1
|
Wang FX, Mu G, Yu ZH, Qin ZS, Zhao X, Shi ZA, Fan X, Liu L, Chen Y, Zhou J. MiR-451 in Inflammatory Diseases: Molecular Mechanisms, Biomarkers, and Therapeutic Applications-A Comprehensive Review Beyond Oncology. Curr Issues Mol Biol 2025; 47:127. [PMID: 39996848 PMCID: PMC11854642 DOI: 10.3390/cimb47020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
MicroRNAs play crucial roles in regulating inflammatory responses and disease progression. Since its identification on chromosome 17q11.2 in 2005, miR-451 has emerged as a key regulator of multiple physiological and pathological processes. While its role in cancer has been extensively documented, accumulating evidence reveals miR-451's broader significance in inflammatory conditions through the regulation of NF-κB, AMPK, and PI3K signaling pathways. This comprehensive review systematically analyzes miR-451's multifaceted functions in inflammatory diseases, with particular focus on ischemia-reperfusion injury, arthritis, and acute organ injuries. We present compelling evidence for miR-451's potential as a diagnostic biomarker, demonstrating its distinctive expression patterns across various biological specimens and disease states. Furthermore, we elucidate how miR-451 modulates inflammatory responses through the regulation of immune cell populations, including microglia activation, macrophage polarization, and neutrophil chemotaxis. By integrating current evidence and bioinformatic analyses, we establish a theoretical framework linking miR-451's molecular mechanisms to its therapeutic applications. This review not only synthesizes the current understanding of miR-451 in inflammatory diseases but also provides critical insights for developing novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zhen-Shan Qin
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xing Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zu-An Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China;
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Zhou L, Luoreng Z, Wang X. Identification of potential key circular RNAs associated with Escherichia coli-infected bovine mastitis using RNA-sequencing: preliminary study results. Vet Res Commun 2024; 49:36. [PMID: 39589641 DOI: 10.1007/s11259-024-10592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/27/2024]
Abstract
Escherichia coli (E. coli) is commonly found in dairy farms and can invade mammary gland tissue, often causing acute clinical mastitis. Mammary infections with E. coli have shown a wide range of clinical signs, causing abnormal appearance of the milk, udder inflammation and systemic signs of illness. Circular RNA is a class of endogenous non-coding RNA that plays an important role in the occurrence and development of various inflammatory diseases. However, there is little information on the circRNA associated with bovine mastitis. In this study investigated the involvement of circRNAs in bovine mastitis through the construction of an E. coli-infected bovine mastitis model by injecting of E. coli into the mammary gland of dairy cows, using healthy gland mammary tissue as a control (M_C). High-throughput RNA-seq was performed on the E. coli-infected mammary gland tissue (M_E) and differentially expressed circRNAs between theM_C and M_E groups, followed by an analysis of their potential functions using bioinformatics methods. A total of 164 differentially expressed circRNAs were identified, including 92 downregulated circRNAs and 72 upregulated circRNAs. As shown by Gene Ontology enrichment analysis these DE circRNAs were mostly enriched in ras protein signal transduction, cytoplasmic vesicle parts, and enzyme binding, and Kyoto Encyclopedia of Genes and genome singal pathway enrichment analysis indicated significant associations with phagosome signal pathway. Additionally, the expression of bovine mastitis-related circRNAs, including novel_circRNA_0000128, novel_circRNA_0011103, novel_circRNA_0012656, novel_circRNA_0015099, novel_circRNA_005648, novel_circRNA_000074, and novel_circRNA_0011796 were verified via quantitative reverse-transcription polymerase chain reaction (RT-qPCR). These results provide a new direction for further investigation of the molecular mechanisms underlying bovine mastitis.
Collapse
Affiliation(s)
- Li Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China
- Key Laboratory of Ruminant Molecular Cell Breeding, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
- Key Laboratory of Ruminant Molecular Cell Breeding, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
- Key Laboratory of Ruminant Molecular Cell Breeding, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
3
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Karimi-Sales E, Mohaddes G, Alipour MR. Hepatoprotection of capsaicin in alcoholic and non-alcoholic fatty liver diseases. Arch Physiol Biochem 2024; 130:38-48. [PMID: 34396890 DOI: 10.1080/13813455.2021.1962913] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are common causes of chronic liver disease that share the range of steatosis, steatohepatitis, fibrosis, cirrhosis, and finally, hepatocellular carcinoma. They are identified by the dysregulation of disease-specific signalling pathways and unique microRNAs. Capsaicin is an active ingredient of chilli pepper that acts as an agonist of transient receptor potential vanilloid subfamily 1. It seems that the protective role of capsaicin against NAFLD and ALD is linked to its anti-steatotic, antioxidant, anti-inflammatory, and anti-fibrotic effects. Capsaicin-induced inhibiting metabolic syndrome and gut dysbiosis and increasing bile acids production are also involved in its anti-NAFLD role. This review summarises the different molecular mechanisms underlying the protective role of capsaicin against NAFLD and ALD. More experimental studies are needed to clarify the effects of capsaicin on the expression of genes involved in hepatic lipid metabolism and hepatocytes apoptosis in NAFLD and ALD.
Collapse
Affiliation(s)
- Elham Karimi-Sales
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Todero J, Douillet C, Shumway AJ, Koller BH, Kanke M, Phuong DJ, Stýblo M, Sethupathy P. Molecular and Metabolic Analysis of Arsenic-Exposed Humanized AS3MT Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127021. [PMID: 38150313 PMCID: PMC10752418 DOI: 10.1289/ehp12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) has been associated with type 2 diabetes (T2D). However, potential sex divergence and the underlying mechanisms remain understudied. iAs is not metabolized uniformly across species, which is a limitation of typical exposure studies in rodent models. The development of a new "humanized" mouse model overcomes this limitation. In this study, we leveraged this model to study sex differences in the context of iAs exposure. OBJECTIVES The aim of this study was to determine if males and females exhibit different liver and adipose molecular profiles and metabolic phenotypes in the context of iAs exposure. METHODS Our study was performed on wild-type (WT) 129S6/SvEvTac and humanized arsenic + 3 methyl transferase (human AS3MT) 129S6/SvEvTac mice treated with 400 ppb of iAs via drinking water ad libitum. After 1 month, mice were sacrificed and the liver and gonadal adipose depots were harvested for iAs quantification and sequencing-based microRNA and gene expression analysis. Serum blood was collected for fasting blood glucose, fasting plasma insulin, and homeostatic model assessment for insulin resistance (HOMA-IR). RESULTS We detected sex divergence in liver and adipose markers of diabetes (e.g., miR-34a, insulin signaling pathways, fasting blood glucose, fasting plasma insulin, and HOMA-IR) only in humanized (not WT) mice. In humanized female mice, numerous genes that promote insulin sensitivity and glucose tolerance in both the liver and adipose are elevated compared to humanized male mice. We also identified Klf11 as a putative master regulator of the sex divergence in gene expression in humanized mice. DISCUSSION Our study underscored the importance of future studies leveraging the humanized mouse model to study iAs-associated metabolic disease. The findings suggested that humanized males are at increased risk for metabolic dysfunction relative to humanized females in the context of iAs exposure. Future investigations should focus on the detailed mechanisms that underlie the sex divergence. https://doi.org/10.1289/EHP12785.
Collapse
Affiliation(s)
- Jenna Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexandria J. Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Beverly H. Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Vitulo M, Gnodi E, Rosini G, Meneveri R, Giovannoni R, Barisani D. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD. Int J Mol Sci 2023; 24:12748. [PMID: 37628929 PMCID: PMC10454602 DOI: 10.3390/ijms241612748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss.
Collapse
Affiliation(s)
- Manuela Vitulo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Roberto Giovannoni
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
7
|
Karimi-Sales E, Jeddi S, Alipour MR. trans-Chalcone inhibits transforming growth factor-β1 and connective tissue growth factor-dependent collagen expression in the heart of high-fat diet-fed rats. Arch Physiol Biochem 2022; 128:1221-1224. [PMID: 32407146 DOI: 10.1080/13813455.2020.1764045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) is one of the main risk factors for cardiovascular mortality and morbidity. This study, for the first time, explored the effects of trans-chalcone on cardiac expressions of myocardial fibrosis-related genes, including transforming growth factor -β1 (TGF-β1), connective tissue growth factor (CTGF/CCN2), and collagen type I.Materials and methods: Twenty-eight rats were randomly divided into four groups: control, received 10% tween 80; chalcone, received trans-chalcone; HFD, received high-fat diet (HFD) and 10% tween 80; HFD + chalcone, received HFD and trans-chalcone, by once-daily gavage for 6 weeks. Finally, cardiac expression levels of TGF-β1, CTGF, and collagen type I were determined.Results: HFD feeding increased mRNA levels of collagen type I, TGF-β1, and CTGF in the heart of rats. However, trans-chalcone inhibited HFD-induced changes.Conclusions: trans-Chalcone can act as a cardioprotective compound by inhibiting TGF-β1 and CTGF-dependent stimulation of collagen type I synthesis in the heart of HFD-fed rats.
Collapse
Affiliation(s)
- Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Ale-Ebrahim M, Rahmani R, Faryabi K, Mohammadifar N, Mortazavi P, Karkhaneh L. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD. Mol Biol Rep 2022; 49:3433-3443. [PMID: 35190927 DOI: 10.1007/s11033-022-07174-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effects of trans-chalcone on atherosclerosis and NAFLD have been investigated. However, the underlying molecular mechanisms of these effects are not completely understood. This study aimed to deduce the impacts of trans-chalcone on the eNOS/AMPK/KLF-2 pathway in the heart tissues and the expression of Ang-II, PDFG, and COX-2 genes in liver sections of NMRI mice fed HCD. METHODS AND RESULTS Thirty-two male mice were divided into four groups (n = 8): control group; fed normal diet. HCD group; fed HCD (consisted of 2% cholesterol) (12 weeks). TCh groups; received HCD (12 weeks) besides co-treated with trans-chalcone (20 mg/kg and 40 mg/kg b.w. dosages respectively) for 4 weeks. Finally, the blood samples were collected to evaluate the biochemical parameters. Histopathological observations of aorta and liver sections were performed by H&E staining. The real-time PCR method was used for assessing the expression of the aforementioned genes. Histopathological examination demonstrated atheroma plaque formation and fatty liver in mice fed HCD which were accomplished with alteration in biochemical factors and Real-time PCR outcomes. Administration of trans-chalcone significantly modulated the serum of biochemical parameters. These effects were accompanied by significant increasing the expression of eNOS, AMPK, KLF-2 genes in heart sections and significant decrease in COX-2, Ang-II, and PDGF mRNA expression in liver sections. CONCLUSION Our findings propose that the atheroprotective and hepatoprotective effects of trans-chalcone may be attributed to the activation of the eNOS/AMPK/KLF-2 pathway and down-regulation of Ang-II, PDFG, and COX-2 genes, respectively.
Collapse
Affiliation(s)
- Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Raziyeh Rahmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kousar Faryabi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Mohammadifar
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pejman Mortazavi
- Department of Veterinary Pathology, Faculty of Specialized Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leyla Karkhaneh
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Mirzaei Bavil F, Karimi-Sales E, Alihemmati A, Alipour MR. Effect of ghrelin on hypoxia-related cardiac angiogenesis: involvement of miR-210 signalling pathway. Arch Physiol Biochem 2022; 128:270-275. [PMID: 31596148 DOI: 10.1080/13813455.2019.1675712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypoxia is the main stimulus for angiogenesis. Hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and miR-210 are involved in the hypoxia-induced angiogenesis. This study examined the effects of hypoxia and/or ghrelin on miR-210, HIF-1α, and VEGF levels in the heart of rats. METHODS Wistar rats were randomly divided into 4 groups (n = 6): control; ghrelin, received daily intraperitoneal injections of ghrelin; hypoxia, was exposed to hypoxic condition; hypoxia + ghrelin, was exposed to hypoxic condition and received intraperitoneal injections of ghrelin, for 2 weeks. Myocardial angiogenesis, the expression level of miR-210, and protein levels of HIF-1α and VEGF were assayed in the heart samples. RESULTS Hypoxia increased myocardial angiogenesis and cardiac levels of miR-210, HIF-1α, and VEGF. However, ghrelin inhibited these hypoxia-induced changes. Interestingly, ghrelin had no significant effect on miR-210, HIF-1α, and VEGF levels in normoxic condition. CONCLUSION Ghrelin may be useful as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Zhang H, Gao X, Li K, Liu Y, Hettiarachichi DS, Sunderland B, Li D. Sandalwood seed oil ameliorates hepatic insulin resistance by regulating the JNK/NF-κB inflammatory and PI3K/AKT insulin signaling pathways. Food Funct 2021; 12:2312-2322. [PMID: 33617622 DOI: 10.1039/d0fo03051a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sandalwood (santalum spicatum) seed oil (SSO) is rich in ximenynic acid. The aim of the present study was to investigate the effect of SSO on high-fat/high-sucrose diet (HFHSD) induced insulin resistance (IR) in comparison with fish oil (FO), sunflower oil (SO) and linseed oil (LO). Fifty male Sprague-Dawley rats were randomly divided into five dietary groups: standard chow diet (controls), HFHSD plus 7% SSO, HFHSD plus 7% FO, HFHSD plus 7% SO and HFHSD plus 7% LO. After 12 weeks of feeding, the rats were sacrificed, and the serum parameters, hepatic lipids and underlying molecular mechanisms were studied. SSO, FO or LO significantly prevented glucose intolerance, hyperglycaemia, obesity, and hepatic lipid accumulation, and decreased the homeostasis model assessment of IR (HOMA-IR) and the serum levels of pro-inflammatory factors (IL-6, IL-1β and TNF-α) compared with SO. In addition, SSO activated the PI3K/AKT insulin signaling pathway and down-regulated the JNK/NF-κB inflammatory signaling pathway in the liver. In summary, our results proved that SSO exerted an ameliorative effect on IR by regulating the hepatic inflammation related blockage of the insulin signaling pathway in the rats.
Collapse
Affiliation(s)
- Huijun Zhang
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China.
| | - Xiang Gao
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China. and College of Life Sciences, Qingdao University, Qingdao, China
| | - Kelei Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China.
| | - Yandi Liu
- School of Pharmacy, Curtin University, Perth, Australia
| | | | | | - Duo Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China. and Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Del Fabbro L, de Gomes MG, Goes AR, Jesse CR. Modulatory response of chrysin supplementation in a experimental autoimmune encephalomyelitis model: Evaluation of microRNAs influence. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2020.100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
13
|
Alipour MR, Jeddi S, Karimi-Sales E. trans-Chalcone inhibits high-fat diet-induced disturbances in FXR/SREBP-1c/FAS and FXR/Smad-3 pathways in the kidney of rats. J Food Biochem 2020; 44:e13476. [PMID: 32944984 DOI: 10.1111/jfbc.13476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022]
Abstract
High-fat diet (HFD) intake is linked to chronic kidney disease. Farnesoid X receptor (FXR) controls the renal lipid metabolism and fibrosis. The purpose of the current study was to evaluate the possible impacts of trans-chalcone on HFD-induced changes in renal lipid metabolism and Smad-3 expression through the regulation of FXR expression. To this aim, 28 rats were randomly divided into control, chalcone, HFD, and HFD + chalcone groups. At the end of treatments, renal FXR, sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), Smad-3, and neutrophil gelatinase-associated lipocalin (NGAL) expression levels were assayed. Moreover, insulin sensitivity check index (QUICKI) was calculated. trans-Chalcone significantly inhibited HFD-induced reduction of insulin sensitivity. Moreover, HFD decreased the FXR expression, and trans-chalcone reversed this change. trans-Chalcone also inhibited HFD-induced increases in expression levels of SREBP-1c, FAS, Smad-3, and NGAL. Therefore, trans-chalcone, as a renoprotective agent, inhibits HFD-induced disturbances in FXR/SREBP-1c/FAS and FXR/Smad-3 pathways. PRACTICAL APPLICATIONS: Non-alcoholic fatty liver disease and metabolic syndrome, two health concerns with increasing prevalence, are known as important risk factors for chronic kidney disease. The current study indicated the preventive effect of trans-chalcone administration on HFD-induced disturbances in renal FXR/SREBP-1c/FAS and FXR/Smad-3 pathways. According to these results, trans-chalcone can be regarded as a renoprotective functional food component that can protect individuals with metabolic syndrome against chronic renal disease.
Collapse
Affiliation(s)
- Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Karimi-Sales
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Cerutti ML, Benvenutti L, Nunes R, da Silva SR, Barauna SC, de Souza MM, Malheiros Â, Lacava L, Quintão NLM, Santin JR. Effects of 2',6'-dihydroxy-4'-methoxydihidrochalcone on innate inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2061-2072. [PMID: 32548784 DOI: 10.1007/s00210-020-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/07/2020] [Indexed: 12/01/2022]
Abstract
Chalcones present potential therapeutic activities reported on literature, which led us to evaluate the anti-inflammatory effects and the acute toxicity of 2',6'-dihydroxy-4'-methoxydihydrochalcone (DHMDC) using in vitro and in vivo models. The anti-inflammatory activity was firstly in vitro investigated using macrophages (RAW 264.7) and neutrophils previously treated with DHMCD activated with lipopolysaccharide (LPS). Nitrite, IL-1β, and TNF levels were measured in the macrophage culture supernatant, and the adhesion molecule expression (CD62L, CD49D, and CD18) was evaluated in neutrophils. Then, carrageenan-induced inflammation was performed in the subcutaneous tissue of male Swiss mice. Leukocyte migration and histological analysis were performed in the pouches. Toxicological studies were carried out on female Swiss mice (600 mg/kg) through biochemical parameters and histopathological analysis. In vitro, the DHMCD significantly reduced the IL-1β, TNF, and nitrite levels. The DHMCD was also able to modulate the percentage of positive neutrophils for CD62L, without modifying the expression of CD18 or CD49d. In vivo, DHMCD (3 mg/kg, p.o.) significantly reduced neutrophil migration to inflammatory exudate and subcutaneous tissue. No evidence of toxic effect was observed considering the biochemical parameters and histopathological analysis of liver and kidney. Together, the obtained data shows that DHMCD presents anti-inflammatory activity by modulating the macrophage inflammatory protein secretion and also by blocking the CD62L cleavage in neutrophils. Furthermore, there was not any evidence of toxic effect in acute toxicological analysis.
Collapse
Affiliation(s)
- Murilo Luiz Cerutti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - Larissa Benvenutti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - Roberta Nunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - Silvia Ramos da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - Sara Cristiane Barauna
- Department of Natural Sciences, Center for Exact and Natural Sciences, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Márcia Maria de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - Ângela Malheiros
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - Letícia Lacava
- School of Health Sciences, Pharmacy Course, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil
| | - José Roberto Santin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí-UNIVALI, Rua Uruguai, Itajaí, Santa Catarina, 458, Brazil.
| |
Collapse
|
15
|
Karimi-Sales E, Alipour MR, Naderi R, Hosseinzadeh E, Ghiasi R. Protective Effect of Trans-chalcone Against High-Fat Diet-Induced Pulmonary Inflammation Is Associated with Changes in miR-146a And pro-Inflammatory Cytokines Expression in Male Rats. Inflammation 2020; 42:2048-2055. [PMID: 31473901 DOI: 10.1007/s10753-019-01067-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
High-fat diet (HFD) increases the risk of non-communicable inflammatory diseases including pulmonary disorders. Trans-chalcone is a chalcone with antioxidant and anti-inflammatory effects. This study aimed to explore the effect of this natural compound and molecular mechanism of its effect on HFD-induced pulmonary inflammation. Twenty-eight male Wistar rats were randomly divided into four main groups (n = 7 per each group): control, receiving 10% tween 80; Chal, receiving trans-chalcone, HFD, receiving a high-fat emulsion and 10% tween 80; HFD + Chal, receiving a high-fat emulsion and trans-chalcone. After 6 weeks, the lungs were dissected, and the expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and miR-146a were determined using real-time PCR. Moreover, histological analysis was done by hematoxylin and eosin staining. Significant elevations in TNF-α, IL-1β, IL-6, and miR-146a expression levels (P < 0.001) were observed within the lungs of HFD-fed rats compared with the control. However, oral administration of trans-chalcone reduced TNF-α, IL-1β, IL-6 (P < 0.001), and miR-146a (P < 0.05) expression levels and also improved HFD-induced histological abnormalities. These findings indicate that trans-chalcone ameliorates lung inflammatory response and structural alterations. It seems that this beneficial effect is associated with the down-regulation of pro-inflammatory cytokines and miR-146a.
Collapse
Affiliation(s)
- Elham Karimi-Sales
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Department of Physiology, Urmia Faculty of Medical Science, Nephrology and Kidney Transplant Research Center, Urmia University of Medical Science, Urmia, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafigheh Ghiasi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Deng N, Guo R, Zheng B, Li T, Liu RH. IRS-1/PI3K/Akt pathway and miRNAs are involved in whole grain highland barley (Hordeum vulgareL.) ameliorating hyperglycemia of db/db mice. Food Funct 2020; 11:9535-9546. [DOI: 10.1039/d0fo01990a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present investigation further unravels the underlying molecular mechanism of WGH on T2DM: IRS-1/PI3K/Akt pathway and related miRNA expression.
Collapse
Affiliation(s)
- Na Deng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Ruixue Guo
- School of Food Science
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Tong Li
- Department of Food Science
- Cornell University
- Ithaca
- USA
| | - Rui Hai Liu
- Department of Food Science
- Cornell University
- Ithaca
- USA
| |
Collapse
|