1
|
Zheng C, Simpson RE, Tang K, Ke Y, Nemati A, Zhang Q, Hu G, Lee C, Teng J, Yang JKW, Wu J, Qiu CW. Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chem Rev 2022; 122:15450-15500. [PMID: 35894820 DOI: 10.1021/acs.chemrev.2c00171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.
Collapse
Affiliation(s)
- Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.,NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Robert E Simpson
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Kechao Tang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yujie Ke
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Arash Nemati
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, and Lawrence Berkeley National Laboratory, California 94720, United States
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|