1
|
Stephens LJ, Dallerba E, Kelderman JTA, Levina A, Werrett MV, Lay PA, Massi M, Andrews PC. Synthesis and the photophysical and biological properties of tricarbonyl Re(I) diimine complexes bound to thiotetrazolato ligands. Dalton Trans 2023; 52:4835-4848. [PMID: 36939381 DOI: 10.1039/d2dt03237f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Twelve Re(I) tricarbonyl diimine (2,2'-bipyridine and 1,10-phenanthroline) complexes with thiotetrazolato ligands have been synthesised and fully characterised. Structural characterisation revealed the capacity of the tetrazolato ligand to bind to the Re(I) centre through either the S atom or the N atom with crystallography revealing most complexes being bound to the N atom. However, an example where the Re(I) centre is linked via the S atom has been identified. In solution, the complexes exist as an equilibrating mixture of linkage isomers, as suggested by comparison of their NMR spectra at room temperature and 373 K, as well as 2D exchange spectroscopy. The complexes are photoluminescent in fluid solution at room temperature, with emission either at 625 or 640 nm from the metal-to-ligand charge transfer excited states of triplet multiplicity, which seems to be exclusively dependent on the nature of the diimine ligand. The oxygen-sensitive excited state lifetime decay ranges between 12.5 and 27.5 ns for the complexes bound to 2,2'-bipyrdine, or between 130.6 and 155.2 ns for those bound to 1.10-phenanthroline. Quantum yields were measured within 0.4 and 1.5%. The complexes were incubated with human lung (A549), brain (T98g), and breast (MDA-MB-231) cancer cells, as well as with normal human skin fibroblasts (HFF-1), revealing low to moderate cytotoxicity, which for some compounds exceeded that of a standard anti-cancer drug, cisplatin. Low cytotoxicity combined with significant cellular uptake and photoluminescence properties provides potential for their use as cellular imaging agents. Furthermore, the complexes were assessed in disc diffusion and broth microdilution assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, which revealed negligible antibacterial activity in the dark or after irradiation.
Collapse
Affiliation(s)
- Liam J Stephens
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Kent Street, 6102 Perth, Australia.
| | - Jenisi T A Kelderman
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Aviva Levina
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Peter A Lay
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Kent Street, 6102 Perth, Australia.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Sun Y, Zhao Y, Jia J, Zhou Y. A ruthenium-based aggregation-induced enhanced emission luminophore as efficient protein staining agent. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Gao L, Chen L, Peng Y, Zhao Y, Dong J, Mao Z, Jia J, Zhou Y. Iridium tetrazolato complexes as efficient protein staining agents. Dalton Trans 2022; 51:16870-16875. [DOI: 10.1039/d2dt02564g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium tetrazolato complexes have been illustrated as one kind of efficient protein staining agent.
Collapse
Affiliation(s)
- Ling Gao
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- The Laboratory Center for Basic Medicine Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Luyao Chen
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yu Peng
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- The Laboratory Center for Basic Medicine Sciences, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| | - Jianhua Dong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| | - Junli Jia
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, P.R. China
| |
Collapse
|
4
|
Morales-Guevara R, Fuentes JA, Paez-Hernández D, Carreño A. The role of substituted pyridine Schiff bases as ancillary ligands in the optical properties of a new series of fac-rhenium(i) tricarbonyl complexes: a theoretical view. RSC Adv 2021; 11:37181-37193. [PMID: 35496390 PMCID: PMC9043815 DOI: 10.1039/d1ra05737e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, luminescent Re(i) tricarbonyl complexes have been increasingly proposed as fluorophores suitable for fluorescence microscopy to visualize biological structures and cells. In this sense, incorporating an asymmetrical pyridine Schiff base (PSB) as the ancillary ligand strongly modifies the staining and luminescent properties of Re(i) tricarbonyl complexes. In this work, we analyzed two series of Re(i) tricarbonyl complexes with their respective PSB ligands: (1) fac-[Re(CO)3(2,2'-bpy)(PSB)]1+ and (2) fac-[Re(CO)3(4,4'-bis(ethoxycarbonyl)-2,2'-bpy)(PSB)]1+, where the PSB exhibits substitutions at positions 4 or 6 in the phenolic ring with methyl or halogen substituents. Thus, we performed computational relativistic DFT and TDDFT studies to determine their optical properties. The ten complexes analyzed showed absorption in the visible light range. Furthermore, our analyses, including zero-field splitting (ZFS), allowed us to determine that the low-lying excited state locates below the 3LLCT states. Interestingly, seven of the ten analyzed complexes, whose corresponding PSB harbors an intramolecular hydrogen bond (IHB), exhibited luminescent emission that could be suitable for biological purposes: large Stokes shift, emission in the range 600-700 nm and τ in the order of 10-2 to 10-3 s. Conversely, the three complexes lacking the IHB due to two halogen substituents in the corresponding PSB showed a predicted emission with the lowest triplet excited state energy entering the NIR region. The main differences in the complexes' photophysical behavior have been explained by the energy gap law and time-resolved luminescence. These results emphasize the importance of choosing suitable substituents at the 4 and 6 positions in the phenolic ring of the PSB, which determine the presence of the IHB since they modulate the luminescence properties of the Re(i) core. Therefore, this study could predict Re(i) tricarbonyl complexes' properties, considering the desired emission features for biological and other applications.
Collapse
Affiliation(s)
- Rosaly Morales-Guevara
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello República 330 Santiago Chile
| | - Dayán Paez-Hernández
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Alexander Carreño
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| |
Collapse
|
5
|
Gillam TA, Caporale C, Brooks RD, Bader CA, Sorvina A, Werrett MV, Wright PJ, Morrison JL, Massi M, Brooks DA, Zacchini S, Hickey SM, Stagni S, Plush SE. Neutral Re(I) Complex Platform for Live Intracellular Imaging. Inorg Chem 2021; 60:10173-10185. [PMID: 34210122 DOI: 10.1021/acs.inorgchem.1c00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent metal complexes are a valuable platform for the generation of cell imaging agents. However, many metal complexes are cationic, a factor that can dominate the intracellular accumulation to specific organelles. Neutral Re(I) complexes offer a more attractive platform for the development of bioconjugated imaging agents, where charge cannot influence their intracellular distribution. Herein, we report the synthesis of a neutral complex (ReAlkyne), which was used as a platform for the generation of four carbohydrate-conjugated imaging agents via Cu(I)-catalyzed azide-alkyne cycloaddition. A comprehensive evaluation of the physical and optical properties of each complex is provided, together with a determination of their utility as live cell imaging agents in H9c2 cardiomyoblasts. Unlike their cationic counterparts, many of which localize within mitochondria, these neutral complexes have localized within the endosomal/lysosomal network, a result consistent with examples of dinuclear carbohydrate-appended neutral Re(I) complexes that have been reported. This further demonstrates the utility of these neutral Re(I) complex imaging platforms as viable imaging platforms for the development of bioconjugated cell imaging agents.
Collapse
Affiliation(s)
- Todd A Gillam
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia.,UniSA STEM, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Chiara Caporale
- Department of Chemistry, Curtin University, Kent St., Bentley, Western Australia 6102, Australia
| | - Robert D Brooks
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Christie A Bader
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Alexandra Sorvina
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Phillip J Wright
- Department of Chemistry, Curtin University, Kent St., Bentley, Western Australia 6102, Australia
| | - Janna L Morrison
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, Kent St., Bentley, Western Australia 6102, Australia
| | - Doug A Brooks
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Shane M Hickey
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Sally E Plush
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia.,UniSA STEM, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
6
|
Carreño A, Gacitúa M, Solis-Céspedes E, Páez-Hernández D, Swords WB, Meyer GJ, Preite MD, Chávez I, Vega A, Fuentes JA. New Cationic fac-[Re(CO) 3(deeb)B2] + Complex, Where B2 Is a Benzimidazole Derivative, as a Potential New Luminescent Dye for Proteins Separated by SDS-PAGE. Front Chem 2021; 9:647816. [PMID: 33842435 PMCID: PMC8027506 DOI: 10.3389/fchem.2021.647816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 01/14/2023] Open
Abstract
Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) can be used to separate proteins based mainly on their size such as in denaturing gels. Different staining methods have been reported to observe proteins in the gel matrix, where the most used dyes are generally anionic. Anionic dyes allow for interactions with protonated amino acids, retaining the dye in the proteins. Fluorescent staining is an alternative technique considered to be sensitive, safe, and versatile. Some anionic complexes based on d6 transition metals have been used for this purpose, where cationic dyes have been less explored in this context. In this work, we synthesized and characterized a new monocationic rhenium complex fac-[Re(CO)3(deeb)B2]+ (where deeb is 4,4′-bis(ethoxycarbonyl)-2,2′-bpy and B2 is 2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol). We carried out a structural characterization of this complex by MS+, FTIR, 1H NMR, D2O exchange, and HHCOSY. Moreover, we carried out UV-Vis, luminescence, and cyclic voltammetry experiments to understand the effect of ligands on the complex’s electronic structure. We also performed relativistic theoretical calculations using the B3LYP/TZ2P level of theory and R-TDDFT within a dielectric continuum model (COSMO) to better understand electronic transitions and optical properties. We finally assessed the potential of fac-[Re(CO)3(deeb)B2]+ (as well as the precursor fac-Re(CO)3(deeb)Br and the free ligand B2) to stain proteins separated by SDS-PAGE. We found that only fac-[Re(CO)3(deeb)B2]+ proved viable to be directly used as a luminescent dye for proteins, presumably due to its interaction with negatively charged residues in proteins and by weak interactions provided by B2. In addition, fac-[Re(CO)3(deeb)B2]+ seems to interact preferentially with proteins and not with the gel matrix despite the presence of sodium dodecyl sulfate (SDS). In future applications, these alternative cationic complexes might be used alone or in combination with more traditional anionic compounds to generate counterion dye stains to improve the process.
Collapse
Affiliation(s)
- Alexander Carreño
- Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | | | - Eduardo Solis-Céspedes
- Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile.,Laboratorio de Bioinformática y Química Computacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Dayán Páez-Hernández
- Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Wesley B Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marcelo D Preite
- Departamento de Química Orgánica, Facultad de Química y Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ivonne Chávez
- Departamento de Química Inorgánica, Facultad de Química y Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile.,Centro para el Desarrollo de la Nanociencia y la Nanotecnología Cedenna, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
7
|
Alkyl tetrazoles as diimine (“diim”) ligands for fac-[Re(diim)(CO)3(L)]-type complexes. Synthesis, characterization and preliminary studies of the interaction with bovine serum albumin. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Luminescent Copolymer‐Rhenium(I) Hybrid Materials via Picolylamine‐Modified Poly(pentafluorophenyl acrylate). MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Tetrazole functional copolymers: Facile access to well-defined Rhenium(I)-Polymeric luminescent materials. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Monti N, Zacchini S, Massi M, Hochkoeppler A, Giorgini L, Fiorini V, Stefan A, Stagni S. Antibacterial activity of a new class of tris homoleptic Ru (II)‐complexes with alkyl‐tetrazoles as diimine‐type ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicola Monti
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life ScienceCurtin University Kent Street Bentley WA 6102 Australia
| | - Alejandro Hochkoeppler
- Department of Pharmacy and BiotechnologyUniversity of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
- CSGI, Department of ChemistryUniversity of Florence Sesto Fiorentino FI I‐50019 Italy
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
| | - Valentina Fiorini
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
| | - Alessandra Stefan
- Department of Pharmacy and BiotechnologyUniversity of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
- CSGI, Department of ChemistryUniversity of Florence Sesto Fiorentino FI I‐50019 Italy
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”University of Bologna Viale Risorgimento 4 Bologna I‐40136 Italy
| |
Collapse
|
11
|
Dallerba E, Massi M, Lowe AB. Rhenium(I)-tetrazolato functional luminescent polymers: Organic-inorganic hybrids via RAFT and post-polymerization modification. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|