1
|
Zhang Y, Hou L, Yuan D, Wu J, Wang Y, Yu Y, Meng C, Yang F, Yan H, Du Y, Zhu H, Walline JH, Jiang Y, Gao Y, Li Y. Liver injury in paraquat poisoning: A retrospective cohort study. Liver Int 2024; 44:2564-2571. [PMID: 38963300 DOI: 10.1111/liv.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND AIMS Liver injury is one of the common complications of paraquat (PQ) poisoning, but whether the degree of liver injury is related to patient prognosis is still controversial. This study aimed to investigate whether liver injury was a risk factor for death in PQ-poisoned patients. METHODS We conducted a retrospective cohort study of PQ-poisoned patients from the past 10 years (2011-2020) from a large tertiary academic medical centre in China. PQ-poisoned patients were divided into a normal liver function group (n = 580) and a liver injury group (n = 60). Propensity score matching (PSM) analysis was then performed. RESULTS A total of 640 patients with PQ poisoning were included in this study. To reduce the impact of bias, dose of PQ, urinary PQ concentration and time from poisoning to hospital admission were matched between the two groups. A 3:1 PSM analysis was performed, ultimately including 240 patients. Compared with the normal liver function group, patients in the liver injury group were older, had a higher R value ([ALT/ULN]/[ALP/ULN]) (p < .001) and had a higher mortality rate. Cox regression analysis showed that there was no significant association between alanine aminotransferase, alkaline phosphatase, total bilirubin levels and hazard of death, but age, PQ dose, creatine kinase isoenzyme, creatine kinase, white blood cell count, neutrophil percentage and lymphocyte percentage were associated with mortality in patients with PQ poisoning. CONCLUSIONS The occurrence of liver injury within 48 h after PQ poisoning was a risk factor for mortality, and such liver injury was likely of a hepatocellular nature. Age, PQ dose, creatine kinase isoenzyme and white blood cell count were positively correlated with mortality, while creatine kinase, percentage of neutrophils and lymphocytes were inversely correlated.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hou
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yuan
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yibo Wang
- Emergency Department, The 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yanwu Yu
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuicui Meng
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Yang
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyi Yan
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqi Du
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanzhou Zhu
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Joseph H Walline
- Department of Emergency Medicine, Penn State Health, Milton S. Hershey Medical Center and The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yong Jiang
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanxia Gao
- Department of Emergency Medicine, Medical Key Laboratory of Poisoning Diseases of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Wang S, Yang XX, Li TJ, Tian XM, Wang YL, Bai G, Bao YR, Meng XS. Metabolic regularity of bioactive compounds in Bufei Jianpi granule in rats using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry analysis technology. Biomed Chromatogr 2023; 37:e5740. [PMID: 37670539 DOI: 10.1002/bmc.5740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Bufei Jianpi granule (BJG) is clinically effective for treating chronic obstructive pulmonary disease (COPD). At present, there is no report regarding the drug metabolism of BJG in vivo. This work developed an ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry method with high accuracy and sensitivity to determine drug metabolism of this compound in vivo. After continuous administration of BJG, the concentrations of 10 components in rat plasma, namely betaine, peimine, peiminine, astragaloside A, sinensetin, nobiletin, naringin, calycosin, formononetin, and magnolol, were determined at different time points. Meanwhile, the pharmacokinetic parameters and metabolic rules of these 10 components were evaluated: Cmax , 8.624-574.645 ng/mL; Tmax , 0.250-8.667 h; AUC0-t , 17.640-8947.393 ng h/mL; T1/2 , 3.405-66.014 h; mean residence time (MRT), 6.893-11.223 h. All these components possessed anti-inflammatory, antioxidant, and other biological activities to varying degrees, contributing to improving lung function, mitigating pneumonia and pulmonary fibrosis, and preventing and treating chronic obstructive pulmonary disease. Exploring the pharmacokinetic parameters and the laws of chemical components in BJG forms the scientific basis for applying the compound clinically and identifying quality markers for the control of the compound.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Xin Xin Yang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Tian Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Xiang Mu Tian
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ying Li Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yong Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| | - Xian Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, China
| |
Collapse
|
3
|
Sorgun O, Çakır A, Bora ES, Erdoğan MA, Uyanıkgil Y, Erbaş O. Anti-inflammatory and antioxidant properties of betaine protect against sepsis-induced acute lung injury: CT and histological evidence. Braz J Med Biol Res 2023; 56:e12906. [PMID: 37970921 PMCID: PMC10644961 DOI: 10.1590/1414-431x2023e12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
The aim of this research was to determine the anti-inflammatory effect of betaine on sepsis-induced acute respiratory distress syndrome (ARDS) in rats through histopathological examination, radiologic imaging, and biochemical analysis. Eight rats were included in the control group, and no procedure was performed. Feces intraperitoneal procedure (FIP) was performed on 24 rats to create a sepsis-induced ARDS model. These rats were separated into three groups as follows: FIP alone (sepsis group, n=8), FIP + saline (1 mL/kg, placebo group, n=8), and FIP + betaine (500 mg/kg, n=8). Computed tomography (CT) was performed after FIP, and the Hounsfield units (HU) value of the lungs was measured. The plasma levels of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β), IL-6, C-reactive protein, malondialdehyde (MDA), and lactic acid (LA) were determined, and arterial oxygen pressure (PaO2) and arterial CO2 pressure (PaCO2) were measured from an arterial blood sample. Histopathology was used to evaluate lung damage. This study completed all histopathological and biochemical evaluations in 3 months. All evaluated biomarkers were decreased in the FIP + betaine group compared to FIP + saline and FIP alone (all P<0.05). Also, the parenchymal density of the rat lung on CT and histopathological scores were increased in FIP + saline and FIP alone compared to control and these findings were reversed by betaine treatment (all P<0.05). Our study demonstrated that betaine suppressed the inflammation and ameliorated acute lung injury in a rat model of sepsis.
Collapse
Affiliation(s)
- O Sorgun
- Department of Emergency Medicine, Izmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - A Çakır
- Department of Emergency Medicine, Canakkale Mehmet Akif Ersoy State Hospital, Canakkale, Turkey
| | - E S Bora
- Department of Emergency Medicine, Izmir Ataturk Training and Research Hospital, Izmir, Turkey
| | - M A Erdoğan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Y Uyanıkgil
- Department of Histology and Embryology, Ege University, Izmir, Turkey
| | - O Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
4
|
Vaccaro JA, Naser SA. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection and Inflammation. Healthcare (Basel) 2021; 10:healthcare10010061. [PMID: 35052225 PMCID: PMC8775811 DOI: 10.3390/healthcare10010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.
Collapse
|
5
|
Chen T, Tao N, Yang S, Cao D, Zhao X, Wang D, Liu J. Association Between Dietary Intake of One-Carbon Metabolism-Related Nutrients and Fluorosis in Guizhou, China. Front Nutr 2021; 8:700726. [PMID: 34651006 PMCID: PMC8505735 DOI: 10.3389/fnut.2021.700726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 12/01/2022] Open
Abstract
Objective: This study aimed to investigate the associations between dietary one-carbon metabolism-related nutrients (betaine, choline, methionine, folate, vitamin B6, and vitamin B12) and fluorosis among the Chinese population in an area known for coal-burning fluorosis. Methods: A cross-sectional study was conducted, with 653 fluorosis patients and 241 non-fluorosis participants. Dietary intake was acquired using a validated semi-quantitative 75-item food frequency questionnaire. The risk associations were assessed by unconditional logistical regression. Results: We observed a significant inverse association between dietary betaine, total choline, methionine, folate, vitamin B6, and choline species and fluorosis. The adjusted OR (95% CI) in the highest quartile of consumption compared with the lowest were 0.59 (0.37-0.94) (P-trend = 0.010) for betaine intake, 0.45 (0.28-0.73) (P-trend = 0.001) for total choline intake, 0.45 (0.28-0.72) (P-trend < 0.001) for methionine intake, 0.39 (0.24-0.63) (P-trend < 0.001) for folate intake, 0.38 (0.24-0.62) (P-trend < 0.001) for vitamin B6 intake, and 0.46 (0.28-0.75) (P-trend = 0.001) for total choline plus betaine intake. Dietary intakes of choline-containing compounds, phosphatidylcholine, free choline, glycerophosphocholine, and phosphocholine were also inversely associated with lower fluorosis (all P-trend < 0.05). No significant associations were observed between dietary vitamin B12 or sphingomyelin and fluorosis. Conclusion: The present study suggested that the higher dietary intakes of specific one-carbon metabolism-related nutrients, such as betaine, choline, methionine, folate, and vitamin B6, are associated with lower fluorosis prevalence.
Collapse
Affiliation(s)
- Ting Chen
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng Yang
- Department of Surveillance in Public Health, Center for Disease Control and Prevention of Renhuai City, Renhuai, China
| | - Dafang Cao
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Diseases, Center for Diseases Control and Prevention of Zhijin County, Zhijin, China
| | - Donghong Wang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Wang N, Wang X, Li Y, Shen H, Liu Z, Ma Z, Li Q, Zhao M. The STING-IRF3 pathway contributes to paraquat-induced acute lung injury. Toxicol Mech Methods 2021; 32:145-157. [PMID: 34455893 DOI: 10.1080/15376516.2021.1974133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Immune and inflammatory responses play significant roles in paraquat (PQ)-induced acute lung injury (ALI), but the specific mechanisms remain unclear. Our study aimed to investigate the action of STING-IRF3 signaling on PQ-induced ALI in mice. Following PQ administration, samples were collected at 2, 12, 24, and 48 h for in vivo studies, and 24 h for in vitro studies. Following PQ administration (30 mg/kg, i.p.), injury to mouse lungs was evaluated by H&E staining and wet/dry ratios, and lung oxidative damage was evaluated by MDA and SOD assays. The mRNA levels of Sting, Irf3, and Ifnβ were detected by RT-PCR, the expression of STING and IRF3 were assessed by western blotting and IHC/IF, and the secretion of IFNβ was detected by ELISA. In vivo, PQ administration induced pathological changes and increased wet/dry ratios in lungs after 48 h. Sting, Irf3, and Ifnβ mRNA levels in lung tissues, STING and pIRF3 protein levels in lung tissues, and IFNβ secretion in serum, were upregulated by PQ in a time-dependent manner. PQ administration promoted IRF3 nuclear translocation in lung tissues after 48 h. The above changes were all attenuated by dexamethasone treatment (5 mg/kg, i.p., qd). In vitro, PQ induced STING and IRF3 translocation. Irf3 or Sting silencing decreased the mRNA levels and supernatant secretion of IFNβ in PQ-treated RAW264.7 mouse macrophages. Sting silencing also inhibited the protein and mRNA levels of IRF3 in vitro. Our study suggests that STING-IRF3 signaling contributes to PQ-induced ALI, providing new information for future treatment strategies.
Collapse
Affiliation(s)
- Na Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Occupational Disease and Occupational Health Prevention and Control Institute, Liaoning Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Xiaofeng Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhua Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongliang Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Hussein RM, Al-Dalain SM. Betaine downregulates microRNA 34a expression via a p53-dependent manner in cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2021; 35:e22856. [PMID: 34318554 DOI: 10.1002/jbt.22856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023]
Abstract
Cisplatin-induced nephrotoxicity limits its wide application as a chemotherapeutic drug. Betaine is a natural trimethylglycine compound involved in several biological reactions. In this study, the protective effect of betaine against cisplatin-induced nephrotoxicity through modulating the expression of microRNA 34a (miRNA 34a), p53, apoptosis, and inflammation was investigated. Adult Wistar rats were divided into normal group (received vehicle); betaine group (received 250 mg betaine/kg BW/day via oral gavage from Day 1 to Day 25); cisplatin group (received a single intraperitoneal dose of cisplatin at 5 mg/kg BW on Day 21) and betaine + cisplatin group (received the same doses of betaine and cisplatin). The results demonstrated that the cisplatin group exhibited severe kidney tissue damage and an increase in blood creatinine and urea levels. Furthermore, the cisplatin group showed a significant upregulation of miRNA 34a and higher levels of phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β compared to the normal group. Remarkably, the betaine + cisplatin group showed significantly decreased blood creatinine and urea concentrations, decreased levels of miRNA 34a, phospho-p53, caspase 3, cytochrome c, NFk B, and IL-1β as well as improved kidney tissue integrity compared to the cisplatin group. In conclusion, cisplatin-induced nephrotoxicity in rats was associated with upregulation of miRNA 34a expression, apoptosis, and inflammation in p53-dependent manner. These effects were reversed by betaine administration that ultimately improved the kidney function and tissue integrity.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Saed M Al-Dalain
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
8
|
Xu J, Zhou M, Luo P, Yin Z, Wang S, Liao T, Yang F, Wang Z, Yang D, Peng Y, Geng W, Li Y, Zhang H, Yang J. Plasma metabolomic profiling of patients recovered from COVID-19 with pulmonary sequelae 3 months after discharge. Clin Infect Dis 2021; 73:2228-2239. [PMID: 33596592 PMCID: PMC7929060 DOI: 10.1093/cid/ciab147] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Elucidation of the molecular mechanisms involved in the pathogenesis of coronavirus disease 2019 (COVID-19) may help to discover therapeutic targets. Methods To determine the metabolomic profile of circulating plasma from COVID-19 survivors with pulmonary sequelae 3 months after discharge, a random, outcome-stratified case-control sample was analyzed. We enrolled 103 recovered COVID-19 patients as well as 27 healthy donors, and performed pulmonary function tests, computerized tomography (CT) scans, laboratory examinations, and liquid chromatography-mass spectrometry. Results Plasma metabolite profiles of COVID-19 survivors with abnormal pulmonary function were different from those of healthy donors or subjects with normal pulmonary function. These alterations were associated with disease severity and mainly involved amino acid and glycerophospholipid metabolic pathways. Furthermore, increased levels of triacylglycerols, phosphatidylcholines, prostaglandin E2, arginine, and decreased levels of betain and adenosine were associated with pulmonary CO diffusing capacity and total lung capacity. The global plasma metabolomic profile differed between subjects with abnormal and normal pulmonary function. Conclusions Further metabolite-based analysis may help to identify the mechanisms underlying pulmonary dysfunction in COVID-19 survivors, and provide potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Luo
- Department of Translational Medicine Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengrong Yin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Peng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Geng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Subbiah R, Tiwari RR. The herbicide paraquat-induced molecular mechanisms in the development of acute lung injury and lung fibrosis. Crit Rev Toxicol 2021; 51:36-64. [PMID: 33528289 DOI: 10.1080/10408444.2020.1864721] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The herbicide paraquat (PQ; 1,1'-dimethyl-4,4'-bipyridylium dichloride) is a highly toxic organic heterocyclic herbicide that has been widely used in agricultural settings. Since its commercial introduction in the early 1960s, numerous cases of fatal PQ poisonings attributed to accidental and/or intentional ingestion of PQ concentrated formulations have been reported. The clinical manifestations of the respiratory system during the acute phase of PQ poisoning mainly include acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), followed by pulmonary fibrosis in a later phase. The focus of this review is to summarize the most recent publications related to PQ-induced lung toxicity as well as the underlying molecular mechanisms for PQ-mediated pathologic processes. Growing sets of data from in vitro and in vivo models have demonstrated the involvement of the PQ in regulating lung oxidative stress, inflammatory response, epigenetics, apoptosis, autophagy, and the progression of lung fibrosis. The article also summarizes novel therapeutic avenues based on a literature review, which can be explored as potential means to combat PQ-induced lung toxicity. Finally, we also presented clinical studies on the association of PQ exposure with the incidence of lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Rajasekaran Subbiah
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|