinamide showed no significant cooperativity with LL37. Adaptively biased molecular dynamics simulations using simplified model membrane substrates and single peptides revealed that these molecules partition into the headgroup region of an anionic bilayer used to mimic the bacterial membrane. The simulated effects on the physical properties of the simulated model membrane are well correlated with experimental activity observed in real biological assays despite the simplicity of the model. In contrast, these molecules have little effect on zwitterionic bilayers that mimic a mammalian membrane. We conclude that niacinamide and N-methylnicotinamide can therefore potentiate the activity of host peptides by modulating the physical properties of the bacterial membrane, and to a lesser extent through direct interactions with the peptide. The level of cooperativity is strongly dependent on the detailed chemistry of the additive, suggesting an opportunity to fine-tune the behavior of host peptides.
Collapse
Affiliation(s)
- Valeria Losasso
- Science and Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Daresbury, UK
| | | | | | | | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury, UK,Department of Biochemistry, University of Oxford, Oxford, UK
| | - Martyn Winn
- Science and Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Daresbury, UK
| | - Michael Hoptroff
- Unilever Research and Development, Port Sunlight, UK,Corresponding author
| |
Collapse
|
15
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
17
|
Siepi M, Oliva R, Masino A, Gaglione R, Arciello A, Russo R, Di Maro A, Zanfardino A, Varcamonti M, Petraccone L, Del Vecchio P, Merola M, Pizzo E, Notomista E, Cafaro V. Environment-Sensitive Fluorescent Labelling of Peptides by Luciferin Analogues. Int J Mol Sci 2021; 22:ijms222413312. [PMID: 34948103 PMCID: PMC8706149 DOI: 10.3390/ijms222413312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Environment-sensitive fluorophores are very valuable tools in the study of molecular and cellular processes. When used to label proteins and peptides, they allow for the monitoring of even small variations in the local microenvironment, thus acting as reporters of conformational variations and binding events. Luciferin and aminoluciferin, well known substrates of firefly luciferase, are environment-sensitive fluorophores with unusual and still-unexploited properties. Both fluorophores show strong solvatochromism. Moreover, luciferin fluorescence is influenced by pH and water abundance. These features allow to detect local variations of pH, solvent polarity and local water concentration, even when they occur simultaneously, by analyzing excitation and emission spectra. Here, we describe the characterization of (amino)luciferin-labeled derivatives of four bioactive peptides: the antimicrobial peptides GKY20 and ApoBL, the antitumor peptide p53pAnt and the integrin-binding peptide RGD. The two probes allowed for the study of the interaction of the peptides with model membranes, SDS micelles, lipopolysaccharide micelles and Escherichia coli cells. Kd values and binding stoichiometries for lipopolysaccharide were also determined. Aminoluciferin also proved to be very well-suited to confocal laser scanning microscopy. Overall, the characterization of the labeled peptides demonstrates that luciferin and aminoluciferin are previously neglected environment-sensitive labels with widespread potential applications in the study of proteins and peptides.
Collapse
Affiliation(s)
- Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Antonio Masino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (R.R.); (A.D.M.)
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (R.R.); (A.D.M.)
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
- Correspondence:
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| |
Collapse
|
18
|
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021; 8:48. [PMID: 34496967 PMCID: PMC8425997 DOI: 10.1186/s40779-021-00343-2] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Qi-Yu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Bin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Yue-Ming Meng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xiang-Yu Hong
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Gang Shao
- Department of Oncology, The 903rd Hospital of PLA, Hangzhou, 310013, Zhejiang, China
| | - Jun-Jie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xu-Rui Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian Kang
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cai-Yun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, Street 2, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
19
|
Oliva R, Mukherjee SK, Ostermeier L, Pazurek LA, Kriegler S, Bader V, Prumbaum D, Raunser S, Winklhofer KF, Tatzelt J, Winter R. Remodeling of the Fibrillation Pathway of α-Synuclein by Interaction with Antimicrobial Peptide LL-III. Chemistry 2021; 27:11845-11851. [PMID: 34165838 PMCID: PMC8457056 DOI: 10.1002/chem.202101592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Liquid‐liquid phase separation (LLPS) has emerged as a key mechanism for intracellular organization, and many recent studies have provided important insights into the role of LLPS in cell biology. There is also evidence that LLPS is associated with a variety of medical conditions, including neurodegenerative disorders. Pathological aggregation of α‐synuclein, which is causally linked to Parkinson's disease, can proceed via droplet condensation, which then gradually transitions to the amyloid state. We show that the antimicrobial peptide LL‐III is able to interact with both monomers and condensates of α‐synuclein, leading to stabilization of the droplet and preventing conversion to the fibrillar state. The anti‐aggregation activity of LL‐III was also confirmed in a cellular model. We anticipate that studying the interaction of antimicrobial‐type peptides with liquid condensates such as α‐synuclein will contribute to the understanding of disease mechanisms (that arise in such condensates) and may also open up exciting new avenues for intervention.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Sanjib K Mukherjee
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Lena Ostermeier
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Lilli A Pazurek
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Simon Kriegler
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
20
|
Gaglione R, Smaldone G, Cesaro A, Rumolo M, De Luca M, Di Girolamo R, Petraccone L, Del Vecchio P, Oliva R, Notomista E, Pedone E, Arciello A. Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B. Pharmaceuticals (Basel) 2021; 14:ph14070631. [PMID: 34209895 PMCID: PMC8308739 DOI: 10.3390/ph14070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | | | - Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Mariano Rumolo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Maria De Luca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rosario Oliva
- Physical Chemistry I—Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Naples, Italy;
- Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence: ; Tel.: +39-081-679147
| |
Collapse
|
21
|
Lampitella E, Landi N, Oliva R, Gaglione R, Bosso A, De Lise F, Ragucci S, Arciello A, Petraccone L, Pizzo E, Del Vecchio P, Di Maro A. Toxicity and membrane perturbation properties of the ribotoxin-like protein Ageritin. J Biochem 2021; 170:473-482. [PMID: 33993266 DOI: 10.1093/jb/mvab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 01/31/2023] Open
Abstract
Ageritin is the prototype of a new ribotoxin-like protein family, which has been recently identified also in basidiomycetes. The protein exhibits specific RNase activity through the cleavage of a single phosphodiester bond located at sarcin/ricin loop of the large rRNA, thus inhibiting protein biosynthesis at early stages. Conversely to other ribotoxins, its activity requires the presence of divalent cations. In the present study, we report the activity of Ageritin on both prokaryotic and eukaryotic cells showing that the protein has a prominent effect on cancer cells viability and no effects on eukaryotic and bacterial cells. In order to rationalize these findings, the ability of the protein to interact with various liposomes mimicking normal, cancer and bacterial cell membranes was explored. The collected results indicate that Ageritin can interact with DPPC/DPPS/Chol vesicles, used as a model of cancer cell membranes, and with DPPC/DPPG vesicles, used as a model of bacterial cell membranes, suggesting a selective interaction with anionic lipids. However, a different perturbation of the two model membranes, mediated by cholesterol redistribution, was observed and this might be at the basis of Ageritin selective toxicity towards cancer cells.
Collapse
Affiliation(s)
- Erosantonio Lampitella
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy.,Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, Via Cintia, I-80126, Napoli, Italy
| | - Federica De Lise
- Department of Biology, University of Naples Federico II, Via Cintia, I-80126, Napoli, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Via Cintia, I-80126, Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
22
|
Oliva R, Mukherjee SK, Fetahaj Z, Möbitz S, Winter R. Perturbation of liquid droplets of P-granule protein LAF-1 by the antimicrobial peptide LL-III. Chem Commun (Camb) 2021; 56:11577-11580. [PMID: 32909564 DOI: 10.1039/d0cc04877a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liquid-liquid phase separation (LLPS) has emerged as a key mechanism for intracellular organization. But there is rapidly growing evidence that LLPS may also be associated with a number of medical conditions, including neurodegenerative diseases, by acting as a modulator of pathological protein aggregation. Here we show how LLPS formed by the P-granule protein LAF-1 and RNA can be affected by antimicrobial peptides, such as LL-III, leading to enhanced formation of amorphous protein aggregates and the loss of droplet function as an efficient reaction center and organizational hub.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany.
| | - Sanjib K Mukherjee
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany.
| | - Zamira Fetahaj
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany.
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
23
|
Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. Int J Mol Sci 2021; 22:ijms22062857. [PMID: 33799744 PMCID: PMC8001998 DOI: 10.3390/ijms22062857] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target.
Collapse
|
24
|
Antibacterial mechanism of brevilaterin B: an amphiphilic lipopeptide targeting the membrane of Listeria monocytogenes. Appl Microbiol Biotechnol 2020; 104:10531-10539. [PMID: 33170327 DOI: 10.1007/s00253-020-10993-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are recognized as promising safe alternatives to antibiotics for its low drug-resistance. Brevilaterin B, a newly discovered antimicrobial lipopeptide produced by Brevibacillus laterosporus S62-9, exhibits efficient antibacterial activity on Listeria monocytogenes with a minimum inhibitory concentration of 1 μg mL-1. The present research aimed to investigate the antibacterial mechanism of brevilaterin B against Listeria monocytogenes. Brevilaterin B caused membrane depolarization and the breakup of the cytomembrane as measured by 3,3-dipropylthiadicarbocyanine iodide and transmission electron microscopy, respectively. Using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (7:3) as a model membrane, results proved that brevilaterin B could bind to liposomes, integrate into the lipid bilayer, and consequently increase the permeability of liposomes to calcein. The secondary structure of brevilaterin B also changed from an unstructured coil to a mainly β-sheet conformation as measured by circular dichroism. Brevilaterin B exhibits antibacterial activity by a membrane interaction mechanism, which provides a theoretical basis for using brevilaterin B as a promising natural and effective antimicrobial agent against pathogenic bacteria. KEY POINTS: • Brevilaterin B exhibited antibacterial activity against Listeria monocytogenes. • Brevilaterin B exhibited membrane interaction mechanism. • Brevilaterin B showed conformational change when interacted with liposome.
Collapse
|
25
|
León Madrazo A, Segura Campos MR. Review of antimicrobial peptides as promoters of food safety: Limitations and possibilities within the food industry. J Food Saf 2020. [DOI: 10.1111/jfs.12854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anaí León Madrazo
- Facultad de Ingeniería Química Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | | |
Collapse
|
26
|
Mescola A, Ragazzini G, Alessandrini A. Daptomycin Strongly Affects the Phase Behavior of Model Lipid Bilayers. J Phys Chem B 2020; 124:8562-8571. [PMID: 32886515 DOI: 10.1021/acs.jpcb.0c06640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daptomycin (DAP) is a calcium-dependent cyclic lipopeptide with great affinity for negatively charged phospholipids bearing the phosphatidylglycerol (PG) headgroup and has been used since 2003 as a last resort antibiotic in the treatment of severe infections caused by Gram-positive bacteria. The first step of its mechanism of action involves the interaction with the bacterial membrane, which not only represents a physical barrier but also accommodates transmembrane proteins, such as receptors, transporters, and enzymes, whose activity is crucial for the survival of bacteria. This results in a less efficient development of resistance strategies by pathogens compared to common antibiotics that activate or inhibit biochemical pathways connected to specific target proteins. Although already on the market, the molecular mechanism of action of DAP is still a controversial subject of investigation and it is most likely the result of a combination of distinct effects. Understanding how DAP targets the membrane of pathogens could be of great help in finding its analogues that could better avoid the development of resistance. Here, exploiting fluorescence microscopy and atomic force microscopy (AFM), we demonstrated that DAP affects the thermodynamic behavior of lipid mixtures containing PG moieties. Regardless of whether the PG lipids are in the liquid or solid phase, DAP preferably interacts with this headgroup and is able to penetrate more deeply into the lipid bilayer in the regions where this headgroup is present. In particular, considering the results of an AFM/spectroscopy investigation, DAP appears to produce a stiffening effect of the domains where PG lipids are mainly in the fluid phase, whereas it causes fluidification of the domains where PG lipids are in the solid phase.
Collapse
Affiliation(s)
- Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Gregorio Ragazzini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.,Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Andrea Alessandrini
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy.,Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
27
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Behuria HG, Biswal BK, Sahu SK. Electroformation of liposomes and phytosomes using copper electrode. J Liposome Res 2020; 31:255-266. [PMID: 32703044 DOI: 10.1080/08982104.2020.1800729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel method for electroformation of liposomes and phytosomes using copper electrode is described. Liposomes made at 2 V and 10 Hz AC field from L-α-egg-phosphatidylcholine (egg-PC), K. pneumoniae phosphatidylethanolamine, K. pneumoniae polar lipids and E. coli polar lipids on copper electrode were (777.9 ± 118.4), (370.2 ± 100.5), (825.3 ± 21.54), and (281.3 ± 42.3) nm in diameter, respectively. Giant vesicles were formed at 30 V and 10 Hz AC field from polar lipids of K. pneumoniae and E. coli were (106 ± 29.7) and (86 ± 24.3) µm in diameter, respectively. All liposomes were unilamellar as indicated by their unilamellar indices of 50 ± 2, had surface charge comparable to vesicles made from lipid(s) with similar composition and exhibited only 1-2 mol% of oxidized lipids. Cu concentration in the liposomal samples was <1.5 ppm for large unilamellar vesicles (LUVs) and ˂5 ppm for giant unilamellar vesicles (GUVs). The vesicles were stable for >15 d without loss of their size, charge, or unilamellarity. The method was successfully applied to prepare phytosomes from egg-PC and a phytochemical fraction of Dimorphocalyx glabellus, a medicinal plant with anti-diuretic properties. Phytosomes formed were 1000-1500 nm in diameter and exhibited altered fluorescence and absorbance properties compared to the unencapsulated phytochemical. Phytosomes with phytochemical: egg-PC ratio from 0.15 to 1.5 had encapsulation efficiency ranging 90-30%, respectively, and was stable for 1 month. Our method is easy, inexpensive and convenient that will prove to be useful for preparation of liposomes and phytosomes.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Department of Biotechnology, Laboratory of Molecular Membrane Biology, North Orissa University, Baripada, India
| | - Bijesh Kumar Biswal
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Laboratory of Molecular Membrane Biology, North Orissa University, Baripada, India
| |
Collapse
|
29
|
Oliva R, Chino M, Lombardi A, Nastri F, Notomista E, Petraccone L, Del Vecchio P. Similarities and differences for membranotropic action of three unnatural antimicrobial peptides. J Pept Sci 2020; 26:e3270. [PMID: 32558092 DOI: 10.1002/psc.3270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Previously, we described the design and synthesis of three nine-residue AMPs, P9Nal(SS), P9Trp(SS), and P9Nal(SR), showing high stability in serum and broad spectrum antimicrobial activity. The peptides P9Trp(SS) and P9Nal(SR) differ from P9Nal(SS) for the replacement of the two 2Nal residues with Trp residues and for the replacement of the two Cys (StBu) with Cys (tBu) residues, respectively. These changes led to peptides with a lower hydrophobicity respect to the P9Nal(SS). Interestingly, the three peptides have very similar activity against Gram-negative bacteria. Instead, they exhibit a significant difference towards Gram-positive bacteria, being P9Nal(SS) the most active. In order to evaluate the impact of amino acids substitution on membranotropic activity and rationalize the observed effects in vivo, here, we report the detailed biophysical characterization of the interaction between P9Nal(SR) and P9Trp(SS) and liposomes by combining differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The comparison with the results for the previously characterized P9Nal(SS) peptide reveals similarities and differences on the interaction process and perturbation activities. It was found that the three peptides can penetrate at different extent inside the bilayer upon changing their conformation and inducing lipid domains formation, revealing that the formation of lipid domains is fundamental for the activity against Gram-negative bacteria. On the contrary, the dissimilar activity against Gram-positive bacteria well correlate with the different affinity of peptides for the lipoteichoic acid, a component selectively present in the cell wall of Gram-positive bacteria.
Collapse
Affiliation(s)
- Rosario Oliva
- Physical Chemistry I, Technical University of Dortmund, Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angelina Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|