1
|
Howells CL, Stocker AJ, Lea JN, Halcovitch NR, Patel H, Fletcher NC. Transition Metal Complexes with Appended Benzimidazole Groups for Sensing Dihydrogenphosphate. Chemistry 2024; 30:e202401385. [PMID: 38967595 DOI: 10.1002/chem.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Four new complexes [Ru(bpy)2(bbib)](PF6)2, [Ru(phen)2(bbib)](PF6)2, [Re(CO)3(bbib)(py)](PF6) and [Ir(ppy)2(bbib)](PF6) [where bbib=4,4'-bis(benzimidazol-2-yl)-2,2'-bipyridine] have been prepared and their photophysical properties determined. Their behaviour has been studied with a variety of anions in acetonitrile, DMSO and 10 % aquated DMSO. Acetate and dihydrogenphosphate demonstrate a redshift in the bbib ligand associated absorptions suggesting that the ligand is strongly interacting with these anions. The 3MLCT emissive state is sensitive to the introduction of small quantities of anion (sub-stoichiometric quantities) and significant quenching is typically observed with acetate, although this is less pronounced in the presence of water. The emissive behaviour with dihydrogenphosphate is variable, showing systematic changes as anion concentration increases with several distinct interactions evident. 1H- and 31P-NMR titrations in a 10 % D2O-DMSO-D6 mixture suggest that with dihydrogenphosphate, the imidazole group is able to act as both a proton acceptor and donor. It appears that all four complexes can form a {[complex]2-H2PO4} "dimer", a one-to-one species (which the X-ray crystallography study suggests is dimeric in the solid-state), and a complex with a combined bis(dihydrogenphosphate) complex anion. The speciation relies on complex equilibria dependent on several factors including the complex charge, the hydrophobicity of the associated ligands, and the solvent.
Collapse
Affiliation(s)
- Chloe L Howells
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Andrew J Stocker
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Joshua N Lea
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Humaira Patel
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Nicholas C Fletcher
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| |
Collapse
|
2
|
Salvadori K, Onali A, Mathez G, Eigner V, Dendisová M, Matějka P, Mullerová M, Brancale A, Cuřínová P. An Insight into Anion Extraction by Amphiphiles: Hydrophobic Microenvironments as a Requirement for the Extractant Selectivity. ACS OMEGA 2023; 8:44221-44228. [PMID: 38027376 PMCID: PMC10666219 DOI: 10.1021/acsomega.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Coupling of electron-deficient urea units with aliphatic chains gives rise to amphiphilic compounds that bind to phosphate and benzoate anions in the hydrogen bonding competitive solvent (DMSO) with KAss = 6 580 M-1 and KAss = 4 100 M-1, respectively. The anchoring of these receptor moieties to the dendritic support does not result in a loss of anion binding and enables new applications. Due to the formation of a microenvironment in the dendrimer, the high selectivity of the prepared compound toward benzoate is maintained even in the presence of aqueous media during extraction experiments. In the presence of binding sites at 5 mM concentration, the amount of benzoate corresponding to the full binding site occupancy is transferred into the chloroform phase from its 10 mM aqueous solution. A thorough investigation of the extraction behavior of the dendrimer reported here, supported by a series of molecular dynamics simulations, provides new insight into the fundamental principles of extraction of inorganic anions by amphiphiles.
Collapse
Affiliation(s)
- Karolína Salvadori
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
- Department
of Bioorganic Chemistry and Biomaterials, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, Prague 6 16502, Czech Republic
| | - Alessia Onali
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Gregory Mathez
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Václav Eigner
- Department
of Solid-State Chemistry, University of
Chemistry and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Marcela Dendisová
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Pavel Matějka
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Monika Mullerová
- Department
of Bioorganic Chemistry and Biomaterials, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, Prague 6 16502, Czech Republic
| | - Andrea Brancale
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Petra Cuřínová
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| |
Collapse
|
3
|
Rashid A, Mondal S, Ghosh P. Iridium(III) complex of fluorinated cyclometalating ligands and imidazolium-bipyridine as an effective lifetime based phosphates sensor. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing. Molecules 2023; 28:molecules28031231. [PMID: 36770897 PMCID: PMC9920910 DOI: 10.3390/molecules28031231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Improvements in the design of receptors for the detection and quantification of anions are desirable and ongoing in the field of anion chemistry, and remarkable progress has been made in this direction. In this regard, the development of luminescent chemosensors for sensing anions is an imperative and demanding sub-area in supramolecular chemistry. This decade, in particular, witnessed advancements in chemosensors based on ruthenium and iridium complexes for anion sensing by virtue of their modular synthesis and rich chemical and photophysical properties, such as visible excitation wavelength, high quantum efficiency, high luminescence intensity, long lifetimes of phosphorescence, and large Stokes shifts, etc. Thus, this review aims to summarize the recent advances in the development of ruthenium(II) and iridium(III)-based complexes for their application as luminescent chemosensors for anion sensing. In addition, the focus was devoted to designing aspects of polypyridyl complexes of these two transition metals with different recognition motifs, which upon interacting with different inorganic anions, produces desirable quantifiable outputs.
Collapse
|
5
|
Mondal S, Rashid A, Ghosh P. A pentafluorophenyl functionalized RuII-probe having halogen bond center toward recognition and sensing of perrhenate and dihydrogen phosphate. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Mondal S, Sarkar K, Ghosh P. Influence of Triazole Substituents of Bis-Heteroleptic Ru(II) Probes toward Selective Sensing of Dihydrogen Phosphate. Inorg Chem 2021; 60:9084-9096. [PMID: 34102838 DOI: 10.1021/acs.inorgchem.1c01084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of seven new bis-heteroleptic Ru(II) probes (1[PF6]2-7[PF6]2) along with two previously reported probes (8[PF6]2 and 9[PF6]2) containing a similar anion binding triazole unit (hydrogen bond donor) functionalized with various substituents are employed in a detailed comparative investigation for the development of superior selective probes for H2PO4-. Various solution- and solid-state studies, such as 1H-DOSY NMR, dynamic light scattering (DLS), single-crystal X-ray crystallography, and transmission electron microscopy (TEM), have established that the selective sensing of H2PO4- by this series of probes is primarily due to supramolecular aggregation driven enhancement of 3MLCT emission. Intestingly, 1[PF6]2 and 7[PF6]2, having an electron-deficient (π-acidic) aromatic pentafluorophenyl substituent are found to be superior probes for H2PO4- in comparison to the other aryl- and polyaromatic-substituted analogues (2[PF6]2-6[PF6]2, 8[PF6]2, and 9[PF6]2), in terms of a higher enhancement of the 3MLCT emission band, a greater binding constant, and a lower detection limit. The superiority of 1[PF6]2 and 7[PF6]2 could be due to better supramolecular aggregation properties in the cases of pentafluorophenyl analogues via both hydrogen bonding and anion-fluorine/anion-π noncovalent interactions.
Collapse
Affiliation(s)
- Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Koushik Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
7
|
Ramachandran M, Syed A, Marraiki N, Anandan S. The aqueous dependent sensing of hydrazine and phosphate anions using a bis-heteroleptic Ru(II) complex with a phthalimide-anchored pyridine-triazole ligand. Analyst 2021; 146:1430-1443. [PMID: 33410834 DOI: 10.1039/d0an02299c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective turn-on luminescence properties are shown by a non-luminescent metalloreceptor upon the addition of phosphate anions in CH3CN and hydrazine in CH3CN/H2O (6/4, v/v). The non-luminescent metalloreceptors [RuII(phen)2(TpH)]2PF6- (RtpH) and [RuII(Phen)2(TpI)]2PF6- (RtpI) {phen = 1,10-phenanthroline; TpH = 2-(2-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione; and TpI = 2-(2-(5-iodo-4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)ethyl)isoindoline-1,3-dione} were synthesized and characterized. Both metalloreceptors have excellent sensing properties for phosphate anions (H2PO4- and H2P2O72-) over other anions in CH3CN. The limit of detection (LOD) values were calculated to be 79 nM and 48 nM for H2PO4- upon addition to RtpH and RtpI, respectively. Noncovalent interactions play a key role in the sensing of phosphate anions, among which the halogen-anion interaction showed superior recognition properties over the hydrogen-anion interaction. Comparative electrochemical experiments, 1H NMR titration, 31P NMR titration, and lifetime studies also show that RtpI has better sensing properties, as evidenced by its more drastic emission response to H2PO4- anions compared with RtpH. Moreover, the metalloreceptors showed a remarkable fluorescence increase (at ∼584 nm) upon the addition of hydrazine, without the interference of other amines in CH3CN/H2O (6/4, v/v). Interestingly, fluorescence enhancement was observed within live HeLa cells upon hydrazine addition, which is caused by the efficient photoinduced electron transfer process.
Collapse
Affiliation(s)
- Mohanraj Ramachandran
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| | - Asad Syed
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sambandam Anandan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| |
Collapse
|
8
|
Kumar P, Pachisia S, Gupta R. Turn-on detection of assorted phosphates by luminescent chemosensors. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00032b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review illustrates a variety of luminescent chemosensors for the selective detection of assorted phosphates via the “Turn-On” emission mechanism with focus on their design aspects, chemical structures and sensing mechanism.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Sanya Pachisia
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
9
|
Pal S, Ghosh TK, Ghosh R, Mondal S, Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Ramachandran M, Anandan S. Triazole appending ruthenium(ii) polypyridine complex for selective sensing of phosphate anions through C–H–anion interaction and copper(ii) ions via cancer cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj00273a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective fluorescence enhancement by H2PO4−/H2P2O72− anions and maximum fluorescence quenching by Cu2+ ions were attained upon treatment with different types of anions and cations, respectively.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620 015
- India
| |
Collapse
|
11
|
Mondal S, Ghosh TK, Chowdhury B, Ghosh P. Supramolecular Self-Assembly Driven Selective Sensing of Phosphates. Inorg Chem 2019; 58:15993-16003. [PMID: 31702136 DOI: 10.1021/acs.inorgchem.9b02483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new bis-heteroleptic RuII complex (1[PF6]2) with iodotriazole as the anion binding group along with the attached pyrene moiety is developed to investigate anion sensing properties and the origin of its selectivity toward a particular class of anions. Selective sensing of phosphates over other anions in both the solution and solid states by 1[PF6]2 is clearly evident from the perturbation of the absorption band and a large degree of amplification of 3MLCT emission band in the presence of phosphates. Importantly, macroscopic investigation such as Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) indicated the formation of supramolecular architecture in the presence of dihydrogen phosphate via halogen bonding interaction and π-π stacking of pyrene moieties. Such macroscopic property is further corroborated by solution and solid state spectroscopic studies, e.g., 1H-DOSY NMR, single crystal X-ray crystallography, and solid state photoluminescence (PL) spectroscopy.
Collapse
Affiliation(s)
- Sahidul Mondal
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Tamal Kanti Ghosh
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Bijit Chowdhury
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Pradyut Ghosh
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road , Kolkata 700032 , India
| |
Collapse
|
12
|
Ghosh TK, Dutta R, Maji S, Pal S, Ghosh P. Removal of phosphate in presence of interfering sulphate and arsenate by a tripodal thiourea receptor by precipitation through crystallization in semi-aqueous medium. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ghosh TK, Mondal S, Bej S, Nandi M, Ghosh P. An integrated urea and halogen bond donor based receptor for superior and selective sensing of phosphates. Dalton Trans 2019; 48:4538-4546. [PMID: 30860521 DOI: 10.1039/c8dt05066j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new RuII based bis-heteroleptic ditopic receptor, 1[PF6]2 (C44H33F12IN10OP2Ru), having integrated anion binding iodotriazole (halogen bond donor) and urea units (-NH bond donor) is employed for selective sensing of phosphates (e.g., H2PO4- and HP2O73-). 1[PF6]2 showed superiority in phosphate sensing in CH3CN as compared to its hydrogen bond donor analogue, 2[PF6]2 (C44H34F12N10OP2Ru), non-urea halogen bond analogue, 3[PF6]2 (C38H27F12IN8P2Ru) and non-urea hydrogen bond donor analogue, 4[PF6]2 (C38H28F12N8P2Ru) in terms of enhanced binding constant values, longer excited state lifetimes and lower detection limit values. 1H-NMR, Isothermal Titration Calorimetry (ITC) and photophysical studies revealed the implementation of the combined role of both the halogen bond donor iodotriazole unit and the -NH unit of the urea moiety for selective and enhanced binding of phosphates.
Collapse
Affiliation(s)
- Tamal Kanti Ghosh
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | | | | | |
Collapse
|