1
|
Yang G, Yang W, Gu H, Fu Y, Wang B, Cai H, Xia J, Zhang N, Liang C, Xing G, Yang S, Chen Y, Huang W. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300383. [PMID: 36906920 DOI: 10.1002/adma.202300383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.
Collapse
Affiliation(s)
- Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Nan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330000, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710000, P. R. China
| |
Collapse
|
2
|
Eng AYS, Soni CB, Lum Y, Khoo E, Yao Z, Vineeth SK, Kumar V, Lu J, Johnson CS, Wolverton C, Seh ZW. Theory-guided experimental design in battery materials research. SCIENCE ADVANCES 2022; 8:eabm2422. [PMID: 35544561 PMCID: PMC9094674 DOI: 10.1126/sciadv.abm2422] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/25/2022] [Indexed: 06/04/2023]
Abstract
A reliable energy storage ecosystem is imperative for a renewable energy future, and continued research is needed to develop promising rechargeable battery chemistries. To this end, better theoretical and experimental understanding of electrochemical mechanisms and structure-property relationships will allow us to accelerate the development of safer batteries with higher energy densities and longer lifetimes. This Review discusses the interplay between theory and experiment in battery materials research, enabling us to not only uncover hitherto unknown mechanisms but also rationally design more promising electrode and electrolyte materials. We examine specific case studies of theory-guided experimental design in lithium-ion, lithium-metal, sodium-metal, and all-solid-state batteries. We also offer insights into how this framework can be extended to multivalent batteries. To close the loop, we outline recent efforts in coupling machine learning with high-throughput computations and experiments. Last, recommendations for effective collaboration between theorists and experimentalists are provided.
Collapse
Affiliation(s)
- Alex Yong Sheng Eng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Chhail Bihari Soni
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Yanwei Lum
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Edwin Khoo
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore
| | - Zhenpeng Yao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - S. K. Vineeth
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Vipin Kumar
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christopher S. Johnson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
3
|
Voloshin R, Shumilova S, Zadneprovskaya E, Zharmukhamedov S, Alwasel S, Hou H, Allakhverdiev S. Photosystem II in bio-photovoltaic devices. PHOTOSYNTHETICA 2022; 60:121-135. [PMID: 39649000 PMCID: PMC11559483 DOI: 10.32615/ps.2022.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/18/2022] [Indexed: 12/10/2024]
Abstract
Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.
Collapse
Affiliation(s)
- R.A. Voloshin
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.M. Shumilova
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - E.V. Zadneprovskaya
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.K. Zharmukhamedov
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
| | - S. Alwasel
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H.J.M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical/Forensic Sciences, Alabama State University, Montgomery, 36104 Alabama, United States
| | - S.I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Segalina A, Lebègue S, Rocca D, Piccinin S, Pastore M. Structure and Energetics of Dye-Sensitized NiO Interfaces in Water from Ab Initio MD and Large-Scale GW Calculations. J Chem Theory Comput 2021; 17:5225-5238. [PMID: 34324810 DOI: 10.1021/acs.jctc.1c00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The energy-level alignment across solvated molecule/semiconductor interfaces is a crucial property for the correct functioning of dye-sensitized photoelectrodes, where, following the absorption of solar light, a cascade of interfacial hole/electron transfer processes has to efficiently take place. In light of the difficulty of performing X-ray photoelectron spectroscopy measurements at the molecule/solvent/metal-oxide interface, being able to accurately predict the level alignment by first-principles calculations on realistic structural models would represent an important step toward the optimization of the device. In this respect, dye/NiO surfaces, employed in p-type dye-sensitized solar cells, are undoubtedly challenging for ab initio methods and, also for this reason, much less investigated than the n-type dye/TiO2 counterpart. Here, we consider the C343-sensitized NiO surface in water and combine ab initio molecular dynamics (AIMD) simulations with GW (G0W0) calculations, performed along the MD trajectory to reliably describe the structure and energetics of the interface when explicit solvation and finite temperature effects are accounted for. We show that the differential perturbative correction on the NiO and molecule states obtained at the GW level is mandatory to recover the correct (physical) interfacial energetics, allowing hole transfer from the semiconductor valence band to the highest occupied molecular orbital (HOMO) of the dye. Moreover, the calculated average driving force quantitatively agrees with the experimental estimate.
Collapse
Affiliation(s)
- Alekos Segalina
- Université de Lorraine & CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Sébastien Lebègue
- Université de Lorraine & CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Dario Rocca
- Université de Lorraine & CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, 34136 Trieste, Italy
| | | |
Collapse
|
5
|
Zarrabi N, Poddutoori PK. Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Shan B, Brennaman MK, Troian-Gautier L, Liu Y, Nayak A, Klug CM, Li TT, Bullock RM, Meyer TJ. A Silicon-Based Heterojunction Integrated with a Molecular Excited State in a Water-Splitting Tandem Cell. J Am Chem Soc 2019; 141:10390-10398. [DOI: 10.1021/jacs.9b04238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bing Shan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - M. Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Dalian University of Technology, Dalian 116024, China
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christina M. Klug
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - Ting-Ting Li
- Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo 315211, China
| | - R. Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|