1
|
Yang C, Yang H, Yao Z, Liu T. Recent advances in active chromophores for detecting gamma-hydroxybutyric acid (GHB)-related illicit drugs. Analyst 2025; 150:1972-1985. [PMID: 40208228 DOI: 10.1039/d5an00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Gamma-hydroxybutyric acid (GHB) and its related illicit drugs are of particular forensic interest owing to their abuse as recreational drugs and implications in drug-facilitated sexual assault. The rapid and complete metabolism of GHB in the body results in a short evidence collection window for forensic experts, and challenges exist in simultaneously differentiating between exogenous addition in spiked drinking and low endogenous levels of GHB. Consequently, the development of real-time and on-site detection strategies for GHB plays vital roles in tackling drug-facilitated crimes. Recently, fluorescent and colorimetric strategies have emerged as promising approaches in this field, offering multiple merits of high sensitivity and specificity, ease of handling, and cumulative signaling effects. This minireview outlines the endogenous levels of GHB in the body and possible metabolism pathways, summarizes the recent advances in active chromophores, elucidates the corresponding sensing characteristics, and then exemplifies the developed sensing strips and detection kits based on the optimized chromophores mostly in the past five years. Additionally, the perspectives of the relevant studies are discussed in detail.
Collapse
Affiliation(s)
- Chun Yang
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China.
| | - Hongxian Yang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, P. R. China
| | - Zhen Yao
- National Anti-Drug Laboratory Shaanxi Regional Center (Anti-Drug Technology Center of Shaanxi Provincial Public Security Department), Xi'an 710115, P. R. China.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
2
|
Wen Y, Wu X, Wu W, Feng T, Pan Y, He Y, Ji L, Chao H. A Mitochondria-Targeted Nitric Oxide Probe for Multimodality Imaging of Macrophage Immune Responses. Anal Chem 2024; 96:6666-6673. [PMID: 38623755 DOI: 10.1021/acs.analchem.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Nitric oxide (NO) is a crucial signal molecule closely linked to the biological immune response, especially in macrophage polarization. When activated, macrophages enter a pro-inflammatory state and produce NO, a marker for the M1 phenotype. In contrast, the anti-inflammatory M2 phenotype does not produce NO. We developed a mitochondria-targeted two-photon iridium-based complex (Ir-ImNO) probe that can detect endogenous NO and monitor macrophages' different immune response states using various imaging techniques, such as one- and two-photon phosphorescence imaging and phosphorescence lifetime imaging. Ir-ImNO was used to monitor the immune activation of macrophages in mice. This technology aims to provide a clear and comprehensive visualization of macrophage immune responses.
Collapse
Affiliation(s)
- Yuxin Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xianbo Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yihang Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yulong He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
3
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Canisares FSM, Mutti AMG, Santana EF, Oliveira VC, Cavalcante DGSM, Job AE, Pires AM, Lima SAM. Red-emitting heteroleptic iridium(III) complexes: photophysical and cell labeling study. Photochem Photobiol Sci 2022; 21:1077-1090. [PMID: 35304728 DOI: 10.1007/s43630-022-00200-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Two red-emitting heteroleptic iridium(III) complexes (Ir-p and Ir-q) were synthesized and their photophysical and biological properties were analyzed. After their structures have been confirmed by several techniques, such as 1H NMR, 13C NMR, FT-IR, UV-Vis, and MALDI TOF analyses, their luminescence behavior was investigated in ethanol and PBS (physiological medium, pH ~ 7.4) solutions. Emission spectra of both complexes are dominated by 3MLCT states at room temperature in ethanolic solution, but at 77 K the Ir-q exhibits the 3LC as the dominant emission state. The Ir-q complex shows one of the highest emission quantum yields, 11.5%, for a red emitter based on iridium(III) complexes in aerated PBS solution, with color coordinates (x;y) of (0.712;0.286). Moreover, both complexes display high potential to be used as a biological marker with excitation wavelengths above 400 nm, high water solubility (Ir-p 1838 μmol L-1, Ir-q 7601 μmol L-1), and distinct emission wavelengths from the biological autofluorescence. Their cytotoxicity was analyzed in CHO-k1 cells by MTT assays, and the IC50 was estimated as being higher than 131 μmol L-1 for Ir-p, and higher than 116 μmol L-1 for Ir-q. Concentrations above 70% of viability were used to perform cell imaging by confocal and fluorescence microscopies and the results suggest that the complexes were internalized by the cell membrane and they are staining the cytoplasm region.
Collapse
Affiliation(s)
- Felipe S M Canisares
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.,Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José Do Rio Preto, SP, Brazil
| | - Alessandra M G Mutti
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Edy F Santana
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Vytor C Oliveira
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Dalita G S M Cavalcante
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Aldo E Job
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Ana M Pires
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.,Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José Do Rio Preto, SP, Brazil
| | - Sergio A M Lima
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.
| |
Collapse
|
5
|
Synthesis, structural characterization and biological properties of cyclometalated iridium(III) complexes containing 2-methyl-3-{(E)-[(quinolin-2-yl)methylidene]amino}quinazolin-4(3H)-one. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhao D, An Y, Guo T, Yan J, Song D. A three-dimensional manganese(II) coordination polymer with two functional properties: magnetism and photochemical detection. Acta Crystallogr C Struct Chem 2021; 77:782-789. [PMID: 34864721 DOI: 10.1107/s2053229621011797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/08/2021] [Indexed: 05/31/2023] Open
Abstract
Hydrothermal reaction of Mn2+ with the ditopic ligand 2,5-bis(1H-1,2,4-triazol-1-yl)benzoic acid (Hdtba) resulted in the complex poly[aqua[μ3-2,5-bis(1H-1,2,4-triazol-1-yl)benzoato-κ3N4:N4':O]chloridomanganese(II)] monohydrate], {[Mn(C11H7N6O2)Cl(H2O)]·H2O}n, (I). Coordination polymer I has been characterized by X-ray diffraction, IR spectroscopy, elemental analysis, thermogravimetry and susceptibility measurements. The topology of I corresponds to a three-dimensional (3,6)-conn net linked by {Mn2Cl2(COO)2} building blocks and dtba- anions. Significant antiferromagnetic exchange is observed within the dinuclear {Mn2Cl2(COO)2} subunits. A fit of the susceptibility data resulted in the magnetic parameters g = 1.93 and J = -1.52. Studies of the photoluminescence properties revealed that I represents a promising luminescence sensor for sensitively detecting dichromate ions in aqueous solution. The associated photochemical detection mechanism was studied in detail.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan, Shanxi 030032, People's Republic of China
| | - Yanyan An
- Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan, Shanxi 030032, People's Republic of China
| | - Tingting Guo
- Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan, Shanxi 030032, People's Republic of China
| | - Juanzhi Yan
- Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan, Shanxi 030032, People's Republic of China
| | - Danmei Song
- Water Resources Protection Center, Xi'an, Shaanxi 710100, People's Republic of China
| |
Collapse
|
7
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yang Q, Fusè M, Bloino J, Barone V. Interplay of stereo-electronic, vibronic and environmental effects in tuning the chiroptical properties of an Ir(III) cyclometalated N-heterocyclic carbene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119631. [PMID: 33761386 DOI: 10.1016/j.saa.2021.119631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Chiroptical spectra are among the most suitable techniques for investigating the ground and excited electronic states of chiral systems, but their interpretation is not straightforward and strongly benefits from quantum chemical simulations, provided that the employed computational model is sufficiently accurate and deals properly with stereo-electronic, vibrational averaging and environmental effects. Since the synergy among all these effects is only rarely accounted for, especially for large and flexible organometallic systems, the main aim of this contribution is to illustrate the latest developments of computational approaches rooted into the density functional theory for describing stereo-electronic effects and complemented by effective techniques to deal with vibrational modulation effects and solvatochromic shifts. In this connection, chiral iridium complexes offer an especially suitable case study in view of their bright phosphorescence, which is particularly significant for building effective light emitting diodes (OLEDs) and biomarkers and can be finely tuned by the nature of the metal ligands. For instance, a recently synthesized family of cycloiridiated complexes, KC and KD, bearing a pentahelicenic N-heterocyclic carbene (KB), has shown an enhanced long-lasting, bright phosphorescence. Deeper insights into the still unclear nature and origin of the enhancement could be gained by the interpretation of the chiroptical spectra, which is quite challenging in view of the presence of two sources of chirality, the chiral center on Ir and the chiral axis related to the helicene ligand, in addition to the relativistic effects related to the presence of the Ir center. At the same time, the large dimensions of KC and KD hamper the use of the most sophisticated (but prohibitively expensive) computational models, so that more approximate approaches must be validated on a suitable model compound. To this end, after optimizing the computational scheme on a model system devoid of the helicene moiety (KA), we have performed a comprehensive investigation of the KC and KD spectra, whose interpretation is further aided by novel graphical tools. The discussion and analysis of the results will not be focused on the theoretical background, but, rather, on practical details (specific functional, basis set, vibronic model, solvent regime) with the aim of providing general guidelines for the use of last-generation computational spectroscopy tools also by non-specialists.
Collapse
Affiliation(s)
- Qin Yang
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
9
|
Hao L, Zhong YM, Tan CP, Mao ZW. Acidity-responsive phosphorescent metal complexes for cancer imaging and theranostic applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Shi H, Wang Y, Lin S, Lou J, Zhang Q. Recent development and application of cyclometalated iridium(III) complexes as chemical and biological probes. Dalton Trans 2021; 50:6410-6417. [PMID: 33900334 DOI: 10.1039/d1dt00592h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium complexes have been widely applied as molecular sensors because of their rich photophysical properties, including large Stokes shifts, long emission lifetimes, environment-sensitive emissions, and high luminescence quantum yields. In this paper, we review the recent development and application of iridium complexes as probes for ions, anions, gaseous species, organic molecules, small biomolecules, biomacromolecules, and subcellular organelles. Our outlook for iridium-based probes is also discussed.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| |
Collapse
|
11
|
Rational design and synthesis of AIE active cationic Ir(III) complexes featuring iminopyridine ligand with dibenzosuberane core. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Sanz-Villafruela J, Martínez-Alonso C, Echevarría I, Vaquero M, Carbayo A, Fidalgo J, Rodríguez AM, Cuevas-Vicario JV, Lima JC, Moro AJ, Manzano BR, Jalón FA, Espino G. One-pot photocatalytic transformation of indolines into 3-thiocyanate indoles with new Ir( iii) photosensitizers bearing β-carbolines. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01307b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we harness the combination of two photocatalytic reactions, promoted by new Ir(iii) photosensitizers, for the direct access to 3-thiocyanato indoles from indolines in a one-pot process.
Collapse
|
13
|
Zhang W, Xi X, Wang YL, Du Z, Liu C, Liu J, Song B, Yuan J, Zhang R. Responsive ruthenium complex probe for phosphorescence and time-gated luminescence detection of bisulfite. Dalton Trans 2020; 49:5531-5538. [PMID: 32270143 DOI: 10.1039/c9dt04614c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sensitive and selective quantification of specific analytes is of great significance in analytical and environmental sciences, as well as in the food industry. Herein, we report the design, synthesis, characterization, and application of a responsive ruthenium(ii) complex probe, Ru-azo, for phosphorescence and time-gated luminescence (TGL) detection of bisulfite, an important additive in the food industry. Upon a specific nucleophilic addition reaction between bisulfite and the azo group of Ru-azo, a new ruthenium(ii) complex, Ru-SO3, was obtained, which resulted in a remarkable increase in phosphorescence intensity, allowing the bisulfite detection to be achieved. In addition, long-lived emissions of Ru-azo (τ = 258 ns) and Ru-SO3 (τ = 261 ns) also enabled the TGL detection of bisulfite in autofluorescence-rich food samples. Through theoretical computations, the photoinduced electron transfer (PET) process within the ruthenium(ii) complex was validated, which unveiled the rationality of the luminescence "off-on" response of Ru-azo to bisulfite. The probe showed advantages of good water solubility, and high sensitivity, selectivity and accuracy for responding to bisulfite, facilitating its application in phosphorescence and TGL detection of bisulfite in aqueous and food samples.
Collapse
Affiliation(s)
- Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu KJ, Ho SH, Dong JY, Fu L, Wang SP, Liu H, Wu C, Leung CH, Wang HMD, Ma DL. Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS APPLIED BIO MATERIALS 2020; 3:2017-2027. [DOI: 10.1021/acsabm.9b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Yi Dong
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Ling Fu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
15
|
Bhat SS, S. N, Revankar VK, Lokanath NK, Pinjari RV, Kumbar V, Bhat K. Synthesis, structural characterization and biological properties of cyclometalated iridium( iii) complexes containing [1,2,5]-thiadiazolo-[3,4- f]-[1,10]-phenanthroline. NEW J CHEM 2020. [DOI: 10.1039/d0nj03421e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The iridium(iii) complexes have been structurally characterised and their interaction with DNA, cytotoxicity and cellular uptake have been investigated.
Collapse
Affiliation(s)
- Satish S. Bhat
- Department of Chemistry
- Karnatak University
- Dharwad-580003
- India
| | - Naveen S.
- Department of Physics
- Faculty of Engineering & Technology
- Jain (Deemed-to-be University)
- Bangalore 562112
- India
| | | | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Manasagangotri, Mysuru 570006
- India
| | - Rahul V. Pinjari
- School of Chemical Science
- Swami Ramanand Teerth
- Marathwada University
- Nanded
- India
| | - Vijay Kumbar
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | - Kishore Bhat
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| |
Collapse
|
16
|
Wu W, Guan R, Liao X, Yan X, Rees TW, Ji L, Chao H. Bimodal Visualization of Endogenous Nitric Oxide in Lysosomes with a Two-Photon Iridium(III) Phosphorescent Probe. Anal Chem 2019; 91:10266-10272. [PMID: 31291720 DOI: 10.1021/acs.analchem.9b02415] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a fundamental signaling molecule that shows complex effects on the catabolic autophagy process, which is closely linked with lysosomal function. In this study, a new lysosome-targeted, pH-independent, and two-photon phosphorescent iridium(III) complex, Ir-BPDA, has been investigated for endogenous NO detection and imaging. The rational design of the probe, as the addition of the morpholine moieties and the substitution of a benzyl group in the amino group in Ir-BPDA, facilitates its accumulation in lysosomes and makes the reaction product with NO, Ir-BPDA-NO, insusceptible in its phosphorescence intensity and lifetime against pH changes (pH 4-10), well suited for lysosomal NO detection (pH 4-6). Furthermore, Ir-BPDA exhibits a fast and 50-fold response to NO in phosphorescence intensity and a two-photon cross-section as high as 60 GM after the reaction, as well as a notably increased phosphorescence lifetime from 200.1 to 619.6 ns. Thus, accompanied by its photostability, Ir-BPDA enabled the detection of NO in the lipopolysaccharide-stimulated macrophages and zebrafish model, revealing the endogenous lysosomal NO distribution during inflammation in vivo by means of both TPM and PLIM imaging techniques.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xu Yan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|